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Abstract. Color constancy is the ability to measure image features in-
dependent of the color of the scene illuminant and is an important topic
in color and computer vision. As many color constancy algorithms exist,
different distance measures are used to compute their accuracy. In gen-
eral, these distances measures are based on mathematical principles such
as the angular error and Euclidean distance. However, it is unknown to
what extent these distance measures correlate to human vision.

Therefore, in this paper, a taxonomy of different distance measures for
color constancy algorithms is presented. The main goal is to analyze the
correlation between the observed quality of the output images and the
different distance measures for illuminant estimates. The output images
are the resulting color corrected images using the illuminant estimates
of the color constancy algorithms, and the quality of these images is
determined by human observers. Distance measures are analyzed how
they mimic differences in color naturalness of images as obtained by
humans.

Based on the theoretical and experimental results on spectral and
real-world data sets, it can be concluded that the perceptual Euclid-
ean distance (PED) with weight-coefficients (wR = 0.26, wG = 0.70,
wB = 0.04) finds its roots in human vision and correlates significantly
higher than all other distance measures including the angular error and
Euclidean distance.

1 Introduction

Color constancy is the ability of a visual system, either human or machine, to
maintain stable object color appearances despite considerable changes in the
color of the illuminant. Color constancy is a central topic in color and com-
puter vision. The usual approach to solve the color constancy problem is by
estimating the illuminant from the visual scene, after which reflectance may be
recovered.

Many color constancy methods have been proposed, e.g. [1,2,3,4]. For bench-
marking, the accuracy of color constancy algorithms is evaluated by computing
a distance measure on the same data sets such as [5,6]. In fact, these distance
measures compute to what extent an original illuminant vector approximates
the estimated one. Two commonly used distance measures are the Euclidean
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distance and the angular error, of which the latter is probably more widely used
than the first. In [7], an analysis is presented of the distribution of these measures,
with the aim to find the best summarizing statistic over a large set of images.
However, as these distance measures themselves are based on mathematical prin-
ciples and computed in normalized-rgb color space, it is unknown whether these
distance measures correlate to human vision. Further, other distance measures
could be defined based on the principles of human vision.

Therefore, in this paper, a taxonomy of different distance measures for color
constancy algorithms is presented first, ranging from mathematics-based dis-
tances, to perceptual and color constancy specific distances. Then, a perceptual
comparison of these distance measures for color constancy is provided. To reveal
the correlation between the distance measures and humans, color corrected im-
ages will be compared with the original images under reference illumination by
visual inspection. In this way, distance measures are evaluated by psychophysical
experiments involving paired comparisons of the color corrected images.

The paper is organized as follows. In section 2, color constancy and image
transformation is discussed. Further, a set of color constancy methods will be
introduced. Then, the different distance measures will be presented in section 3.
The first type concerns mathematical measures, including the angular error and
Euclidean distance. The second type concerns measuring the distance in dif-
ferent color spaces, e.g. device-independent, perceptual or intuitive color spaces.
Thirdly, two domain-specific distance measures are analyzed. In section 4,
the experimental setup of the psychophysical experiments is discussed, and the
results of these experiments are given in section 5.

2 Color Constancy

The image values f for a Lambertian surface depend on the color of the light
source e(λ), the surface reflectance s(x, λ) and the camera sensitivity function
c(λ), where λ is the wavelength of the light and x is the spatial coordinate:

f(x) =
∫

ω

e(λ)c(λ)s(x, λ)dλ, (1)

where ω is the visible spectrum. Assuming that the scene is illuminated by one
light source and that the observed color of the light source e depends on the
color of the light source e(λ) as well as the camera sensitivity function c(λ),
then color constancy is equivalent to the estimation of e by:

e =
∫

ω

e(λ)c(λ)dλ, (2)

given the image values of f , since both e(λ) and c(λ) are, in general, unknown.
This is an under-constrained problem and therefore it can not be solved without
further assumptions.
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2.1 Color Constancy Algorithms

For the purpose of the experiments in this paper, the focus is on a number
of simple algorithms. Recently, van de Weijer et al. [1] proposed a framework
with which systematically many different algorithms can be constructed. Possible
algorithms include methods using 0th-order statistics (i.e. pixel values), like the
White-Patch [2], the Grey-World [3] and the Shades-of-Grey algorithms [4], and
methods using higher-order (e.g. 1st- and 2nd-order) statistics, like the Grey-
Edge and 2nd-order Grey-Edge algorithms. The framework is given by:

(∫ ∣∣∣∣∂
nfσ(x)
∂xn

∣∣∣∣
p

dx
) 1

p

= ken,p,σ, (3)

where n is the order of the derivative, p is the Minkowski-norm and fσ(x) =
f⊗Gσ is the convolution of the image with a Gaussian filter with scale parameter
σ. For the purpose of this article, five instantiations are used, representing a wide
variety of algorithms, being the White-Patch (e0,∞,0), the Grey-World (e0,1,0),
the General Grey-World (e0,13,2), the 1st-order Grey-Edge (e1,1,6) and the 2nd-
order Grey-Edge algorithm (e2,1,5). Of course, many other algorithms can be
generated, but for simplicity, the focus is on these five instantiations as they are
derived from different orders of image statistics.

2.2 Image Transformation

Once the color of the light source is estimated, this estimate can be used to
transform the input image to be taken under a reference (often white) light
source. This transformation can be modeled by a diagonal mapping or von Kries
Model [8]. The diagonal mapping is given as follows:

fc = Du,cfu ⇒
⎛
⎝Rc

Gc

Bc

⎞
⎠ =

⎛
⎝α 0 0

0 β 0
0 0 γ

⎞
⎠

⎛
⎝Ru

Gu

Bu

⎞
⎠ , (4)

where fu is the image taken under an unknown light source, fc is the same image
transformed, so it appears if it was taken under the reference light, and Du,c is a
diagonal matrix which maps colors that are taken under an unknown light source
u to their corresponding colors under the canonical illuminant c. The diagonal
mapping is used throughout this paper to create output-images after correction
by a color constancy algorithm.

3 Distance Measures

Performance measures evaluate the performance of an illuminant estimation al-
gorithm by comparing the estimated illuminant to a ground truth, which is
known a priori. Since color constancy algorithms can only recover the color of
the light source up to a multiplicative constant (i.e. the intensity of the light
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source is not estimated), distance measures compute the degree of resemblance
in normalized-rgb:

r =
R

R + G + B
, g =

G

R + G + B
, b =

B

R + G + B
. (5)

In color constancy research, two frequently used performance measures are
the Euclidean distance and the angular error, of which the latter is probably
more widely used than the first. The Euclidean distance between the estimated
light source ee and the true, ground truth, light sources eu is given by:

L2(ee, eu) =
√

(Re − Ru)2 + (Ge − Gu)2 + (Be − Bu)2. (6)

The angular error measures the angular between the estimated illuminant ee

and the ground truth eu, and is defined as:

dangle(ee, eu) = cos−1

(
ee · eu

||ee|| · ||eu||
)

, (7)

where ee · eu is the dot product of the two illuminants and || · || is the Euclidean
norm of a vector.

Although the value of these two distance measures indicates how closely an
original illuminant vector is approximated by the estimated one (after intensity
normalization), it remains unclear how these values correspond to human vision.
Further, other distances can be derived. To this end, in this section, a taxon-
omy of different distance measures for color constancy algorithms is presented.
The different distance measures are defined ranging from mathematics - based
distance measures (section 3.1), to perceptual measures (section 3.2) and color
constancy specific measures (section 3.3).

3.1 Minkowski Distance

A well-known measure is the Minkowski distance:

Lp(ee, eu) = (|Re − Ru|p + |Ge − Gu|p + |Be − Bu|p) 1
p , (8)

where p is the corresponding Minkowski-norm. In this paper, three special cases
of this distance measure are evaluated. These three measures are the Manhattan
distance (L1), the Euclidean distance (L2) and the Chebychev distance (L∞).

3.2 Perceptual Distances

The goal of color constancy algorithms, in this paper, is to obtain perceptual
distance to a reference image. For this purpose, the estimated color of the light
source and the ground truth are first transformed to different (human vision)
color spaces, after which they are compared. Therefore, in this section, the dis-
tance is measured in the perceptually uniform color spaces L∗a∗b∗ and L∗u∗v∗

[9], as well as in the more intuitive color channels chroma C and hue H .
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Most color constancy algorithms are restricted to estimating the chromaticity
values of the illuminant. To evaluate the performance of an estimated light source
in different color spaces, this (intensity normalized) estimate, as well as the
ground truth light source, is applied to a perfect white reflectance. Hence, two
(R, G, B)-values are obtained, representing the color of a white reflectance under
the estimated and the true light source. These (R, G, B)-values can consequently
be converted to different color spaces. Conversion from RGB to XY Z is done
using the following linear transformation:

⎛
⎝X

Y
Z

⎞
⎠ =

⎛
⎝0.4125 0.3576 0.1804

0.2127 0.7152 0.0722
0.0193 0.1192 0.9502

⎞
⎠

⎛
⎝R

G
B

⎞
⎠ (9)

Then, the two perceptual color models L∗a∗b∗ and L∗u∗v∗ are computed
using (Xw, Yw, Zw) = (0.9505, 1.0000, 1.0888) as reference white [9]. From these
perceptual color spaces, different color channels can be computed, like chroma
C and hue H . The transformation from L∗a∗b∗ to C and H is given by:

Cab =
√

(a∗)2 + (b∗)2 , Hab = tan−1

(
b∗

a∗

)
, (10)

and analogously for L∗u∗v∗.
Finally, it is known that the human eye is more sensitive to some colors than to

others. This important property of the human visual system is used, for instance,
in the conversion of RGB-images to luminance-images [10]:

Lum = 0.3R + 0.59G + 0.11B. (11)

Hence, a change in the green-channel has a stronger effect on the perceived dif-
ference between two images than a change in the blue-channel, for instance. This
leads us to the weighted Euclidean distance, or perceptual Euclidean distance
(PED). The weights for the different color channels are described as sensitivity
measures as follows:

PED(ee, eu) =
√

wR(Re − Ru)2 + wG(Ge − Gu)2 + wB(Be − Bu)2, (12)

where wR + wG + wB = 1.

3.3 Color Constancy Distances

In this section, two color constancy specific distances are discussed. The first
is the color constancy index CCI [11], also called Brunswik ratio [12], and is
generally used to measure perceptual color constancy [13,14]. It is defined as the
ratio of the amount of adaptation that is obtained by a human observer versus
no adaptation at all:

CCI =
b

a
, (13)
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where b is defined as the distance from the estimated light source to the true
light source and a is defined as the distance from the true light source to a white
reference light.

The second is a new measure, called the gamut intersection, that makes use of
the gamuts of the colors that can occur under a given light source. It measures
the fraction of colors that occur under the estimated light source, with respect
to the colors that occur under the true, ground truth, light source:

dgamut(ee, eu) =
vol(Ge ∩ Gu)

vol(Gu)
, (14)

where Gi is the gamut of all possible colors under illuminant i and vol(Gi) is
the volume of this gamut. The gamut Gi is computed by applying the diagonal
mapping, corresponding to light source i, to a canonical gamut.

4 Experimental Setup

In this section, the experimental setup of the psychophysical experiments is
discussed. The experiments are performed on two data sets, one containing hy-
perspectral recordings of natural and rural scenes, and the other containing a
range of real-world scenes. The images are shown on a calibrated monitor, and
observers are shown images in a round-robin schedule. For every pair of images,
the observers have to specify which of the two results is closer to the ideal re-
sult. In this way, comparison of the distance measures (objective performance)
is compared with visual judgment (subjective performance) by computing the
correlation between the two performance measures.

4.1 Data

Two data sets are used for the psychophysical experiments. The first data set
consists of hyperspectral images and is used to perform a thorough, i.e. colori-
metrically correct, analysis. The second data set consists of real-world images
and is used to analyze the results of the first experiments.

Hyperspectral data. The first data set, originating from [14] consists of eight
hyperspectral images, of which four are shown in figure 1(a)-(d). These images
were chosen in order to be able to study realistic, i.e. colorimetrically correct,
and naturally occurring changes in daylight illumination.

Similar to the work of Delahunt and Brainard [13], one neutral illuminant (CIE
D65) and four chromatic illuminants (Red, Green, Yellow, Blue) were selected
to create images under different light sources. The spectral power distributions
of the selected illuminants are shown in figure 2(a) and were created with the
use of the CIE daylight basis function, as described in [9]. In figure 2(b), images
of scene 3 rendered under these four illuminants are shown.

Real-world data. The second data set consisted of real-world images and were a
subset of 50, both indoor and outdoor, images taken from a data set that is widely
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Four examples of the hyperspectral scenes used in this study are shown in figures
(a)-(d), rendered under the neutral D65 illuminant. In figures (e)-(h), four examples
of the real-world scenes are shown.

used for performance evaluation of color constancy methods [5]. The original
data set consists of over 11, 000 images, and for all images, the ground truth of
the color of the light source is known from a grey sphere that was mounted on
top of the camera. This grey-sphere was cropped during the experiments. Some
example images are shown in figure 1(e)-(h). Images from this data set are not
as well calibrated as the previous set, and are therefore mostly used to confirm
the results on the hyperspectral data.

4.2 Monitor

Images were viewed on a high-resolution (1600×1200 pixels, 0.27 mm dot pitch)
calibrated LCD monitor, an Eizo ColorEdge CG211. The monitor was calibrated
to a D65 white point of 80 cd/m2, with gamma 2.2 for each of the three color
primaries. CIE 1931 x,y chromaticities coordinates of the primaries were (x,y) =
(0.638, 0.322) for red, (0.299, 0.611) for green and (0.145, 0.058) for blue, respec-
tively. These settings closely approximate the sRGB standard monitor profile
[15], which was used for rendering the spectral scenes under our illuminants.
Spatial uniformity of the display, measured relative to the center of the monitor,
was Δ Eab < 1.5 according to the manufacturer’s calibration certificates.

4.3 Observers

All observers that participated in the experiments had normal color vision and
normal or corrected to normal visual acuity. Subjects were screened for color vi-
sion deficiencies with the HRR pseudo-isochromatic plates (4th edition), allowing
color vision testing along both the red-green and yellow-blue axes of color space
[16]. After taking the color vision test, our subjects first adapted for about five
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(a) Illuminant spectra (b) Illuminants applied to scene 3

Fig. 2. Relative spectral power distribution of the illuminants used in the experiments.
The illuminants were created with the CIE basis functions for spectral variations in
natural daylight, and were scaled such that a perfectly white reflector would have a
luminance of 40 cd/m2. The four chromatic illuminants Red, Green, Yellow and Blue
are perceptually at an equal distance (28 ΔEab) from the neutral (D65) illuminant.

minutes to the light level in a dim room that only received some daylight from
a window that was covered with sunscreens (both inside and outside). In the
meantime they were made familiar with the experimental procedure.

4.4 Experimental Procedure

The experimental procedure consists of a sequence of image comparisons. The
subjects were shown 4 images at once, arranged in a square layout. The images
were shown on a gray background having L∗ = 50 and a∗ = b∗ = 0. The
upper two images are (identical) reference images, representing the test scene.
The lower two images correspond to the resulting output of two different color
constancy algorithms, applied to the original test scene (i.e. the scene under a
certain light source). Subjects were instructed to compare the color reproduction
of each of the lower images with the upper references. Both the global color
impression of the scene and the colors of local image details were to be addressed.
Subjects then indicated (by pressing a key on the computer’s keyboard) which of
the two lower images had the best color reproduction. If the color reproduction
of the two test images were identical (as good or as bad), the subjects had the
possibility of indicating this. Subjects were told that response time would be
measured, but that they were not under time pressure, they could use as much
time as they needed to come to a decision.

In each trial of our paired-comparison experiment, two color constancy algo-
rithms are competing, the result of which can be interpreted in terms of a win, a
loss or a tie. Each of the five color constancy algorithms is competing with every
other algorithm once, for every image and illuminant, in tournament language
known as a single round-robin schedule [17]. We applied a scoring mechanism
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in which the color constancy algorithm underlying a win was awarded with 1
point and the algorithm underlying a loss with no points. In case of a tie, the
competing algorithms both received 0.5 point. Ranking of the algorithms can
then be performed by simply comparing the total number of points. The above
scoring mechanism is straightforward and makes no distributional assumptions.

5 Results

Experimental results are processed on an ”average observer” basis. The inter-
observer variability will be analyzed first, after which the results of the observers
are averaged to come to robust subjective scores. Next, correlation between
these subjective scores and the several objective measures is determined using
linear regression. Since the objective measures are absolute error values and
the subjective measure depicts a relative relation between the algorithms, the
objective measures are converted to relative values. This is done by using the
same round-robin schedule as for the human observers, this time using the error
values are criterion if one result is better than another.

5.1 Hyperspectral Data

The experiments on the hyperspectral data were run in two sessions, with 4
scenes per session. Per session, a total of 160 comparisons were made (4 scenes ×
4 illuminants × 10 algorithm combinations). Half of the subjects started with the
second set. The two images that were to be compared in a trial always belonged
to the same chromatic illuminant. The sequence of the trials was randomized
and the two test images were randomly assigned to left and right positions.

Eight observers participated in this experiment, 4 men and 4 women, with ages
ranging from 24 to 43 (an average of 34.6). At a viewing distance of about 60
cm, each of the four images subtended a visual angle of 16.6◦×12.7◦. Horizontal
and vertical separation between images was 2.1◦ and 0.9◦, respectively.

Inter-observer variability. As a measure of the inter-observer variability, the
individual differences from the mean observer scores are computed, a procedure
that is often used in studies involving visual judgements, e.g. [18,19]. For each
observer, the correlation coefficient of his/her average algorithm scores (averaged
over scenes and illuminants) with the algorithm scores of the average observer
is computed. The correlation coefficients so obtained varied from 0.974 to 0.999,
with an average of 0.990. Correlation coefficients between scores of the individual
observers ranged from 0.937 to 0.997. The significance of this result becomes
clear when comparing these high values with the values that are obtained from
random data. Based on random generated responses for each trial, with 45%,
45%, 10% chances for a win, loss or tie, respectively, the correlation coefficients of
the individual ”observers” range from 0.074 to 0.948, with an average of 0.396.
Correlation coefficients between individual observers in this case ranged from
−0.693 to 0.945. Since the agreement between observers is considered good, in
the remainder we will discuss the results only for the average observer.
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Mathematical measures vs. subjective scores. First, the angular error
dangle is analyzed, since this measure is probably the most widely used perfor-
mance measure in color constancy research. Overall, the correlation between the
angular error and the perception of the human observer is reasonably high, with
an average correlation coefficient of 0.895, see table 1(a), where the correlation
coefficients on the spectral data set for all distance measures are summarized.
Also shown in this table are the results of a paired comparison between the dif-
ferent measures. A Student’s t-test (at 95% confidence level) is used to test the
null hypothesis that the mean correlation coefficients of two distance measures
are equal, against the alternative hypothesis that measure A correlates higher
with the human observer than measure B. Comparing every distance measure
to with all others, a score is generated representing the number of times the null
hypothesis is rejected, i.e. the number of times that the correlation coefficient of
the given distance measure is significantly better than the other measures.

By zooming in on individual images, it can be seen that for most images, the
correlation is relatively high (correlation coefficient ρ > 0.95), while for some
images the correlation is somewhat lower, but still acceptable (ρ > 0.8). In a
few cases, however, the correlation is rather low (ρ < 0.7). When observing the
results of the images with such a low correlation, the weakness of the angular
error becomes apparent. For these images, results of some images are judged
worse than indicated by the angular error, meaning that human observers do not
agree with the angular error. The angular errors for the corresponding images are
similar, but visual inspection of the results show that the estimated illuminants
(and hence the resulting images) are far from similar. In conclusion, from a
perceptual point-of-view, the direction in which the estimated color of the light
source deviates from the ground truth is important. Yet, the angular error, by
nature, ignores the direction completely.

The correlation between the Euclidean distance and the human observer is
similar to the correlation of the angular error, i.e. ρ = 0.890. The other two
instantiations of the Minkowski-distance, i.e. the Manhattan distance (L1) and
the Chebychev distance (L∞), have a correlation coefficient of ρ = 0.893 and
ρ = 0.817, respectively. The correlation coefficients of other Minkowski-type
distance measures are not shown here, but vary between ρ = 0.89 and ρ =
0.82. In conclusion, none of these mathematical distance measures is significantly
different from the others.

Perceptual measures vs. subjective scores. First, the estimated illuminant
and the ground truth are converted from normalized-rgb to RGB-values. This is
done by computing the two corresponding diagonal mappings to a perfect, white,
reflectance, in order to obtain the RGB-values of a perfect reflectance under the
two light sources. These RGB-values are then converted to XY Z and the other
color spaces, after which they can be compared using any of the mathematical
measures. For simplicity, the Euclidean distance is used.

For comparison, recall that the correlation between the human observers
and the Euclidean distance of the normalized-rgb values is 0.895. When com-
puting the correlation of the human observers with the Euclidean distance in
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different color spaces, the lightness channel L∗ is omitted, since the intensity
of all estimates is artificially imposed and similar for all light sources. Correla-
tions of human observers and distance measured in the perceptual spaces L∗a∗b∗

(ρ = 0.902) and L∗u∗v∗ (ρ = 0.872) are similar to the correlation of the human
observers with the Euclidean distance in normalized-rgb space. When computing
the Euclidean distance in color spaces like hue and chroma, the correlation is
remarkably low; considering both chroma and hue, correlation is 0.646, which is
significantly lower than the correlation of other color spaces. Considering chroma
or hue alone, correlation drops even further to ρ = 0.619 and ρ = 0.541, respec-
tively. In conclusion, using perceptual uniform spaces provide similar or lower
correlation then rgb.

As was derived from the analysis of the results of the angular error, it can be
beneficial to take the direction of a change in color into consideration. In this
paper, this property is computed by the perceptual Euclidean distance (PED),
by assigning higher weights for different color channels related to human vi-
sion (e.g. for Lum the coefficients are R = 0.3, G = 0.59 and B = 0.11).
The question remains, however, which weights to use. For this purpose, an ex-
haustive search has been performed to find the optimal weighting scheme, de-
noted by PEDhyperspectral in table 1(a). The weight-combination (wR, wG, wB) =
(0.20, 0.79, 0.01) results in the highest correlation (ρ = 0.963), but differences
with similar weighting combinations are very small such as Luminance Lum =
0.3R + 0.59G + 0.11B which corresponds to the sensitivity of the human visual
system. In conclusion, as the human eye is sensitive according to the well-known
Lum sensitivity curve, incorporating this property yields a perceptual sound
distance measure providing the highest correlation in the experiments on the
spectral data.

Color constancy measures vs. subjective scores. The color constancy in-
dex makes use of a distance measure as defined by eq. 13, where b is defined as the
distance from the estimated light source to the true light source and a is defined
as the distance from the true light source to a white reference light. To compute
the distance, the angular error in normalized-rgb, and the Euclidean distance
in RGB, L∗a∗b∗ and L∗u∗v∗ are used. From table 1, it can be derived that the
highest correlation with the human observers is obtained when measuring the
color constancy index with L∗a∗b∗ (ρ = 0.905). However, differences between
other distance measures are small. In conclusion, color constancy index does not
correlate better with human observers than the mathematical measures.

The gamut intersection distance measures the distance of the gamuts un-
der the estimated light source and the ground truth. These gamuts are created
by applying the corresponding diagonal mappings to a canonical gamut. This
canonical gamut is defined as the gamut of all colors under a known, often white,
light source and is constructed using a, widely-used, set of 1995 surface spectra
[6] combined with a perfect white illuminant. The correlation of this measure is
surprisingly high, see table 1: ρ = 0.965, which is even slightly higher than the
correlation of the Perceptual Euclidean Distance (PED).
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Table 1. An overview of the correlation coefficients ρ of several distance measures and
using several color spaces, with respect to the human observers. Significance is shown
using a Student’s t-test (at the 95% confidence level). By comparing every distance
measure with all others, a score is generated representing the number of times the null
hypothesis (i.e. two distances measures have a similar mean correlation coefficient) is
rejected. The results of the experiments on the hyperspectral data are shown in table
(a), the results on the real-world data are shown in table (b).

(a) Hyperspectral data (b) Real-world data

Measure ρ T-test (#)

dangle 0.895 3
L1 0.893 3
L2 0.890 3
L∞ 0.817 3

L2 − L∗a∗b∗ 0.902 4
L2 − L∗u∗v∗ 0.872 3
L2 − C + H 0.646 0
L2 − C 0.619 0
L2 − H 0.541 0
PEDhyperspectral 0.963 13
PEDproposed 0.960 13

CCI(dangle) 0.895 3
CCI(L2,RGB) 0.893 3
CCI(L2,L∗a∗b∗) 0.905 4
CCI(L2,L∗u∗v∗) 0.880 3
dgamut 0.965 13

Measure ρ T-test (#)

dangle 0.926 3
L1 0.930 3
L2 0.928 3
L∞ 0.906 3

L2 − L∗a∗b∗ 0.927 3
L2 − L∗u∗v∗ 0.925 3
L2 − C + H 0.593 1
L2 − C 0.562 1
L2 − H 0.348 0
PEDreal-world 0.961 14
PEDproposed 0.957 14

CCI(dangle) 0.931 3
CCI(L2,RGB) 0.929 3
CCI(L2,L∗a∗b∗) 0.921 3
CCI(L2,L∗u∗v∗) 0.927 3
dgamut 0.908 3

Discussion. From table 1(a), it is derived that the correlation of the angular
error with the judgment of the human observers is reasonable, and similar to
the other mathematical measures, i.e. there is no significant difference at the
95% confidence level. Measuring the distance in perceptual color spaces like
L∗a∗b∗ and L∗u∗v∗ does not increase the correlation with human observers. Us-
ing chroma C and hue H significantly decrease the correlation with the human
observers. The gamut intersection distance and the perceptual Euclidean dis-
tance (PED) have the highest correlation with the human observers. In fact,
they have significantly higher (at the 95% confidence level) correlation than all
other distance measures. Hence, the gamut and perceptual Euclidean distances
are significantly better than all other distance measures on spectral data set.

5.2 Real-World Data

The experiments on the real-world data were run in three sessions, with the num-
ber of images equally divided in three parts. The sequence of the sets was random-
ized for every observer. In this experiment, seven observers participated (4 men
and 3 women), with ages ranging from 24 to 43. The difference between the ob-
servers was analyzed similarly to the experiments on the hyper-spectral data, and
again the agreement of the individual observers was found to be sufficiently high.
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Objective vs. subjective scores. In general, the same trends on this data set
as on the hyperspectral data are observed, see table 1(b). In general, the corre-
lation coefficients are slightly higher than the spectral data set, but the ordering
between the different measures remains the same. For the mathematical mea-
sures, the angular distance (ρ = 0.926), the Manhattan distance (ρ = 0.930) and
the Euclidean distance (ρ = 0.928) are similar, while the Chebychev distance has
a lower correlation with human observers (ρ = 0.906). Results of the perceptual
measures also show a similar trend. Correlation coefficients of the perceptual
color spaces are similar to the mathematical measures, while the intuitive color
spaces are significantly lower. Again the perceptual Euclidean distance (PED)
has the highest correlation (ρ = 0.961). This correlation is obtained with the
weights (wR, wG, wB) = (0.21, 0.71, 0.08), denoted PEDreal-world in table 1(b).
The results for the color constancy specific distances are slightly different from
the results obtained from the hyperspectral data. The results of the color con-
stancy index are similar, but the correlation of the gamut intersection distance
with the human observers is considerably lower on this data set.

Discussion. The results of the experiments on the real-world data set, see table
1(b), correspond to the results of the experiments on the hyperspectral data.
Note, though, that the images in this data set are gamma-corrected (with an
unknown value for gamma) before the color constancy algorithms are used to
color correct the images. Applying gamma-correction previously to the color
constancy algorithms affects the performance of the used algorithms, but this
was not investigated in this paper.

The most noticeable difference between the results on this data set and the
results on the previous data set is the correlation of the gamut intersection dis-
tance. This distance has the highest correlation with the human observers on the
hyperspectral data. However, on the real-world data set, the correlation is con-
siderably lower, though not significant, than the other measures. The correlation
of the perceptual Euclidean distance on the real-world data is still significantly
higher than the correlation of all other distance measures. To obtain a robust,
stable combination of weights, the results of the exhaustive search on the hy-
perspectral data and the real-world data are averaged. The optimal correlation
is found for the weight-combination (wR, wG, wB) = (0.26, 0.7, 0.04), which is
the weight-combination we propose to use to compute the PED. Using these
weights, correlation of the perceptual Euclidean distance with human observers
on the hyperspectral data is 0.960, and on the real-world data is 0.957, denoted
PEDproposed in table 1(a) and (b), both still significantly higher (at the 95%
confidence level) than all other distance measures.

6 Conclusion

In this paper, a taxonomy of different distance measures for color constancy algo-
rithms has been presented. Correlation has been analyzed between the observed
quality of the output images and the different distance measures for illuminant
estimates. Distance measures have been investigated to what extent they mimic
differences in color naturalness of images as obtained by humans.
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Based on the theoretical and experimental results on spectral and real-world
data sets, it can be concluded that the perceptual Euclidean distance (PED)
with weight-coefficients (wR = 0.26, wG = 0.70, wB = 0.04) finds its roots in
human vision and correlates significantly higher than all other distance measures
including the angular error and Euclidean distance.
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