Graffiti Detection Using a Time-Of-Flight Camera

Federico Tombari'-2, Luigi Di Stefano'2, Stefano Mattoccia'-?, and Andrea Zanetti'-?

! Department of Electronics Computer Science and Systems (DEIS)

University of Bologna

Viale Risorgimento 2, 40136 - Bologna, Italy

2 Advanced Research Center on Electronic Systems (ARCES)
University of Bologna
Via Toffano 2/2, 40135 - Bologna, Italy
{federico .tombari, luigi.distefano, stefano .mattoccia}@unibo Lit,
andrea.zanetti@studio.unibo.it
www.vision.deis.unibo.it

Abstract. Time-of-Flight (TOF) cameras relate to a very recent and growing
technology which has already proved to be useful for computer vision tasks. In
this paper we investigate on the use of a TOF camera to perform video-based graf-
fiti detection, which can be thought of as a monitoring system able to detect acts
of vandalism such as dirtying, etching and defacing walls and objects surfaces.
Experimental results show promising capabilities of the proposed approach, with
improvements expected as the technology gets more mature.

1 Introduction

Nowadays, countless acts of graffiti are committed daily against public and private prop-
erties all around the world. The costs caused by such damage are huge. These include
obviously the direct costs of cleaning tagged surfaces as well as the loss of value of
properties repeatedly damaged by graffiti. Besides, other significant indirect costs are
to be imputed to the perceived uncleanness and insecurity associated with the presence
of graffiti in a certain area. This results in decreases of revenues for commercial activ-
ities or services taking place in the area (e.g. shops, restaurants, rental of apartments).
Similar considerations apply to public transport, for the uncleanness and perceived inse-
curity in railway/bus/underground stations lower passenger confidence in the transport
system and consequently tend to decrease ridership.

Therefore, public bodies are trying to tackle the graffiti problem from many different
perspectives. In some towns these include also attempts to establish forms of cooper-
ation with the writers, so as to channel their needs for expression into a well-defined
and socially acceptable framework (e.g. by giving them specific spaces for drawing and
organizing exhibitions to show their works). Nonetheless, the need to protect properties
clearly calls for a widespread adoption of surveillance cameras. Given the difficulty for
security personnel to monitor simultaneously large arrays of cameras, theres also an
increasing attention toward the development of intelligent video-surveillance systems
specifically conceived to detect automatically the act of drawing graffiti on a surface.

As far as video analysis is concerned, in principle graffiti detection may be carried
out according to two approaches: detection of the act of writing on a surface or detection
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Fig. 1. Outline of the proposed algorithm

of a change on a monitored surface. The former deals with the deployment of behavior
and gesture analysis techniques (e.g. [1]) for recognizing a spatio-temporal pattern cor-
responding to a person perpetrating the act of writing on a monitored surface. However,
such techniques require accurate training of a classifier and generally perform much
better when a certain degree of cooperation from the subject can be achieved, which
is obviously not the case of graffiti detection. On the other hand, the latter approach
consists simply in trying to detect as soon as possible the changes of appearance of
the monitored surface caused by the drawings. Hence this approach may be accom-
plished based on standard change detection algorithms, which aim at detecting changes
between the current frame and a background image and make up the primal processing
step in most intelligent video-surveillance systems. In particular, as proposed in [2],
graffiti detection may be carried out by detecting appearance changes with respect to
a reference background which are stationary both in space and time. Yet, this method
is prone to false positives in practical scenarios, since objects other than graffiti may
exhibit the sought for pattern of spatio-temporal stationarity: people standing very still,
parked vehicles (such as cars, motorcars, bicycles), abandoned objects.

In this paper we investigate on the use of a TOF (Time-of-Flight) camera to perform
automatic graffiti detection. The rationale of this study is that since a TOF camera senses
both brightness and depth at each pixel location, it may be deployed to detect graffiti by
looking for stationary changes of brightness that do not correspond to changes in depth.
Itis clear that the use of a TOF camera holds the potential to overcame the false positives
issue of the method in [2]], for most still objects other than graffiti would yield both
brightness and depth changes. Furthermore, it is worth noting that the same idea can be
usefully employed to detect further events rather than only graffiti, such as modifications
to the background surfaces. This can be useful, e.g., for cultural heritage environments
or museums, to detect acts of vandalism such as painting, dirtying, etching or defacing
of parts of an artwork. This will be investigated in the experimental part (Section ).

2 TOF Cameras and Applications

Recently developed low-power TOF depth sensors [314151/6] combine in single package
a depth perception module and a CMOS camera. Although the first generation of these
sensors had several limitations, TOF technology gained remarkable interest by virtue of
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its potential suitability to many real applications. Several studies were aimed at assess-
ing the performance of TOF technology [7.[8,9] and compare it with other state of the
art technologies for depth perception such as stereo vision [10,11.12].

Several improvements are expected by the forthcoming next generation of TOF cam-
eras: increased invariance to objects reflectivity, increased spatial and depth resolution,
increased signal to noise ratio for the 2D and 3D perception modules and the integra-
tion of higher resolution color CMOS cameras. Nevertheless, in spite of their limita-
tions, current generation of TOF based depth sensors was successfully used in several
applications such as video surveillance and tracking [13]], facial features detection and
tracking [[14]], classification of moving objects [13], gesture recognition [16], documen-
tation of heritage objects [[I1]], robot vision and obstacle detection [17.,[18], safety [12].
Some authors combined TOF sensors with additional high resolution cameras [[19,20]
in order to overcome the limitations of the embedded CMOS camera or stereo vision
systems in order to improve effectiveness of depth perception. In order to im-
prove depth and spatial resolution of depth sensors Yang et al. recently proposed an
iterative technique based on bilateral filtering [24]]. Depth maps are iteratively improved
applying bilateral filters on each slice of the Disparity Space Image (DSI) volume. The
weights of each bilateral filter are obtained processing images provided by a high reso-
lution color camera. This technique is currently not suited for real-time applications but
provided excellent results with TOF and stereo-based depth sensors.

3 Graffiti Detection Algorithm

The proposed algorithm for graffiti detection jointly deploys depth and intensity infor-
mation to detect events such as changes in the appearance of the visible surfaces in the
monitored scene. The basic idea of our algorithm can be outlined as follows. First, by
means of an intensity-based analysis visible changes can be detected by comparing the
current intensity information with a model of the background of the scene. Then, the
use of depth information can discriminate between changes occurring in the space be-
tween the background and the camera (e.g. intrusion) and those occurring directly on
the background surface (e.g. graffiti). The outline of the proposed algorithm, described
hereinafter, is shown in Fig. [Tl

The proposed algorithm is based on background subtraction [23]], that aims at detect-
ing changes in a monitored scene by comparing each frame of the incoming 2D video
stream with a model of the background of the scene. In order to build such a model,
for each point of the background a statistical parameter can be computed by collecting
the pixel values in that point along an initialization sequence. Typically this parameter
is either the mean, the median or the mode of the pixel intensities along the initializa-
tion sequence. In our approach, we set each background pixel to the mean value com-
puted over the initialization sequence. Then, in order to compare the background model
with each frame, we adopt a basic background subtraction approach, i.e. we compute a
change mask C; by thresholding the absolute difference between each pixel intensity in
the background B; and in the current frame Fj:

false |Bi(x,y) — Fi(z,y)| <T
true elsewhere

Citan) = { 0
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Thus, C} is a binary mask denoting all points which result changed after the compar-
ison with the background. In the basic model, 7" is a fixed parameter of the algorithm.
Nevertheless, when dealing with TOF cameras, the amount of noise perceived by each
pixel is lower at the center of the image, where the power of the reflected light signal
is higher, and increases as we get far from it. Hence, 7" should depend on the position
(z,y) where the change mask is being evaluated. In particular, we assume that noise
can be modeled as a zero-mean Gaussian distribution:

Fi(z,y) = F(z,y) + Ni(z,y) 2)

with 7' (x, y) being the noise-free version of Fj(z,y) and

Ni(z,y) = } ®)

2

27T'Ui(x7y) . 20-12(xay)

Hence, parameter 7" in (I) is chosen to be proportional to the standard deviation
of the Gaussian distribution of each pixel, which is estimated during the initialization
sequence. This leads to

[ false |Bila.y) - Fia.y)| < ki - o,(z,y)
Ci(z,y) = {true elsewhere “)
with k; typically ranging within [1, - - -, 3] (k; = 1 in our experiments).

The same approach can be carried out also for what concerns the depth informa-
tion coming from the TOF sensor. In particular, a depth background model B, can be
built by averaging the depth value of each point of the depth map over an initialization
sequence, assuring the background is static along that sequence. Moreover, for each
point (z,y) the standard deviation o4(x,y) of the depth values over the initialization
sequence is also computed. Then, similarly to @), the current depth map F,; can be
compared at run-time to the depth background model By :

. _ [ false [Ba(i,j) — Fa(i, j)| <ka-oalz,y)
Cali, j) = {true elsewhere )
with kg typically ranging within [1,-- -, 3] (kq = 1.5 in our experiments).

Once C; and Cy are computed, they are compared so to determine the presence of
graffiti in the scene. In particular, the event of a point (x, y) resulting changed in either
one of the two masks refers to one of the following three possible circumstances:

1. C; = true, Cy=true: a change in intensity corresponds to a change in depth. This
means that an intrusion by something/someone is currently going on.

2. C; =true, Cy=false: a change in intensity does not correspond to a change in depth.
Thus, a change of the appearance of the background surface has occurred: a graffiti
event is triggered.

3. C; =false, Cy=true: a change in depth does not correspond to a change in intensity.
In this case, an intrusion has been performed by something/someone having an
intensity similar to that of the background (i.e. camouflage).
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Thus, graffiti are detected simply by choosing all points marked as changed on C; and
as unchanged on CYy.

In addition, we carry out a final post-processing stage in order to improve the reliabil-
ity of our detector. Along this last stage, three different conditions are checked in order
to eliminate false positives from the final graffiti mask. First, a stationarity check is per-
formed, that is a point is detected as graffito only if it was positively detected in the last
t frames. This is a necessary measure against the high amount of noise of the camera
sensor, which otherwise would produce a high number of flickering points in the final
change mask. Successively, a labeling algorithm is applied on the detected graffiti re-
gions. This allows to eliminate from the final change mask all graffiti whose area is less
than a certain number of pixels, which are as well typically generated by noise. Finally,
the last check eliminates all graffiti blobs having any of their 8-connected neighboring
points detected as 3D intrusions in Cy, since they are most probably generated by the
parts of an intruding object/person laying close to the background surface.

4 Experimental Results

In this section we show some preliminary results dealing with the application of our
graffiti detector to real video sequences. Unfortunately, due to the current limits of
the TOF technology and, above all, due to the characteristics of TOF camera (Canesta
DP205, Field of View: 55 deg.) available to us for the experiments, which is not state-
of-the-art, resolution is limited to 64 x 64 for both intensity and depth. Furthermore,
the power of the infrared illuminator limited the maximum depth range during our tests,
forcing the camera to stand not farther than 1.5~2 meters away from the background
walls, otherwise the sensor is unable to detect the majority of details appearing on the
background surface. In fact, at a farther distance, the intensity image tends to appear
very dark.

Thus, we now show some footage dealing with some typical acts of vandalism which
can be detected by our system. These acts include graffiti (e.g. writings on a surface,
Video 1), object stealing (e.g. stealing a painting or a drawing hung up on the wall,
Video 2), surface defacing or damaging (e.g. tearing apart a drawing on the wall, Video
3). For each sequence, we show some qualitative results by uniformly taking some snap-
shots of the outputs of the various stages of the algorithm along the whole sequence. In
particular, for each snapshot we show the current intensity frame Fj, the current depth
frame Fy, the intensity change mask C';, the depth change mask C;. Besides, we also
superimpose on Fj the final output of our algorithm, which is a bounding box around
each graffiti blob detected by our system.

Fig. 2l shows the results dealing with the graffiti sequence (Video 1). At the very
beginning of the sequence, the scene is empty, with a white wall on the background
(Frame £1). Then, a person enters the scene and starts making some drawings on the
wall (Frames £100, 250, 500, 750, 1000). As soon as the graffiti start being visible
on the scene (Frame #250), the system detects their presence and localizes them quite
accurately. It is worth noting that in Frames £250 and #1000 2 false positives arise due
to the fact that the person’s arm, laying on the wall, is almost at the same depth as the
background and is recognized as a graffito. Then, when the person stands in front of the
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Fig. 3. Video 2: object stealing sequence

drawing, no graffito is detect in the output (Frame #1100). Finally, Frame £1175 shows
the output of the system at the very end of the sequence.

As said before, the proposed algorithm can be usefully deployed also to detect other
events rather than just graffiti. In Fig. B]results are showed concerning a sequence where
a painting hanging on the wall is stolen (Video 2). The object appears at the beginning
of the sequence (Frame £30). While a person is stealing the painting, no output is raised
since an intrusion is present but the background has not structurally changed yet (Frame
£60). Finally, when the object is removed the event is correctly detected by our system
(Frame £90).

Finally, we show a sequence concerning the defacing of an object hanging on the
wall (Video 3). In this last case, we also propose a slight modification to the output of
the algorithm. It is easy to note, from the various depth frames F; shown in Figg. 2l
[l that the depth map computed by the TOF sensor is rarely able to determine a good
depth estimation of the scene on the regions around the 4 corners of the map. This is
mainly due, as said in Section 3] to the amount of noise which increases as the dis-
tance of point from the image center increases, and it is maximum around the 4 corners,
which are the points laying farthest from the center. This phenomenon is also evident
for points belonging to the intensity frames. Hence, as a consequence, regions around
the four corners of the image are highly unreliable, their depth and intensity variances
being extremely high. In practice, this increases the chances of having false positives
around those regions. Hence, we propose to use a binary mask which excludes the
graffiti detection over these points, which can be regarded as peripheral regions where
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Fig.4. Video 3: object defacing sequence

detection can not be performed. The output frames of Video 3 (Fig.[] left column) show
in green this mask.

The first frame of the sequence (1) shows a painting hanging on a white background
wall. Then a person enters the room (Frame #40) and starts tearing apart the painting
(Frame £80). Correctly, only when defacing is being performed, the algorithm produces
an alarm (Frame £80). At the very end of the sequence (Frame §120) defacing is cor-
rectly detected, as only the lower half of the painting (the part which has been torn
apart) is being highlighted by the bounding box.

5 Conclusions

Overall, our study demonstrated promising capabilities to perform graffiti detection by
means of a TOF camera. In particular, our system was able to effectively deploy inten-
sity and depth information coming from a TOF sensor to detect acts of vandalism such
as dirtying and painting on walls, object stealing and defacing. In our experiments,
though the testing conditions were simplified due to the limits of the available TOF
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sensor, our system showed a notable sensitivity, with “graffiti events” being correctly
detected and their area being accurately estimated. Moreover, the system yielded a lim-
ited number of false positives. It is also worth pointing out that our system is able to
operate in real-time.

One major improvement to the system developed so far deals with the capability
to handle illumination changes, which were not explicitly taken into account in the
experiments. In fact, in case of both slow and sudden illumination changes in the mon-
itored scene, the basic background subtraction approach adopted for the intensity data
would fail and illumination changes modifying the appearance of the background sur-
face would easily be detected as graffiti. However, it is well known in literature that
background subtraction can be made very robust with respect to illumination changes
by deploying similarity/dissimilarity measures that are invariant to some transformation
of the intensities. For example, the use of the Zero-mean Normalised Cross-Correlation
(ZNCC) to obtain C'; would render the system invariant to illumination changes that can
be modelled locally by affine transformations of intensities. As vouched by work con-
cerning the evaluation of visual correspondence measures, e.g. [26], the ZNCC would
notably improve the robustness of our system with respect to illumination changes.
Other robust background subtraction methods, such as e.g. [27]], can be adopted to
achieve an ever higher degree of robustness (i.e. invariance to locally order preserv-
ing transformations).

Future work is aimed at render the system more robust with regards to illumination
changes by means of the aforementioned methodology, and to improve the quality of
the intensity images by integrating this information with that coming from a higher
resolution color camera. Finally, we also look forward to test the performance of our
system within more challenging environments by using a TOF sensor with improved
resolution and depth range.
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