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1 Introduction

The electric field around a molecule is generated by the charge distribution
of its constituents: positively charged atomic nuclei, which are well approxi-
mated by point charges, and negatively charged electrons, whose probability
density distribution can be computed from quantum mechanics [Ba90]. For
the purposes of molecular mechanics or dynamics, the charge distribution is
often approximated by a collection of point charges, with either a single par-
tial charge at each atomic nucleus position, representing both the nucleus and
the electrons near it, or as several different point charges per atom.

The critical points in the electric field are useful in visualizing its geomet-
rical and topological structure, and can help in understanding the forces and
motion it induces on a charged ion or neutral dipole. Most visualization tools
for vector fields use only samples of the field on the vertices of a regular grid,
and some sort of interpolation, for example, trilinear, on the grid cells. There
is less risk of missing or misinterpreting topological features if they can be
derived directly from the analytic formula for the field, rather than from its
samples. This work presents a method which is guaranteed to find all the crit-
ical points of the electric field from a finite set of point charges. To visualize
the field topology, we have modified the saddle connector method of [Th03]
to use the analytic formula for the field.

2 Electric Potential and Field

The electrostatic potential P (X) at position X, resulting from a point charge
q at position A is

P (X) =
q

4πε|X −A|
=

q

4πε((X −A) · (X −A))1/2
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where ε is the permittivity of the medium. Since we are only interested in
the field topology here, we will for simplicity below neglect the factor 4πε. By
definition, the electrostatic field F is the negative gradient of the potential,
so, neglecting the factor 4πε,

F (X) = −∇ q

((X −A) · (X −A))1/2

=
q(X −A)

((X −A) · (X −A))3/2
. (1)

Therefore, for a set of n charges qi at positions Ai, the electrostatic field
is

F (X) =
n∑

i=1

qi(X −Ai)
((X −Ai) · (X −Ai))3/2

. (2)

3 Octree Method for Finding Critical Points

Our method of finding critical points of F starts with a single cubical cell,
or a regular grid of such cells, guaranteed as in section 4 to contain all the
critical points of F . We describe below a test to prove that a cubical cell C
contains no critical points of F . This test is based on computing component-
wise bounds Fmax and Fmin for the possible values of F (X) within the cell.
In the column vectors Fmax and Fmin, if any of the three components are
both positive or both negative, we know that F (X) cannot be zero for any X
in C, so there are no critical points of the field in C, the test passes, and the
cell can be skipped. Otherwise, all of the components of F (X) could possibly
become zero inside C, and the test fails, so we divide the cell into eight equal
subcells, and recursively test these subcells. Thus we converge on the critical
points. At the limiting depth of the recursion, the centers of cells which fail
the test are written to an output list. This list is then pruned by averaging
clusters of points within a threshold distance of each other. (Currently, this
threshold is taken as 6 times the edge length of the cell at the recursion limit.)
The test will fail for cells containing any of the point charge locations, so these
locations will also be on the output list. The octree is never explicitly stored,
and the only memory it uses is for the portion in the stack for the recursion.

Consider a cubical cell C of side s, with vertices Vijk, where i, j, and k
are either 0 or 1, and count along the x, y, and z axes respectively. Let V be
one of these vertices, and Y be a point inside the cell. Let H be the Hessian
matrix of negative second derivatives of the potential P , i.e.

H(Y ) =
n∑

i=1

(
qiI

|Y −Ai|3/2
− 3

qi(Y −Ai)(Y −Ai)>

|Y −Ai|5/2

)
. (3)
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Here I is the identity matrix, and (Y −Ai)(Y −Ai)> is a square matrix, since
Y and Ai are column vectors. Let Hj be the jth row of H and F j be the jth

component of the vector F . Applying the mean value theorem to the function
Ej(t) = F j(V +t(X−V )), for j = 1, 2, or 3, there is a value tj with 0 ≤ tj ≤ 1,
so that

F j(X) = F j(V ) + Hj(Yj)(X − V ) (4)

where Yj = V + tj(X − V ).
Consider the denominators in equation (3). The quantity |Y −Ai| attains

its maximum in C at one of the vertices of the cube C. If Ai is not inside cell
C, then |Y −Ai| attains a positive minimum in C at a vertex of C, or at the
projection of Ai on one of the faces or edges of C. (Cells containing a point
charge Ai fail the test, and are recursively subdivided.)

For each point charge Ai and each of the 9 elements of H, we can find the
maximum and minimum of each of the two terms in equation (3), using either
the minimum or the maximum value of the denominator, taking into account
the multiple possible signs of the numerator, and its upper and lower bounds.
By summing the bounds on these two terms over all the point charges, we
can get element-wise upper and lower bounds Hmax and Hmin for the matrix
H(Y ).

Then, using each vertex Vijk in equation (4), we can obtain component-
wise upper and lower bounds Fmax

ijk and Fmin
ijk for F (X) with X in C, by taking

into account the signs of the components of the last column vector factor in
equation (4). For example, if V in equation (4) is V011, then for X in C, X−V
is of the form (x, y, z)>, with 0 ≤ x ≤ s, −s ≤ y ≤ 0, and −s ≤ z ≤ 0, so, as
shown in 1D in figure 1, we get the component-wise bounds

Fmax
011 = F (V011) + Hmax(s, 0, 0)> + Hmin(0,−s, 0)> + Hmin(0, 0,−s)> ,

and

Fmin
011 = F (V011) + Hmin(s, 0, 0)> + Hmax(0,−s, 0)> + Hmax(0, 0,−s)> .

Finally, let Fmax = minijkFmax
ijk and Fmin = maxijkFmin

ijk be the component-
wise minimum and maximum from these eight respective estimates, giving the
tightest bounds they collectively impose on F (X) in C. As described above,
these bounds are used to limit the octree search.

4 Finding a Sphere Containing all the Critical Points

In order to make sure that all the critical points are found, we need to make
the initial root cube or grid large enough to contain them all. We instead find
a large enough sphere, and enclose it in the initial grid. To do this, we expand
equation (2) into a series of terms, which decrease with different inverse powers
of the distance r = |X| of the point X from the origin. This series is closely
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xs0

F(x)

F(V0)

slope Hmax

slope Hmin

F1 = F(V0) + s Hmax

F1 = F(V0) + s Hmin

F(V1 )

max

min

maxminF0 = F(V1 )    s H_

F0 = F(V1)    s H_max min

F

F max

min

F

Fig. 1. A 1D example for computing bounds on a function F (x).

related to the multipole expansion of the potential described in [Wiki], but is
slightly different because we are expanding the field, and not the potential,
and because we use the polynomial form, rather than spherical harmonics. We
will find a sphere outside of which the first non-vanishing term of this series
dominates the sum on the later terms, so that F (X) cannot vanish.

Consider first a single point charge q at position A, as in equation (1), let
r = |X|, and rewrite the denominator as follows:

F (X) =
q(X −A)

((X −A) · (X −A))3/2

=
q(X −A)

(|X|2 − 2A ·X + |A|2)3/2

=
q(X −A)

(r2(1 + 1
r2 (−2A ·X + |A|2))3/2

=
qr(X

r − A
r )

r3
(
1 +

(
|A|2
r2 − 2A

r · X
r

))3/2
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=
q

r2

(
X̂ − A

r

)(
1 +

(
|A|2

r2
− 2

A

r
· X̂
))−3/2

, (5)

where X̂ = X/r is the unit vector in the direction of X. Let

t =
|A|2

r2
− 2

A

r
· X̂ .

Then, expanding (1 + t)−3/2 by the binomial series (the same as its Taylor
expansion about t = 0), which converges for t < 1, we get

(1 + t)−3/2 =
(
1 + (−3/2)t + (−3/2)(−5/2)t2/2! + · · ·

)
=

∞∑
l=0

(
− 3

2
l

)
tl (6)

where the generalized binomial coefficient(
s
l

)
=

s(s− 1)(s− 2) · · · (s− l + 1)
l!

.

Substituting this binomial series into equation 5, and writing A · X̂ as A>X̂,
we have

F (X) =
q

r2

(
X̂ − A

r

)(
1 +

(
−3

2

)
t +
(
−3

2

)(
−5

2

)
t2

2!

+ · · ·+
(
−3

2

)(
−5

2

)
· · ·
(
−2l + 1

2

)
tl

l!
+ · · ·

)
(7)

=
q

r2

(
X̂ − A

r

)(
1 +

(
−3

2

)(
|A|2

r2
− 2

A>X̂

r

)
+
(
−3

2

)(
−5

2

)(
|A|2

r2
− 2

A>X̂

r

)2

/2 + · · ·
)

=
q

r2

(
X̂ − A

r

)(
1− 3

2

(
|A|2

r2
− 2

A>X̂

r

)
+

15
8

(
|A|4

r4
− 4

|A|2

r3
A>X̂ + 4

(A>X̂)2

r2

)
+ · · ·

)
=

q

r2

(
X̂ − A

r

)(
1− 3

2
|A|2

r2
+ 3

A>X̂

r

+
15
8
|A|4

r4
− 15

2
|A|2A>X̂

r3
+

15
2

X̂>AA>X̂

r2
+ · · ·

)
(8)

Using the distributive law to multiply out the two parenthesized factors in
equation (7), and grouping terms with the same negative power of r, we get
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F (X) =
qX̂

r2
+

q(3(A>X̂)X̂ −A)
r3

+
q

r4

(
−3

2
|A|2X̂ − 3AA>X̂ +

15
2

(X̂>AA>X̂)X̂
)

+ · · · . (9)

In the case of several point charges, we sum over the point charges to get

F (X) =
qtotalX̂

r2
+

3(D · X̂)X̂ −D

r3
+

MX̂ + (X̂>NX̂)X̂
r4

+ · · · , (10)

where the total charge qtotal =
∑n

i=1 qi , the dipole moment D =
∑n

i=1 qiAi ,
and the 3 by 3 matrices

M = −3
n∑

i=1

qiAiA
>
i −

(
3
2

n∑
i=1

qi|Ai|2
)

I

and

N =
15
2

n∑
i=1

qiAiA
>
i .

4.1 The monopole case

The first “monopole” term in equation (10) is linear in X̂, the second “dipole”
term is quadratic in X̂, the third “quadrupole” term is cubic in X̂, and so on.
There are several cases, depending on which of these terms is the first non-zero
one. Our goal is to find the radius rm of a sphere containing all the critical
points. If qtotal is non-zero, we need to show that the magnitude qtotal/r2 of
the monopole term is greater than the magnitude of the sum of all the rest of
the terms, if r > rm, for some appropriate rm.

We can bound the term in the line numbered (7) of the binomial series by∣∣∣∣(−3
2

)(
−5

2

)
· · ·
(
−2l + 1

2

)
tl

l!

∣∣∣∣ =
3

2× 1
5

2× 2
· · · 2l + 1

2× l
|t|l ≤

∣∣∣∣32 t

∣∣∣∣l .

Then this binomial series is dominated by a geometric series, and the sum of
all its terms after the first is dominated by the sum of the geometric series:

∞∑
l=1

∣∣∣∣(− 3
2
l

)
tl
∣∣∣∣ ≤ ∞∑

l=1

∣∣∣∣32 t

∣∣∣∣l =

∣∣ 3
2 t
∣∣

1−
∣∣ 3
2 t
∣∣ .

For the ith point charge, let

ti =
|Ai|2

r2
− 2

Ai

r
· X̂ .

If we chose rm ≥ 8k|Ai|, for an as yet undetermined k ≥ 1, and if r > rm,
then
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|ti| ≤
|Ai|2

(8k|Ai|)2
+ 2

|Ai|
8k|Ai|

≤ 1
64k2

+
2
8k

≤ 1
64k

+
2
8k

=
17
64k

so, using the fact that k ≥ 1∣∣∣∣∣
∞∑

l=1

(
− 3

2
l

)
tli

∣∣∣∣∣ ≤
∣∣ 3
2 ti
∣∣

1−
∣∣ 3
2 ti
∣∣

≤
51

128k

1− 51
128k

≤
51

128k

1− 51
128

≤
51

128k
77
128

=
51
77k

.

If we take rm = maxi(8k|Ai|), for k =
∑n

i=1 |qi|/|
∑n

i=1 qi| ≥ 1, sum over
the contributions of all the the point charges, use the inequality |B − C| ≥
||B| − |C|| for any two vectors B and C, and use the fact that |X̂| = 1, we
get, for r > rm,

|F (X)| =

∣∣∣∣∣
n∑

i=1

(
qi

r2

(
X̂ − Ai

r

)
(1 + ti)

−3/2

)∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

(
qi

r2

(
X̂ − Ai

r

)(
1 +

∞∑
l=1

(
− 3

2
l

)
tli

))∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

qi

r2
X̂ −

(
n∑

i=1

qi

r2

Ai

r
−

n∑
i=1

qi

r2

(
X̂ − Ai

r

) ∞∑
l=1

(
− 3

2
l

)
tli

)∣∣∣∣∣
≥

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

qi

r2
X̂

∣∣∣∣∣−
∣∣∣∣∣

n∑
i=1

qi

r2

Ai

r
−

n∑
i=1

qi

r2

(
X̂ − Ai

r

) ∞∑
l=1

(
− 3

2
l

)
tli

∣∣∣∣∣
∣∣∣∣∣

≥

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

qi

r2

∣∣∣∣∣−
(

n∑
i=1

|qi|
r2

|Ai|
8k|Ai|

+
n∑

i=1

|qi|
r2

(
1 +

|Ai|
8k|Ai|

)
51
77k

)∣∣∣∣∣
=
∣∣∣∣ |∑n

i=1 qi|
r2

−
∑n

i=1 |qi|
r2

(
1
8

+
51
77

(
1 +

1
8k

))
|
∑n

i=1 qi|∑n
i=1 |qi|

∣∣∣∣
=
|
∑n

i=1 qi|
r2

∣∣∣∣1− (1
8

+
51
77

(
1 +

1
8k

))∣∣∣∣
Since, even if k = 1,

1
8

+
51
77

(
1 +

1
8k

)
< 1

we have
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|F (X)| ≥
|
∑n

i=1 qi|
r2

(
1−

(
1
8

+
51
77

(
1 +

1
8k

)))
≥
|
∑n

i=1 qi|
r2

(
1−

(
1
8

+
51
77

(
1 +

1
8

)))
=
|
∑n

i=1 qi|
r2

(
1− 536

616

)
=
|
∑n

i=1 qi|
r2

80
616

> 0 ,

so that there are no critical points outside the sphere of radius rm.

4.2 The dipole case

If the total charge qtotal is zero, as on a neutral molecule, but the dipole
moment D is non-zero, we can proceed similarly, getting a lower bound on
the dipole term, and showing that it dominates the remaining terms outside
of a sufficiently large sphere.

D 2D-D 0

X

(D X)X

{3(D X)X}{3(D X)X-D}

3D

Fig. 2. Construction of the circle {3(D · X)X − D} for all unit vectors X.

To get the lower bound on the dipole term (3(D · X̂)X̂ −D)/r3, note that
the points in the set {(D ·X̂)X̂} lie on a sphere of diameter |D| centered at the
point 1

2D, since the point (D · X̂)X̂ is the foot of the perpendicular line from
the point D to the line from the origin in the direction X̂. (See figure 2 for a
2D analog.) Thus the points of the form 3(D · X̂)X̂ lie on a sphere of radius
3
2D centered at 3

2D, and the translated points of the form 3(D · X̂)X̂ −D lie



Critical Points of the Electric Field from a Collection of Point Charges 9

on the translated sphere of radius 3
2D centered at 1

2D. The closest point on
this translated sphere to the origin is −D, and its distance to the origin is
|D|. Thus a lower bound on the dipole term is |D|/r3.

Since the dipole term arises from the terms l = 0 and l = 1 in the series
(6) and (7), to show that the dipole dominates, we separate these terms from
the remaining terms:

F (X) =
n∑

i=0

(
qi

r2

(
X̂ − Ai

r

)(
1− 3

2

(
|Ai|2

r2
− 2

A>i X̂

r

)
+

∞∑
l=2

(
− 3

2
l

)
tli

)

=
∑n

i=0 qiX̂

r2
−
∑n

i=0 qiAi

r3
+

3
(∑n

i=0 qiAi · X̂
)

X̂

r3

−
3
2

∑n
i=0 qi|Ai|2X̂

r4
−

3
∑n

i=0 qiAiA
>
i X̂

r4
+

3
2

∑n
i=0 qi|Ai|2Ai

r5

+
n∑

i=0

qi

r2

(
X̂ − Ai

r

) ∞∑
l=2

(
− 3

2
l

)
tli . (11)

Of the seven terms in equation (11), the first is the monopole term, which
we are assuming is zero, and the second and third are the dipole contribution,
for which we just derived a lower bound. Similar to the monopole case, we
can show that these dipole terms dominate the next three terms, because of
their higher powers of r in the denominator, and also the last term, using the
geometric series as above, if r > rm = 36(maxn

i=1|Ai|)
∑n

i=1 |qi|/|D|.

Fig. 3. The saddle connectors between the saddle points of an isolated alanine
residue from a protein. The 10 atom centers are shown as pink spheres for sources
(positive point charges), and blue spheres for sinks.
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4.3 The quadrupole case

If both the total charge qtotal and the dipole moment D are zero, and the
quadrupole term is not zero, then the electric field decreases as 1/r4. Unlike
the dipole case, we have not been able to derive a simple lower bound on the
magnitude of the quadrupole term in equation (10). Instead, we apply the
techniques in section 3, using the mean value theorem to get a lower bound.

We cover the unit sphere with a regular 2D latitude longitude (θ, φ) grid.
Then, for each 2D grid cell, we find its 3D axis-aligned bounding box. For
this box, we find bounds on the entries of the 3 by 3 matrix Q for the partial
derivatives of the vector-valued function

G(X̂) = MX̂ + (X̂>NX̂)X̂ ,

with respect to the 3D cartesian coordinates. Using the chain rule, we compute
the 3 by 2 partial derivative matrix P of G(X̂(θ, φ)) with respect to θ and φ,
as the product of Q and the 3 by 2 Jacobian matrix J for the function X̂(θ, φ).
We use the minimum and maximum on the 2D grid cell for the entries of J
together with the minimum and maximum on the 3D bounding box for the
entries of Q, to find bounds on the entries of P . A 2D version of the method
in section 3 can then give the bounds on the components of the vector G(X̂),
and thus a lower bound for |G(X̂)| over the 2D cell. Let B be the minimum
of this lower bound over all the 2D cells. (For the examples in this paper,
we directly found B > 0 for the initial grid, so octree subdivision was not
needed.) Thus the norm of the quadrupole term∣∣∣∣∣MX̂ + (X̂>NX̂)X̂

r4

∣∣∣∣∣ ≥ B

r4
.

The monopole, dipole, and quadrupole terms come from the l = 0, 1, and 2
terms of the series in (6) and (7), so as for the dipole case, one can show that
the quadrupole term dominates the sum of the six other terms from taking l
= 0, 1, and 2 in equation (7), plus the sum

n∑
i=0

qi

r2

(
X̂ − Ai

r

) ∞∑
l=3

(
− 3

2
l

)
tli ,

when r > rm, with

rm = max

(
6 maxi|Ai|,

61
B

n∑
i=1

|qi||Ai|3
)

.

We have not dealt with higher order cases, but they can be handled simi-
larly, and are not normally needed.
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Fig. 4. The separation surfaces for the saddle points of an isolated alanine residue
from a protein.

5 Results

Figure 3 shows the saddle connectors between the critical points of an alanine
residue isolated from a protein by cutting its peptide bonds. Standard partial
charges were placed on the 10 atom centers, which are sources and sinks of
the electric field. It took the 15 seconds on one processor of a dual 3.3 GHz
Xeon workstation, to recursively search 457,328 octree cells to depth 44, and
locate to 12 decimal place accuracy the 10 saddle points. Figure 4 shows the
separation surface for this structure. Figure 5 shows the saddle connectors
for a benzene molecule, with equal negative partial charges at each of its six
carbon atoms, and positive charges at each of the six hydrogen atoms. These
figures were drawn by a modification of the integration methods in [Th03]
which uses the analytic gradient to integrate the separation surfaces and find
the saddle connectors.

The partial charge assignment at the atom positions gives only a rough
approximation to the actual charge distribution generating the potential, and
is certainly an oversimplification in the case of benzene, where the π orbitals
from the carbon atoms lie above and below the plane of the 12 atom centers.
We have obtained a more accurate quantum mechanical approximation of the
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Fig. 5. The saddle connectors for a benzene molecule with 12 point charges.

Fig. 6. A benzene molecule with 60 point charges.
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electrostatic potential described in [St66], using 60 point charges. Figure 6
shows the arrangement of these point charges, which are not all in the same
plane. It took 66 minutes to recursively search 23,290,456 octree cells to to
a depth of 44 and find the 193 critical points. Of the octree cells examined,
14,833,200 were at level 8, while between 58,688 and 63,272 were at each of the
levels 14 through 44. This shows that once the search locates the critical point
neighborhood, the convergence is linear in the precision desired, and justifies
our decision not to use a less robust method like Newton-Raphson iteration
at the final stage. Figure 7 shows the saddle connectors for this collection of
point charges, and figure 8 shows the separation surfaces. These figures are
very close to the corresponding figures in [Th03], which inspired the current
work, but are slightly different. In [Th03], the field was sampled on a 1013

grid, and then trilinearly interpolated inside the grid cells. The critical points
found for this interpolated field, using the methods of [Ma02], were 40 sinks,
12 sources, and 132 saddles. (Slightly different approximate numbers were
reported in [Th03], but these are the counts gotten by rerunning that code on
the same input.) We reran code in that paper on a 2553 grid, and found 42
sinks, 12 sources, and 129 saddles, including 3 spurious saddles, one each in a
face, an edge, and a vertex of the cube bounding the data volume. However,
the analytic method described in the current paper found all 48 sinks and 12
sources at the input point charges, and 133 saddles. This includes 6 pairs of
saddles and sinks, with the two so close together in each pair that they could
not be resolved by the sampling method. Thus the analytic method is superior
in this case.

Fig. 7. The saddle connectors for a benzene molecule with 60 point charges.
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Fig. 8. The separation surfaces for a benzene molecule with 60 point charges.
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