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1. Introduction 
¶(6pt) 

Compare with conventional serial robots, parallel manipulators has the advantages of higher 
accuracy, higher stiffness, and higher ratio of force-to-weight, so it has been intensively 
researched and evaluated by industry and intuitions over the last two decades [1]. 
It is well known that a main drawback of parallel manipulator is their reduced workspace. 
Furthermore computing this workspace is not an easy task as, at the opposite of classical 
serial robot, the translational and orientation workspace are coupled [2]. A number of 
authors have described the workspace of a parallel mechanism by discretizing the Cartesian 
workspace [3]. In the case of three degree of freedom (3-DOF) manipulators, the workspace 
is limited to a region of the three-dimensional Cartesian space. 
A more challenging problem is designing a parallel manipulator for a given workspace. 
Merlet [4] propounded an algorithm to determine all the possible geometries of Gough-type 
6-DOF parallel manipulators whose workspace must include a desired one. Boudreau and 
Gosselin [5] proposed an algorithm that allows for the determination of some parameters of 
the parallel manipulators using a genetic algorithm method in order to obtain a workspace 
as close as possible to a prescribed one. Kosinska et al. [6] presented a method for the 
determination of the parameters of a Delta-4 manipulator, where the prescribed workspace 
has been given in the form of a set of points. Snyman et al. [7] proposed an algorithm for 
designing the planar 3-RPR manipulator parameters, for a prescribed two-dimensional 
physically reachable output workspace. Laribi et al. [8] presented an optimal dimensional 
synthesis method of the DELTA parallel manipulator for a prescribed workspace. This 
problem was generally solved numerically, and none of the authors mentioned above took 
driving force into account.  
In this paper, the 2-UPS-PU Parallel manipulator is designed to have a specified workspace. 
The algorithm is proposed to solve the optimization problem，which not only takes into 
account the leg-length limits, the mechanical limits on the passive joints, and interference 
between links, but also the driving forces of the three legs. 
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This paper is organized as follows: Section 2 is devoted to the description of the 2-UPS-PU 
Parallel manipulator. Section 3 deals with the position analysis of the Parallel manipulator. 
Section 4 is devoted to the kinematic analysis of the Parallel manipulator. Section 5 deals 
with the Statics analysis of the Parallel manipulator. In Section 6, we carry out the 
formulation of the optimization problem. Section 7 contains some conclusions. 

 
2. Displacement analysis 
 

The 2-UPS-PU parallel manipulator is shown in Fig. 1. This manipulator consists of three 
kinematic chains, including two UPS legs with identical topology and one PU leg, 
connecting the fixed base to a moving platform. In this parallel manipulator, the UPS legs, 
from base to platform, consist of a fixed Universal joint, an actuated prismatic joint and a 
spherical joint attached to the platform. The PU leg connecting the base center to the 
platform consists of a prismatic joint attached to the base, a universal joint attached to the 
platform. This branch is used to constrain the motion of the platform to the three degrees of 
freedom. 

 

O
 

Fig. 1. The 2-UPS-PU parallel manipulator 
 
The reference frame O-XbYbZb is fixed on the base and mobile frame U0-XpYpZp is fixed on 
the moving platform (see Fig. 1). At the initial position, the Xp-axis and Yp-axis of mobile 
frame are coincidence with the axes of the Universal joints U0 respectively. The orientation 
of the first axis of U0 is fixed. The orientation of the mobile frame can be represented by θ1 
and θ2 shown in Fig. 2, which are two Euler angles about two axes of U0, respectively. Such 
Euler angles are defined by first rotating the mobile frame about the base xp-axis (first axis 
of U0) by an angle 1 , then about the mobile yp-axis by an angle. For this choice of Euler 
angles, the rotation matrix is defined as 
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where  
pX R  and  

pY R  are the basic rotation matrices. 

The position of the mobile frame can be represented by l0, which is the distance between the 
Universal joint U0 and reference point O. The homogeneous transform matrix T, which 
represents the orientation and position of the mobile frame, is 
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Fig. 2. The 2-UPS-PU parallel manipulator 
 
The spherical joints (S1 and S2) of the UPS legs are arranged on the moving platform and 
their distances to the Universal joint U0 on the moving platform is r. The Universal joints (U1 

and U2) are fixed on the base platform and the distances to the reference point O on the base 
is R. The coordinate of U0, S1 and S2 in mobile frame and the coordinate of U1 and U2 in 
reference frame are expressed as: 
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2.1 Inverse kinematics 
For a given position and orientation of the mobile platform, we can compute the related link 
lengths, denoted by li, using the following relation: 
 

www.intechopen.com



Dimensional Synthesis and Analysis of the 2-UPS-PU Parallel Manipulator 269

 

This paper is organized as follows: Section 2 is devoted to the description of the 2-UPS-PU 
Parallel manipulator. Section 3 deals with the position analysis of the Parallel manipulator. 
Section 4 is devoted to the kinematic analysis of the Parallel manipulator. Section 5 deals 
with the Statics analysis of the Parallel manipulator. In Section 6, we carry out the 
formulation of the optimization problem. Section 7 contains some conclusions. 

 
2. Displacement analysis 
 

The 2-UPS-PU parallel manipulator is shown in Fig. 1. This manipulator consists of three 
kinematic chains, including two UPS legs with identical topology and one PU leg, 
connecting the fixed base to a moving platform. In this parallel manipulator, the UPS legs, 
from base to platform, consist of a fixed Universal joint, an actuated prismatic joint and a 
spherical joint attached to the platform. The PU leg connecting the base center to the 
platform consists of a prismatic joint attached to the base, a universal joint attached to the 
platform. This branch is used to constrain the motion of the platform to the three degrees of 
freedom. 

 

O
 

Fig. 1. The 2-UPS-PU parallel manipulator 
 
The reference frame O-XbYbZb is fixed on the base and mobile frame U0-XpYpZp is fixed on 
the moving platform (see Fig. 1). At the initial position, the Xp-axis and Yp-axis of mobile 
frame are coincidence with the axes of the Universal joints U0 respectively. The orientation 
of the first axis of U0 is fixed. The orientation of the mobile frame can be represented by θ1 
and θ2 shown in Fig. 2, which are two Euler angles about two axes of U0, respectively. Such 
Euler angles are defined by first rotating the mobile frame about the base xp-axis (first axis 
of U0) by an angle 1 , then about the mobile yp-axis by an angle. For this choice of Euler 
angles, the rotation matrix is defined as 
¶(9pt) 

 

   
2 2

1 2 1 2 1 1 2

1 2 1 1 2

cos 0 sin
sin sin cos sin cos
cos sin sin cos cos

p pX Y

 
      

    

 
     
  

R R R  (1) 

where  
pX R  and  

pY R  are the basic rotation matrices. 

The position of the mobile frame can be represented by l0, which is the distance between the 
Universal joint U0 and reference point O. The homogeneous transform matrix T, which 
represents the orientation and position of the mobile frame, is 
¶(9pt) 

   

2 2

1 2 1 1 2
0 1 2

1 2 1 1 2 0

cos 0 sin 0
sin sin cos sin cos 0

( )
cos sin sin cos cos

0 0 0 1

p p pZ X YTrans l R R
l

 
    

 
    

 
    
 
 
  

T  (2) 

¶(9pt) 

Initial orientation

XP

ZP

YP

Current orientation

XP

ZP

YP

X'P

Z'P

Y'P

θ
1

θ
2

U0 U0

 
Fig. 2. The 2-UPS-PU parallel manipulator 
 
The spherical joints (S1 and S2) of the UPS legs are arranged on the moving platform and 
their distances to the Universal joint U0 on the moving platform is r. The Universal joints (U1 

and U2) are fixed on the base platform and the distances to the reference point O on the base 
is R. The coordinate of U0, S1 and S2 in mobile frame and the coordinate of U1 and U2 in 
reference frame are expressed as: 
¶(9pt) 

0 1 2 1 2

0 cos cos cos cos
0 sin sin sin sin
0 0 0 0 0

r r R R
r r R R

   
   

         
                      
         
         

U S S U U  (3) 

 
2.1 Inverse kinematics 
For a given position and orientation of the mobile platform, we can compute the related link 
lengths, denoted by li, using the following relation: 
 

www.intechopen.com



Advances in Robot Manipulators270

 

0 0

2 2 2
1 1 1

2 2 2
2 2 2

l l

l a b c

l d e f



     

     

T S U

T S U

 (4) 

where 
2

1 2 1

1 1 2 0

2

1 2 1

1 1 2 0

cos cos cos
cos sin sin sin cos sin
sin sin cos cos sin
cos cos cos
cos sin sin sin cos sin
sin sin cos cos sin

a r R
b r r R
c r r l
d r R
e r r R
f r r l

  
     
    
  
     
    

 
  
  
 
  
  

 

Eq. (4) is the solution of the so-called inverse kinematics problem. 

 
2.2 Direct kinematics 
If set the second axis of Universal joint U0 pass through either S1 or S2 ( 0   or 90   ), we 
can simply get analytical direct kinematics solution. For example, let α=90°, then cosα=1 and 
sinα=0. As a result, Eq. (4) for 90    is simplified as: 
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Then, we can calculate θ1 and θ2 by 
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It is easy to see that Eq. (6) must satisfy: 
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Obviously, the same calculation can be drawn when α=0°. 
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3. Velocity equation 
 

To differentiae Eq. (4) allows us to obtain the velocities equation as:  
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   

 

 

 

0 1 2 1 1 1 2
11

1

2 1 2 0 1 2
12

1

0 1 1 2
13

1

0 1 1 2 1
21

cos sin sin sin cos sin sin sin cos cos sin

cos cos sin sin sin cos cos cos

sin sin cos cos sin

sin cos cos sin sin sin sin sin cos

l r Rr
q

l
r R R l

q
l

l r
q

l
l r Rr

q

          

       

    

        

  


 


 


  


 

 

 

1 2

2

2 0 1 2 1 2
22

2

0 1 1 2
23

2

cos sin

cos cos sin cos cos sin sin cos

sin sin cos cos sin

l
r R l R

q
l

l r
q

l

 

       

    

 


 


 

 
4. Statics analysis 
 (6pt) 

The workloads can be simplified as a wrench Fw applied onto moving platform at U0.  
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balanced by three active forces fi (i = 1,2, 3), two constrained forces fx and fy, and a 
constrained torque mz. Each of fi is applied on and along the axes of three legs; fx, fy and mz 
are applied on the moving platform about Xp, Yp, Zp, respectively. the formulae for solving 
active forces and constrained forces are derived as 
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are applied on the moving platform about Xp, Yp, Zp, respectively. the formulae for solving 
active forces and constrained forces are derived as 
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5. Workspace 
 

5.1 Mechanical constraints 
There are four main mechanical constraints that limit the workspace of a parallel 
manipulator [1]: (i) Workspace singularities, (ii) the actuators stroke, (iii) the range of the 
passive joints, and (iv) the link interference. 
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5.1.1 Workspace singularities 
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Fig. 3. The relationship between the determinant of jacobian matrix and θ1、θ2 
 
The theoretical workspace of the manipulator is surrounded by singular surface. In the 
theoretical workspace, the determinant of jacobian matrix (|q|) should be always greater or 
less than zero. The relationship between the determinant of jacobian matrix and parameters 
of θ1、θ2, for r =150, R =200, α=π/2, β=π/6 and l0=300, is shown in Fig. 3. If we set θ1=θ2=0 as 
the initial oriention, the determinant of jacobian matrix should be always greater than zero. 
¶(9pt) 
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5.1.2 Actuators' stroke 
The limited stroke of actuator i imposes a length constraint on link i, such that 
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where limin and limax are, respectively, the minimum and maximum lengths of leg i. 
¶(9pt) 
5.1.3 Range of the passive joints 
Each passive joint has a limited range of motion. Let the maximum misalignment angle of 
the Universal joint Ui be θiumax, Then, the limits on Universal joint Ui impose a constraint, 
such that 
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Similarly, Let the maximum misalignment angle of the spherical joint Si be θismax, Then, the 
limits on spherical joint Si impose a constraint, such that 
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5.1.4 Link interference 
Let us assume that the links can be approximated by cylinders of diameter D. This imposes a 
constraint on the relative position of all pairs of links, such that 
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or the minimum distance between every two line segments corresponding to the links of the 
parallel manipulator should be greater than or equal to D. The minimum distance between 
two line segments is not given by a simple formula but can be obtained through the 
application of a multi-step algorithm. Due to space limitations, we will not present that 
algorithm here but refer the reader to the well-detailed one given in [9]. 

 
5.2 Workspace representation 
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Fig. 4. Cylindrical coordinate system 
 
According to the characteristics of the 2-UPS-PU parallel manipulator, we present a 
cylindrical coordinate system (see Fig. 4), where φ and γ are exactly the polar coordinates 
representing the orientation of the moving platform and l0 is the z-coordinate. 
The unit vector of Zp-axis in reference frame is expressed as: 
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5.1 Mechanical constraints 
There are four main mechanical constraints that limit the workspace of a parallel 
manipulator [1]: (i) Workspace singularities, (ii) the actuators stroke, (iii) the range of the 
passive joints, and (iv) the link interference. 
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Then, we can calculate θ1 and θ2 by 
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5.3 Algorithm for the workspace 
¶(6pt) 

Step 1: Initialize double arrays A, B and Z, with dimensions (n+2)×m, where n is the 
number of equally spaced planes l0 between l0min and l0max at which the 
workspace will be computed, and m is the number of points to be computed at 
each plane l0=const. These arrays will store, respectively, the values of ,   and 
l0 for the points defining the workspace boundary. 

Step 2: Set r , R , h , ,  and D.  
Step 3: Set maxu , maxs , li mi n  and li max , Where 0 ,1 , 2i  . 
Step 4: Set l0=l0min. 
Step 5: For the current l0, construct a polar coordinate system at  ,  . Starting at m 

equally spaced angles, increment the polar ray, solve the inverse kinematics, 
and apply the constraint checks defined by Eqs.    8 ~ 12  until a constraint is 
violated. The values for ,   and l0 at the point of constraint violation are 
written into the three double arrays. 

Step 6: Set 0 0 0l l l   , where 0 max 0 min
0

l ll
n


   

Step 7: Repeat steps 5-6 until l0 becomes greater than l0max. 
Step 8: Transfer A and B into X and Y, so that      , , cos ,X i j B i j A i j      and 

     , , sin ,Y i j B i j A i j     , where 1 1i n  and 1j m  . 
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Fig. 5. Isometric view of the Parallel manipulator’s workspace.  
¶(9pt) 

 

The proposed algorithm was implemented in MATLAB for the 2-UPS-PU parallel 
manipulator whose data are 100r  , 120R  , 90   , 25   , 5D  , min 320l  , max 578l  , 

0 min 320l  , 0 max 570l  , max 90U   ,  and max 60S   . The workspace of the manipulator is 
presented in Fig. 5. and the approximated projected workspaces for l0=350, 450 and 500 
shown in Fig. 6. 
¶(9pt) 

 
Fig. 6. The projected workspace of the Parallel manipulator for the positions (a) l0=350, (b) 
l0=450 and (c) l0=500 

 
6. Optimal design 
 

The aim of this section is to develop and to solve the multidimensional optimization 
problem of selecting the geometric design variables for the 2-UPS-PU parallel manipulator 
having a prescribed workspace with better driving capability. 
The prescribed workspace of the parallel manipulator is defined as a cylinder with radius γ 
and height h (see Fig.7) and the actual workspace is convex (see Fig.5). The prescribed 
workspace is inside the workspace of the parallel manipulator if all the points in the 
boundary curves are inside the actual workspace. 
¶(9pt) 

 
Fig. 7. The scheme of the prescribed workspace. 

¶(14pt) 
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6.1 Objective function 
The parameters to be optimized are the minimum lengths of three legs (l0min, l1min and l2min), 
the dimension of the base and the platform  ,R r , and the relative angular position of the 

two UPS chains  ,  . Without losing generality, let r be normalized by h, and R, l0min be 
normalized by r such that 
¶(9pt) 
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0 min
r R l

r R lk k k
h r r

    (16) 

The objective function of the multi-parameter optimization problem, can be stated as 
¶(9pt) 
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0 minmin

Subject to ( , ) 0 for all the points  inside the specified workspace.
k R l F

f p p


I
 (17) 

where I is the unknown vector of parameters, and F is the maximum of the driving force of 
the three legs. 

¶(14pt) 
6.2 Algorithm for dimensional synthesis 

Step 1: Initialize double arrays A, B, C and D, with dimensions 361×1. Set the 
parameters u  and h representing the prescribed workspace. 

Step 2: Set 90 , 0k    , and the allowable parameter ranges for  , rk , Rk  and 
0 minlk . 

Step 3: Set the cycle number n. 
Step 4: Random select the parameters  , rk , Rk  and 

0 minlk by Monte Carlo method in 
ranges. 

Step 5: Set 0 0 minl k l   and u  . Starting at 360 equally spaced angles, increment the 
angle  , solve the inverse kinematics, write the length of the UPS legs into 
array A and B. set     1min 1min min min ,minl l  A B , and 1max 1max 1min1.8l l l   . 

Step 6: Set flag=0. For the current l0, construct a polar coordinate system at  ,  . 
Starting at 360 equally spaced angles, increment the polar ray, solve the inverse 
kinematics, and apply the constraint checks defined by Eqs. (8)-(12) until u  . 
Set flag=1 at the point of constraint violation and return to Step 12. 

Step 7: If flag=0, then set 0 0 minl k l h   . For the current l0, construct a polar coordinate 
system at  ,  . Starting at 360 equally spaced angles, increment the polar ray, 
solve the inverse kinematics, and apply the constraint checks defined by Eqs. 
(8)-(12) until u  . Set flag=1 at the point of constraint violation and return to 
Step 12. 

Step 8: If flag=0, then set 0 0 minl k l   and u  . Starting at 360 equally spaced angles, 
increment the angle  , solve the Statics, and write the maximum driving forces 
of the three legs into array C. 

Step 9: If flag=0, then set 0 0 minl k l h    and u  . Starting at 360 equally spaced 
angles, increment the angle φ, solve the Statics, and write the maximum driving 
forces of the three legs into array D. 

 

Step 10: Set     max max , maxF C D , and 0 mindk FRl . 
Step 11: If 0k   or dk k , set r rO k , R RO k ,

0 0l lO k ,
min 1minlO l  and 

max 1maxlO l . 
Step 12: Repeat steps 4-11 until the cycle time is n. 

The proposed algorithm was again implemented in MATLAB. The optimal solution 
obtained for this example is presented in Table 1 for 60u    and 100h  . 
Fig. 8 shows the workspace of the 2-UPS-PU parallel manipulator. 
Fig. 9 shows the relationship between the minimum of γ and l0. One can notice the actual 
workspace include the prescribed workspace. 
¶(9pt) 

β R r l1,2min l1,2max l0min l0max 
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Table 1. The optimal dimensions of 2-UPS-PU parallel manipulator 
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Fig. 8. Isometric view of the Parallel manipulator’s workspace. 
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Fig. 9. The relationship between the minimum of γ and l0 
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7. Conclusion 

This paper proposed a novel 2-UPS-PU parallel manipulator with simple structure, high 
rotational capability, high load carrying capacity. 
Based on the cylindrical coordinate system, an algorithm for computing three-dimensional 
workspace of the manipulator has been proposed in this paper. The boundary of the 
workspace on the specific plan is found out quickly by step-searching along the selected ray 
line. 
An optimal dimensional synthesis method was presented to optimize this manipulator for a 
prescribed workspace. The driving force parameters were introduced into the object 
function. All the dimensional parameters, including the length of the legs, were included 
into the optimizing algorithm. 
The methods proposed in this paper can be adopted universally. The results of this paper 
provide solid theoretical basis for further theoretical studies and practical application of this 
manipulator. 

¶(14pt) 
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