Reinforcement Learning with Markov Logic
Networks

Weiwei Wang, Yang Gao, Xingguo Chen, and Shen Ge

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing
210093, PRC
elegate@gmail.com

Abstract. In this paper, we propose a method to combine reinforce-
ment learning (RL) and Markov logic networks (MLN). RL usually does
not consider the inherent relations or logical connections of the features.
Markov logic networks combines first-order logic and graphical model
and it can represent a wide variety of knowledge compactly and ab-
stractly. We propose a new method, reinforcement learning algorithm
with Markov logic networks (RLMLN), to deal with many difficult prob-
lems in RL which have much prior knowledge to employ and need some
relational representation of states. With RLMLN, prior knowledge can
be easily introduced to the learning systems and the learning process
will become more efficient. Experiments on blocks world illustrate that
RLMLN is a promising method.

1 Introduction

State representation is a critical task in RL. Function approximation is an ap-
proach to dealing with high-dimension tasks. However, RL usually does not
consider inherent relations or connections of the features. Otherwise we need to
introduce additional features to represent such connections. Therefore, we need
a high level relational and abstract representation in RL for real world problems
where there are enormous state spaces.

Relational reinforcement learning (RRL) is concerned with upgrading the rep-
resentation of RL methods to the first-order case, that is, reasoning and learning
about objects and relations between Objects ([I]). RRL is modeled by relational
MDPs (RMDP). For a detailed definition, please see ([I]). Recently, researchers
have presented a lot of methods to solve RRL problems, which can be classified
into three classes: model-free, partially modeling and model-based. Among these
methods, many integrate first-order logic with traditional method and gain the
ability to compactly and declaratively represent complex problems. For exam-
ple, LOMDP ([2]) use clauses or formulas to partition state space and learn state
values for those formulas.

Markov logic networks (MLN), proposed by Matthew Richardson and Pe-
dro Domingos ([3]), attaches weights to first-order formulas and takes them as
features of the network. It can be viewed as a template for generating ground
Markov networks. In this way, MLN achieves the goal of combining graphical

A. Gelbukh and E.F. Morales (Eds.): MICAT 2008, LNAIT 5317, pp. 230-242] 2008.
© Springer-Verlag Berlin Heidelberg 2008

Reinforcement Learning with Markov Logic Networks 231

| Agent

state rreward action
S t 3

HLLTS)

1St | Environment |

Fig. 1. The agent-environment interaction in reinforcement learning

model and first-order logic, so that it handles the complexity and uncertainty
of the real world in a single framework. Recently, MLN has been used to deal
with various kinds of problems. For example, Parag Singla and Pedro Domingos
used it to do entity resolution ([4]), collective classification and so on. Transfer
learning based on MLN ([5]) is also undertaken.

The above work inspires us to propose reinforcement learning algorithm with
Markov logic networks (RLMLN) to combine RL and MLN. In RLMLN, MLN
does inference for the action queries and selects a best action, while RL uses the
successive state, current state and the reward to update the weights of formulas
in MLN. With RLMLN, we can compactly represent a state in RL for those prob-
lems which have enormous state space and need abstract state representation.
Furthermore, we can easily introduce prior knowledge to a learning system. We
apply RLMLN to the problem of blocks world ([6]) and the experimental results
show that RLMLN is a promising method.

The rest of this paper is organized as follows. In sections 2 and 3, we briefly
review reinforcement learning and Markov logic networks. Section 4 presents
RLMLN. Section 5 gives the experiments on blocks world. Finally, section 6
concludes.

2 Reinforcement Learning

Reinforcement learning is learning what to do—how to map situations to actions—
S0 as to maximize a numerical reward signal([7]). A reinforcement learning agent
learns knowledge from interaction with the environment, as shown in Fig. [I
We normally describe a reinforcement learning problem using Markov decision
processes(MDPs). A MDP is a four tuple < S, A, T, R > consisting of a finite
state space S, a finite action space A, a transition function 7' : Sx Ax S — R, and
a reward function R : S x A — R([7]). From a given state s € S, a given action
a € A(s) produces an expected reward of R(s, a) and transitions to another state
s’ € S with probability T'(s, a, s’). Monte-Carlo, TD(\), Q-learning are some of
the classical methods in RL.

3 Markov Logic Networks

Complexity and uncertainty is the nature of many real world applications ([§]).
Logic mainly handles the former while statistical learning focuses on the latter.

232 W. Wang et al.

However, a first-order KB has a hard constraint on the possible worlds because
if one formula is violated, then the world will has zero probability. Markov logic
soften the constraints by combining logic and probability with attached weights
for first-order formulas: if a world violates a formula then it becomes less prob-
able, but not impossible([9]).

3.1 Markov Logic

A Markov network is a model for the joint distribution of a set of variables
X = (X1, Xo,...,X,) € x(J[I0). Tt consists of an undirected graph G and a set
of potential functions ¢;. There’s a node for each variable in the graph and the
model has a potential function for each clique in the graph. The joint distribution
represented by a Markov network is given below:

PX =)= 2 [] oulowy) - 1)
k

where x(;, is the state of the kth clique, Z:Zwex 1, ¢x (7 k). For convenience,
we often represent Markov networks as log-linear models:

P(X =z)= %exp ijfj(g;)) (2)

where Z is a normalization factor, and f;(z) is one of the feature of state .
Markov logic introduces first-order logic to Markov networks. Recall that a first-
order knowledge base is a set of formulas represented in first-order logic. Con-
stants(e. g. , Jack, Johnson), variables, functions and predicates(e. g. , On(a, b),
Has(x, y)) are the four types of symbols to construct these formulas. A grounded
predicate is a predicate with its variables replaced by constants(e. g. , move(A,
Floor), Has(John, computer)). A ground formula is a formula with no variables
but constants. In Markov logic, a formula is a first-order logic formula attached
with a weight. The weight of each formula reflects how strong a constraint the
first-order formula has: the higher the weight, the greater the difference in prob-
ability between a world that satisfies the formula and one that does not. And a
set of these formulas is called a Markov logic network or a MLN([g]).
The definition is given below([3]):

Definition 1. A Markov logic network L consists of a set of pairs (F;,w;),
where F; is a first-order logic formula and w; is F;’s weight(a real number).
C = c1,¢2,...,¢| 15 a set of constants. Markov network My c is defined as
follows:

1. My, ¢ consists of binary nodes for each possible grounding of each predicate
in L. The value of each node is 1 if the ground predicate is true, 0 otherwise.

2. My, c contains one feature for each grounding of each formula F; in L. The
value of this feature is 1 if the ground formula is true, 0 otherwise. The
weight of the feature F; is wj.

Reinforcement Learning with Markov Logic Networks 233

Table 1. Example of MLN for blocks world

First-order logic Clausal form Weight
Va,b,c,d on(a,b) A clear(a) Aon(c,d) —on(a,b)V —clear(a) V —on(c, d) 1.0
Aclear(c) = move(a, Floor) V=clear(c) V move(a, Floor)

Va,b,c,d on(a,b) A clear(a) Aon(c,d) —on(a,b)V —clear(a) V —on(c, d) 1.0
Acl(c) = move(z, Floor) V—clear(c) V move(a, ¢)

move(A,Floor)

Fig. 2. Ground Markov network obtained by applying the formulas in Table 1 to con-
stants A, B, C and D. And we delete nodes such as move(4, A), on(4, A).

A MLN can be used as a template to construct Markov networks and the resul-
tant networks are called ground Markov networks. And the networks will vary
when given different sets of constants. Table. 1l gives part of the formulas in a
MLN for blocks world. An example of ground Markov networks for Table. [is
shown in Fig. 21 The probability of world z specified by My, ¢ is given by:

P(X=x)= %exp (Z wlnl(x)> = %H@(I{i})m(m)) (3)

where n;(z) is the number of true groundings of F; in x, 2y;, is the state of the
atoms appearing in Fj, and ¢;(x(;y) = e ([3]).

3.2 Inference

Here we discuss the MCMC algorithm used in MLN for inference as our method
is based on this inference technique. First we introduce the formula to calculate
probability that formula Fy holds given that F» does([3]).

P(F|F3,L,C) = P(Fy|Fy, ML c)
P(Fy N Fo|Mp ¢)
P(F3|My.c)
ZmEXFl X Fy P(X = x|ML.,C)

T Yo, PR —alMio) @

where x g, is the set of worlds where F; holds, and P(X|M|) is given by Eq3

234 W. Wang et al.

P(Fy|F», L,C) can be approximated using an MCMC algorithm that rejects
all moves to states where F5 does not hold, and counts the number of samples in
which Fj holds. In MCMC algorithm we have two steps to do for inference. First,
we construct the minimal subset M of the ground Markov network required to
compute P(Fy|F», L,C). Second, we use Gibbs sampling to perform inference
on this network. Gibbs sampling need a Markov blanket to sample one ground
atom. The Markov blanket of a ground predicate is the set of ground predicates
that appear in some grounding of a formula with it([3]). Given Markov blanket
B; = by, the probability of a ground predicate X is

P(Xl = :El|Bl = bl)
B exp(D_ s, e g, wilfi(Xi = 1, Br = by))) 5)
exp(_ pep Wilfi(Xi =0, By =by)) + exp(}_ g, e g wifi(Xy =1, By = b))

where Fj is the set of ground formulas that X; appears in, and f;(X; = 2, B; =
b;) is the value(0 or 1) of the feature corresponding to the ith ground formula
when Xl =a and Bl = bl ([3])

For more detailed information about MLN, please refer to ([3]).

4 Reinforcement Learning Algorithm with Markov Logic
Networks

Based on MLN, we propose our reinforcement learning algorithm with Markov
logic networks. First we give a simple view of our method in Fig. Bl From the
figure, we can see that given current state s, MLN helps calculate the probability
of each action and randomly choose among the best ones, a = max, P(a|s), and
then next state s’, reward r are received by RL agent from the environment.
Using gradient-descent method, RL agent updates the weights vector @ of MLN
and then use the new weights to do inference. The inference algorithm we choose
for MLN is MCMC as we mentioned before.

action
at

state
St

1 Se | Environment
;

Fig. 3. Framework of reinforcement learning algorithm with Markov logic network

Reinforcement Learning with Markov Logic Networks 235

4.1 Update Weights with Gradient-Descent Methods

Gradient-descent method is a popular method used in RL and other fields of Al
The simple form is given below([7]):

i = 0+ 5075, [V (s0) ~ Vilso)?
=0, + V™ () — Vi(s0)] Vg, Vilst) - (6)

where « is a positive step-size parameter, V;(s) is a smooth differentiable function
of §; for all s € S, V™(s;) is the exact, correct value for each s;, and v(;t‘/}(st),
for any function f, denotes the vector of partial derivatives. Normally, we can’t
get the exact value V™ (s;), so we use some approximation of it, denoted by v;.
Now we try to take MLN output as a representation of) value and get a new
formula:

01 =0, + o [r +ymax P(d'|s") — P(a|s)} Vg, Plals) . (7)
where P(A = alS = s) = %exp(zj w; fi(z))(Equ.). For simplicity of calcula-
tion of 75 P(als), we adopt the In form of P(als). So we get

0
811)1'

InP,(A=alS=s)=n(x) - pr(X =a")n;(x') . (8)

where n;(x) is the number of true groundings in the data z for the ith formula.
However, Equ. Blis difficult for calculation. As mentioned before, we use MCMC
algorithm in our method, so P(als) is calculated using Equ. Bl In this way, we
can get /5 P(als) as below in a simple form:

0
(’)wi

In P(X, = z|B; = by)

=Y {fi(Xl—xl,Bl—bl) > fi(Xl—x',Bl—bl)P(Xl—x’Bl—bl)} (9)

fi€r z/€0,1

where Fj is the set of ground formulas with weight w; that X; appears in, and
fi(Xy =z, By = by) is the value(0 or 1) of the feature corresponding to the ith
ground formula when X; = z; and B; = b;; P(X; = 2’| B; = b;) is the probability
that X; = 2’ holds given Markov blanket b;.

In such a way, we can use this gradient-descent method to update the weight
of each formula in MLN in each state transition process. Different from MLN,
we introduce state and action, which only exist in RL, to MLN. The original
weight learning methods in MLN use an evidence database to do gradient-descent
learning while in RL we have states, actions and state transitions which can’t
be represented simply in an evidence database. That’s why we can’t directly
use the weight learning methods of MLN. Now we can see that MLN helps RL
to choose actions while RL helps MLN to learn weights. We call this method
reinforcement learning algorithm with Markov logic networks.

236 W. Wang et al.

4.2 RLMLN with Eligibility Trace

Combining with eligibility trace, we can get the backward view([7]) of our
RLMLN algorithm.

Q"(5.0) = In((r + 7 max P(4 = |8 =)
Q(s,a) =InP(A=alS =5)
6= QW(S,a) - Q(S’a)

- - 0
Wiyl = Wi + Oééa—th(S» a)éy

& = A + a%%’a)

0 0

8wiQ(S’a) = 9w, In P(A=a|S=5s)
o0

awi hlP(Xl = :El|Bl = bl)

= Z filXi=x, B =1b;) — Z fi(Xi=1',B,=b)P(X; =2'|B, =)
fi€eF, z’€0,1

where Q™ (s,a) is the exact, correct value for state-action pair (s,a), and here
we use an estimate In((r + ymax, P(A = d/|S = §'))) to substitute it. W is
the weights of formulas in MLN; Q(s, a) is the Q-value of state-action pair (s, a)
given by MLN inference.

A description of this algorithm is given in Fig. [In this algorithm, we get
P(als) from the inference of MLN(Equ. [B) and then apply RL to update the
weight of each formula(Equ. [§). Our implementation is based on the open source
project—Alchemy.

5 Experiment on Blocks World

5.1 Blocks World Problem

A blocks world contains a fixed set of blocks. Each block has two positions:on
the top of another block or on the floor. The action in this world is move(a,b),
where a must be a block and b is either a block or the floor. Marina Irodova and
Robert H. Sloan([I1]) applied RL and function approximation to this task and
got a better result than RRL. However, at present it is still a difficult task in
Al In our experiment, we also consider three goals as other researchers do.

Stack States with all blocks in a single stack
Unstack States with every block on the floor
On(a, b) States with block a on top of block b

For ease of introducing prior knowledge, we introduce three predicates to
blocks world, they are ontop(x,y),above(x,y),maxheight(x). Predicate

Reinforcement Learning with Markov Logic Networks 237

Initialize @ of MLN formulas with prior knowledge or just a constant
arbitrarily chosen, €= 0
Repeat(for each episode):
s < initial state of episode
For all a € A(s):
Qo — P(A=a|S =5s) //(MLN)
a +— argmax, Qq
With probability € : a < a random action € A(s)
Repeat(for each step of episode):
Take action a, observe reward, r, and next state s’
Q(s;a) =InQa
For all a € A(s")
Qo — P(A=a|lS=5") //(MLN)
a' +— argmax, Qq
With probability € : a’ « a random action € A(s")
Q" (s,a) = In(r +vQua’)
6= Q7 (s,a) — Q(s,a)
Ih (s,a):a%)ilnP(A:a\S:s) //(MLN, Equ. Q)
Wir1 = Wt + aéaith(s, a)e
a1 = YAG + 52-Q(s,a)
a+—a
until s" is terminal

Fig. 4. Reinforcement learning algorithm with Markov logic networks

ontop(x,y) means block x is on the top of block y; above(x,y) means block
x is above block y; and maxheight(x) means block x has the maximum height
than other blocks. We define height of block x like this: if on(x,Floor), then
height(x) = 0, and if on(x,y), height(z) = height(y) + 1. Predicates
ontop(x,y),above(x,y) can be defined using on(x,y), clear(x,y) recursively as
Markov nets allow cycles.

{on(4,B), on(B,Floor), on(E,C), on(E, C), on(C,D), on(D,Floor)} is the initial
state in our experiment. The predicate to be inferred is move. In our experi-
ment, the goal state for on task is {on(B,D)}. The goal state of unstack and
stack task is trivial. MLN formulas for the three tasks are given below:

On task:

//predicates

on(bl, bl)

move (bl, bl)

clear(bl)

maxheight (bl)

ontop(bl, bl)

above(bl, bl)

//formulas

1.0 clear(B) ~ clear(D) => move(B, D)

238 W. Wang et al.

ontop(x, B) => move(x, Floor)
ontop(x, D) => move(x, Floor)

on(x, y) => above(x, y)

on(x, y) ~ above(y, z) => above(x, z)
clear(y) ~ above(y, x) => ontop(y, x)

N
O O O O O

Stack task:

1.0 maxheight(x) ~ clear(y) => move(y, x)
Unstack task:

1.0 'on(al,Floor) ~ clear(al) => move(al,Floor)

In the stack and unstack MLN formulas, we omit the predicate declarations so
as to avoid duplication. At the rest of this paper we also omit the declarations
in MLN formulas.

5.2 Experiment Results

In this section, we perform an experiment to validate our RLMLN algorithm.
The problem domain is a 5-block blocks world task as shown in Figll Fig.
gives the experiment result. Parameter setting in our experiment is « = 0.1,y =
0.99 and e = 0. Taking account of the accuracy of inference and equivalent initial
weight of MLN formulas , we choose actions randomly among the actions whose
probability is near the maximum probability, that’s why we set € = 0 in this task.
Another reason is that we have provided very exact prior knowledge for every
task and a positive e will cause unnecessary fluctuation. For different task(stack,
unstack, on), reward is 1 when the goal is reached, 0 otherwise. No comparisons
are provided here because the learned results are optimal for the three tasks
and as a result comparisons are not necessary on this problem. Further study of
RLMLN on other domains, like Tetris, is undertaken and comparisons on these
domains will be taken in the near future.

5.3 Transfer to Larger Blocks World Problems

For blocks world task, we find that our formulas above can easily transfer
to larger blocks world problems. We design an experiment of a on task with
10 blocks. The task starts with a random initial state and the goal state is
{on(B7,B3)}. We use the above learned MLN formulas with only B, D changed
to B7, B3. We run the experiment twice. The result is given in Fig. [7] and the
initial states are(randomly generated in one run):

S1:

{on(B9,Floor), on(B8,B7), on(B7,B6), on(B6, Floor), on(B5,B4), on(B4, B3),
on(B3,Floor), on(B2,B1), on(B1,B0), on(BO, Floor)}

Reinforcement Learning with Markov Logic Networks 239

5 Blocks-World

E g ‘

A C 4
B D Y
Fig. 5. Stack task Fig. 6. Experiment with 5 blocks

On Task With 10 Blocks

[—3] Unstack Task with Mixed Prior Knowledge

Steps

0 10 20 30 40 50 60 70 80 90 100
Episode

Fig. 7. Transfer to 10 Blocks On Task Fig. 8. Experiment with Mixed Knowledge

S2:

{on(BO,Floor), on(B1,B0), on(B2,B1), on(B3,B2), on(B4, Floor), on(B5,B4),
on(B6,B5), on(B7,B6), on(B8,B7), on(B9, Floor)}

5.4 Mix the Prior Knowledge

In the above experiment, we give an exact prior knowledge about blocks world,
so the learning process seems to become useless. The reason is that blocks world
problem is easy for humans and we can easily figure out the exact prior knowl-
edge. However, for complex problems like Tetris, it’s difficult to give an exact
prior knowledge and then we will see the power of RLMLN to distinguish good

240 W. Wang et al.

formulas and bad formulas(by modifying the weights). In this subsection, we put
all the formulas for the three different tasks and do an experiment on unstack task
with 4 blocks to validate the power of RLMLN in adjusting weights or selecting
formulas(or prior knowledge). In order to confuse RLMLN at the beginning,
we set the formulas that are against the unstack goal with higher weights. The
initial MLN is:

0 clear(B2) ~ clear(BO) => move(B2,B0)

0 ontop(x,B2) => move(x,Floor)

0 ontop(x,B0) => move(x,Floor)

0 on(x,y) => above(x,y)

.0 on(x,y) ~ above(y,z) => above(x,z)

0 clear(y) ~ above(y,x) => ontop(y,x)

0 clear(al) ~ 'on(al,Floor) => move(al,Floor)
0 maxheight(x) ~ clear(y) => move(y,x)

NP, PP PP, PN

The learned formulas are given below:

1.99943 move(B2,B0) v !clear(B2) v !clear(BO)
1.47049 ‘!'ontop(al,B2) v move(al,Floor)
1.47049 ‘'ontop(al,B0) v move(al,Floor)
1 lon(al,a2) v above(al,a2)
1 lon(al,a2) v above(al,a3) v 'above(a2,a3)
1 ontop(al,a2) v !above(al,a2) v !clear(al)
1.47049 on(al,Floor) v move(al,Floor) v !clear(al)
1.96995 move(al,a2) v !maxheight(a2) v !clear(al)
In this experiment, ¢ = 0.1 and the other parameters are the same as those
used above. We can see the weights of the formulas fit the task are incremented
in the learning process while the others are decreased or remain. We run the
experiments 10 times and the initial state is generated from a random number
generator with the same seed seed = time(NULL) in the 10 runs. The result is
shown in Fig. B

From the experiment result, we can see that our new method works very
well on blocks world problem when we introduce some prior knowledge. If the
formulas are abstract and exact enough, the learned MLN formulas can be easily
transfered to larger tasks. On other tasks other than blocks world, the learned
MLN may need some modification or relearning from the learned formulas. Of
course we can use function approximation on this problem, however, finding good
features is still a difficult and arduous job. With RLMLN, finding a solution for
such tasks becomes easier and faster as the formulas give us a high level and
comprehensible abstraction of this problem while function approximation in RL
often introduces obscure features and needs some programming tricks. Currently,
we are taking a study on applying RLMLN to Tetris and in the near future we
will be able to give a better example of RLMLN’s applications.

Reinforcement Learning with Markov Logic Networks 241

6 Conclusion and Future Work

In this paper, we propose reinforcement learning algorithm with Markov logic
networks (RLMLN). This method helps us represent states in RL compactly and
introduce prior knowledge to a learning system. Furthermore, figuring out a set of
formulas of RLMLN is easier than finding features for function approximation
in some problem domains, such as the blocks world. Experimental results on
blocks world show that RLMLN is a promising method. If the problem can be
formulated in RRL framework, like blocks world here, the learned RLMLN can
be easily transfered or directly used to larger tasks. However, not all tasks can
easily be formulated as relational problems, which inludes mountain car and
acrobot, etc([12]).

We are now planning to extensively examine the performance of RLMLN on
more problem domains, like Tetris. However, hand coded formulas may be not
enough for such a task, so structure learning of RLMLN will be also a collar
work for us in the near future.

A recursive random field(RRF)([13]) is a representation where MLNs can have
nested MLNs as features. Recursive random fields(RRF's) have more power than
MLNs as they can represent disjunctions and conjunctions ,and universal and
existential quantifiers symmetrically. As a result, we are now also considering to
upgrade MLN in RLMLN to RRF.

Acknowledgements

The work is supported by the Natural Science Foundation of China (No.60775046
and No0.60721002). We would like to thank Yinghuan Shi and Tianyin Xu for
helpful comments on the preliminary draft.

References

1. van Otterlo, M.: A survey of reinforcement learning in relational domains. Techni-
cal Report TR-CTIT-05-31, University of Twente, CTIT Technical Report Series,
ISSN 1381-3625 (July 2005)

2. Kersting, K., De Raedt, L.: Logical markov decision programs. In: Proceedings
of the IJCAI 2003 Workshop on Learning Statistical Models of Relational Data
(2003)

3. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning (2006)

4. Singla, P., Domingos, P.: Entity resolution with markov logic. In: IEEE Interna-
tional Conference on Data Mining (2006)

5. Mihalkova, L., Mooney, R.J.: Transfer learning with markov logic networks. In:
Proceedings of the ICML Workshop on Strutural Knowledge Transfer for Machine
Learning (2006)

6. Dzeroski, S., de Raedt, L., Driessens, K.: Relational reinforcement learning. Ma-
chine Learning 43, 7-52 (2001)

7. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

242

8.

10.

11.

12.

13.

W. Wang et al.

Domingos, P., Richardson, M.: Markov logic: a unifying framework for statistical
relational learning. In: ICML 2004 Workshop on Statistical Relational Learning
(2004)

Domingos, P., Richardson, M.: Unifying logical and statistical ai. In: Proceedings
of AAAT (2006)

Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible in-
ference. Morgan Kaufmann, San Francisco (1988)

Irodova, M., Sloan, R.H.: Reinforcement learning and function approximation. In:
The Florida AI Research Society Conference (2005)

Taylor, M.E., Kuhlmann, G., P.S.: Autonomous transfer for reinforcement learning.
In: Proceedings of the 17th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2008) (2008)

Lowd, D., Domingos, P.: Recursive random fields. In: Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI 2007) (2007)

	Introduction
	Reinforcement Learning
	Markov Logic Networks
	Markov Logic
	Inference

	Reinforcement Learning Algorithm with Markov Logic Networks
	Update Weights with Gradient-Descent Methods
	RLMLN with Eligibility Trace

	Experiment on Blocks World
	Blocks World Problem
	Experiment Results
	Transfer to Larger Blocks World Problems
	Mix the Prior Knowledge

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

