Skip to main content

Spherical Edge Detector: Application to Omnidirectional Imaging

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5259))

Abstract

In this paper, we present an efficient approach to detect edges in omnidirectional images. The main problem with such images, is that resolution is very high in the periphery and poor in the center. Applying the classical (planar) operators to these images will introduce errors. We propose to map the image on the unit sphere of equivalence, and to construct edge and smooth operators in this new space. The effect of the proposed edge detector is the same over the image. We will show that results obtained by our image processing tools give better results than classical edge detection operators....

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, New York (1993)

    Google Scholar 

  2. Daniilidis, K., Makadia, A., Bulow, T.: Image Processing in Catadioptric Planes: Spatiotemporal Derivatives and Optical Flow Computation. In: Proceedings of the Third Workshop on Omnidirectional Vision, Washington DC, USA, pp. 3–10 (2002)

    Google Scholar 

  3. Geyer, C., Daniilidis, K.: Catadioptric projective geometry. International Journal on Computer Vision 45(3), 223–243 (2001)

    Article  MATH  Google Scholar 

  4. Fiala, M., Basu Hough, A.: Transform for feature detection in panoramic images. Pattern Recognition Letter 23(14), 1863–1874 (2002)

    Article  MATH  Google Scholar 

  5. Bakstein, H., Pajdla, T.: Panoramic Mosaicing with a 180° Field of View Lens. In: Proc. IEEE Workshop Omnidirectional Vision, pp. 60–67 (2002)

    Google Scholar 

  6. Driscoll, J.R., Healy, D.M.: Computing Fourier Transform and Convolutions on the 2-Sphere. Advances in Applied Mathematics 15, 202–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baker, S., Nayar, S.K.: A Theory of Single-Viewpoint Catadioptric Image Formation. Int’l J. Computer Vision 35(2), 175–196 (1999)

    Article  Google Scholar 

  8. Vlassis, N., Motomura, Y., Hara, I., Asoh, H., Matsui, T.: Edge-based features from omnidirectional images for robot localization. In: Proc. IEEE Int. Conf. on Robotics and Automation (2001)

    Google Scholar 

  9. Bulow, T.: Spherical Diffusion for 3D Surface Smoothing. IEEE Trans. Pattern Anal. Mach. Intell. 26(12), 1650–1654 (2004)

    Article  Google Scholar 

  10. Demonceaux, C., Vasseur, P.: Markov random fields for catadioptric image processing. Pattern Recognition Letters 27(16), 1957–1967 (2006)

    Article  MATH  Google Scholar 

  11. Geyer, C., Daniilidis, K.: A Unifying Theory for Central Panoramic Systems and Practical Applications. In: Proc. European Conf. Computer Vision (2000)

    Google Scholar 

  12. Strauss, O., Comby, F.: Variable structuring element based fuzzy morphological operations for single viewpoint omnidirectional images. Pattern Recognition 40(12), 3578–3596 (2007)

    Article  MATH  Google Scholar 

  13. Jacquey, F., Loquin, K., Comby, F., Strauss, O.: Non-Additive Approach for Gradient-Based Edge Detection. IEEE International Conference on Image Processing 3, III49–III52 (2007)

    Google Scholar 

  14. Bogdanova, I., Bresson, X., Thiran, J.P., Vandergheynst, P.: Scale Space Analysis and Active Contours for Omnidirectional Images. IEEE Transactions on Image Processing 16(7), 1888–1901 (2007)

    Article  MathSciNet  Google Scholar 

  15. Bazin, J.C., Kweon, I.S., Demonceaux, C., Vasseur, P.: Rectangle Extraction in Catadioptric Images. In: 7th Workshop on Omnidirectional Vision, Camera Networks, and Non-classical Cameras (OMNIVIS 2007), vol. 1(1), pp. 1957–1967 (2007)

    Google Scholar 

  16. Barreto, J.P., Araujo, H.: Direct least square fitting of paracatadioptric line images. In: Omnivis: Workshop on Omnidirectional Vision and Camera, vol. 1(1) (2003)

    Google Scholar 

  17. Healy, D.M., Rockmore, D., Kostelec, P.J., Moore, S.S.B.: FFTs for the 2-Sphere - Improvements and Variations. Dartmouth College Department of Computer Science Technical Report PCS-TR94-222 (1998)

    Google Scholar 

  18. Micusik, B., Martinec, D., Pajdla, T.: 3D Metric Reconstruction from Uncalibrated Omnidirectional Images. In: Proc. of Asian Conf. on Computer Vision, pp. 545–550 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bigot, S., Kachi, D., Durand, S. (2008). Spherical Edge Detector: Application to Omnidirectional Imaging. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88458-3_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88457-6

  • Online ISBN: 978-3-540-88458-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics