Skip to main content

Complex Systems and Perception

  • Chapter
  • 1023 Accesses

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 1))

Abstract

This Chapter concludes Part II of the present Volume. Here the hypothesis of an internal model arises is needed at the aim to generate internal representations which enable the robot to reach a suitable behavior so as to optimize ideally arbitrary motivational needs. Strongly based on the idea, common to Behavior-based robotics, that perception is a holistic process, strongly connected to behavioral needs of the robot, here we present a bio-inspired framework for sensing-perception-action, based on complex self-organizing dynamics. These are able to generate internal models of the environment, strictly depending both on the environment and on the robot motivation. The strategy, as a starting simple task, is applied to a roving robot in a random foraging task. Perception is here considered as a complex and emergent phenomenon where a huge amount of information coming from sensors is used to form an abstract and concise representation of the environment, useful to take a suitable action or sequence of actions. In this chapter a model for perceptual representation is formalized by means of Reaction-Diffusion Cellular Nonlinear Networks (RD-CNNs) used to generate self-organising Turing patterns. They are thought as attractive states for particular set of environmental conditions in order to associate, via a reinforcement learning, a proper action. Learning is also introduced at the afferent stage to shape the environment information according to the particular emerging pattern. The basins of attraction for the Turing patterns are so dynamically tuned by an unsupervised learning in order to form an internal, abstract and plastic representation of the environment, as recorded by the sensors. In the second part of the Chapter, the representation layer together with the other blocks already introduced in the previous Chapters (i.e. basic behaviours, correlation layer, memory blocks, and others), has been structured in an unique framework, the SPARK cognitive model. The role assigned to the representation layer inside this complete architecture consists in modulating the influence of each basic behaviour with respect to the final behaviour performed by the robot to fulfill the assigned mission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A., Arena, P., Basile, A., Carmona-Galán, R., De Lacy Costello, B., Fortuna, L., Frasca, M., Rodriguez-Vázquez, A.: Reaction-Diffusion Navigation Robot Control: From Chemical to VLSI Analogic Processors. IEEE Transactions On Circuits And Systems I 51, 926–938 (2004)

    Article  Google Scholar 

  2. Arena, P., Baglio, S., Fortuna, L., Manganaro, G.: Self Organization in a two-layer CNN. IEEE Trans. on Circuits and Systems - part I 45(2), 157–162 (1998)

    Article  Google Scholar 

  3. Arena, P., Caponetto, R., Fortuna, L., Manganaro, G.: Cellular neural networks to explore complexity. Soft Computing Research Journal 1(3), 120–136 (1997)

    Google Scholar 

  4. Arena, P., Costa, A., Fortuna, L., Lombardo, D., Patané, L.: Emergence of perceptual states in nonlinear lattices: a new computational model for perception. In: Proceedings of IEEE/RSJ International Conference on Intelligent RObots and Systems (IROS), Nice, France (2008)

    Google Scholar 

  5. Arena, P., Crucitti, P., Fortuna, L., Frasca, M., Lombardo, D., Patané, L.: Turing patterns in RD-CNNs for the emergence of perceptual states in roving robots. International Journal of Bifurcation and Chaos 18(1), 107–127 (2007)

    Article  Google Scholar 

  6. Arena, P., Fortuna, L., Frasca, F., Pasqualino, R., Patané, L.: CNNs and Motor Maps for Bio-inspired Collision Avoidance in Roving Robots. In: Proceedings of The 8th IEEE International Biannual Workshop on Cellular Neural Networks and their Applications(CNNA), Budapest, Hungary (2004)

    Google Scholar 

  7. Arena, P., Fortuna, L., Frasca, F., Patané, L.: A CNN-based chip for robot locomotion control. Circuits and Systems I: Regular Papers. IEEE Transactions 52(9), 1862–1871 (2005)

    Google Scholar 

  8. Arena, P., Fortuna, L., Frasca, M., Sicurella, G.: An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion. IEEE Transactions on Systems, Man and Cybernetics, Part B 34, 1823–1837 (2004)

    Article  Google Scholar 

  9. Arkin, R.C.: Behaviour Based Robotics. MIT Press, Cambridge (1997)

    Google Scholar 

  10. Borenstein, J., Koren, Y.: The vector field histogram fast obstacle avoidance for mobile robots. IEEE Journal of Robotics and Automation 7, 278–288 (1991)

    Article  Google Scholar 

  11. Brooks, R.A.: Intelligence without reason. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of 12th International Joint Conference on Artificial Intelligence, San Mateo, California (1994)

    Google Scholar 

  12. Carmona, R., Jiménez-Garrido, F., Domínguez-Castro, R., Espejo, S., Rodríguez-Vázquez, A.: Bio-inspired analog VLSI design realizes rogrammable complex spatio-temporal dynamics on a single chip. In: Proceedings of Design, Automation and Test in Europe Conference and Exhibition (DATE), Paris, France (2002)

    Google Scholar 

  13. Chua, L.O. (ed.): Special Issue on Nonlinear Waves, Patterns and Spatio-Temporal Chaos. IEEE Trans. on Circuits and Systems - Part I 42(10) (1995)

    Google Scholar 

  14. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. on Circuits and Systems 35, 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chua, L.O., Yang, L., Krieg, K.R.: Signal processing using cellular neural networks. Journal of VLSI Signal processing 3, 25–51 (1991)

    Article  Google Scholar 

  16. Frasca, M., Arena, P., Fortuna, L.: Bio-Inspired Emergent Control Of Locomotion Systems. World Scientific Series on Nonlinear Science Series A 48 (2004) ISBN 981-238-919-9

    Google Scholar 

  17. Freeman, W.J.: How Brains Make Up Their Minds. Weidenfeld and Nicolson, London (1999)

    Google Scholar 

  18. Freeman, W.J.: How and why brains create meaning from sensory information. International Journal of Bifurcation and Chaos 14, 515–530 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goras, L., Chua, L.: Turing Patterns in CNNs - Part I-II. IEEE Trans. Circuits and Systems - I 42, 602–626 (1995)

    Article  Google Scholar 

  20. Goras, L., Chua, L.O., Leenaerts, D.M.W.: Turing Patterns in CNNs-Part I: Once Over Lightly. IEEE Trans. on Circuits and Systems - part I 42, 602–611 (1995)

    Article  Google Scholar 

  21. Kelso, J.A.S.: Dynamic patterns: The self-organisation of brain and behavior. MIT press, Cambridge (1995)

    Google Scholar 

  22. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1972)

    Article  Google Scholar 

  23. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of the IEEE Conference on Robotics and Automation (ICRA), Sacramento, CA, pp. 1398–1404 (1991)

    Google Scholar 

  24. Lynch, K.: The Image of the City. MIT Press, Cambridge (1960)

    Google Scholar 

  25. Manganaro, G., Arena, P., Fortuna, L.: Cellular Neural Networks: Chaos, Complexity and VLSI Processing. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  26. Murray, J.D.: Mathematical Biology I: An Introduction, 3rd edn. Springer, NY (2002)

    MATH  Google Scholar 

  27. Neisser, U.: Cognition and Reality: Principles and Implications of Cognitive Psychology. W.H. Freeman, San Francisco (1976)

    Google Scholar 

  28. Nolfi, S.: Power and Limits of Reactive Agents. Neurocomputing 42(1), 119–145 (2002)

    Article  MATH  Google Scholar 

  29. Pavlov, I.: Conditioned Reflexes. Translated by G.V. Anrep. Oxford University Press, London (1927)

    Google Scholar 

  30. Ritter, H., Schulten, K.: Kohonen’s Self-Organizing Maps: Exploring their Computational Capabilites. In: Proceedings of the IEEE International Conference on Neural Networks, San Diego, CA, pp. 109–116 (1988)

    Google Scholar 

  31. Roska, T., Chua, L.O.: The CNN universal machine: an Analogic Array Computer. IEEE Trans. on Circuits and Systems - Part II 40, 163–173 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schulten, K.: Theoretical biophysics of living systems. In: Ritter, H., Martinetz, T., Schulten, K. (eds.) Neural computation and self-organizing maps: An introduction. Addison-Wesley, New York (1992), http://www.ks.uiuc.edu/Services/Class/PHYS498TBP/spring2002/neuro_book.html

    Google Scholar 

  33. Scott, A.: Nonlinear Science. Oxford Univ. Press, Oxford (1999)

    MATH  Google Scholar 

  34. Skinner, B.F.: About behaviorism. Alfred Knopf, NY (1974)

    Google Scholar 

  35. Tani, J., Fukumura, N.: Embedding task-based behavior into internal sensory-based attractor dynamics in navigation of a mobile robot. In: Proceedings of the IEEE Int. Conf. of Intelligent Robot and Systems, pp. 886–893 (1994)

    Google Scholar 

  36. Tani, J., Fukumura, N.: Learning goal-directed sensory-based navigation of a mobile robot. Neural Networks 7(3), 553–563 (1994)

    Article  Google Scholar 

  37. Thorndike, E.L.: A constant error in psychological ratings. Journal of Applied Psychology 4, 469–477 (1920)

    Google Scholar 

  38. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B 237, 37–72 (1952)

    Article  Google Scholar 

  39. Verschure, P.F.M.J., Althaus, P.: A real-world rational agent: unifying old and new AI. Cognitive Science 27, 561–590 (2003)

    Article  Google Scholar 

  40. Verschure, P.F.M.J., Voegtlin, T., Douglas, R.J.: Environmentally mediated synergy between perception and behaviour in mobile robots. Nature 425, 620–624 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arena, P., Lombardo, D., Patané, L. (2009). Complex Systems and Perception. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots. Cognitive Systems Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88464-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88464-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88463-7

  • Online ISBN: 978-3-540-88464-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics