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Abstract. Active contour formulations predominate current minimization of the
Mumford-Shah functional (MSF) for image segmentation and filtering. Unfortu-
nately, these formulations necessitate optimization of the contour by evolving via
gradient descent, which is known for its sensitivity to initialization and the ten-
dency to produce undesirable local minima. In order to reduce these problems, we
reformulate the corresponding MSF on an arbitrary graph and apply combinato-
rial optimization to produce a fast, low-energy solution. The solution provided
by this graph formulation is compared with the solution computed via traditional
narrow-band level set methods. This comparison demonstrates that our graph for-
mulation and optimization produces lower energy solutions than gradient descent
based contour evolution methods in significantly less time. Finally, by avoiding
evolution of the contour via gradient descent, we demonstrate that our optimiza-
tion of the MSF is capable of evolving the contour with non-local movement.

1 Introduction

The Mumford-Shah functional (MSF) formulates the problem of finding piecewise
smooth reconstructions of functions (e.g., images) as an optimization problem [[I]]. Opti-
mizing the MSF involves determining both a function and a contour across which func-
tion smoothness is not penalized. Unfortunately, since smoothness of the reconstruction
is not enforced across the contour and since the contour is variable in the optimization,
the functional is not easily minimized using classical calculus of variations.

Given a fixed contour it is possible to solve for the optimal reconstruction function by
solving a straightforward elliptic PDE with Neumann boundary conditions. Addition-
ally, given a fixed piecewise smooth reconstruction function, it is possible to determine,
at each point on the contour, the direction that the contour would move to decrease
the functional as quickly as possible. Thus, most methods for solving the MSF involve
alternating optimization of the reconstruction function and the contour [23/4]. The re-
sults of performing this type of optimization are well known and achieve satisfactory
results that are used for differentimaging applications [4]]. Unfortunately, this optimiza-
tion of the MSF using contour evolution techniques (typically implemented with level
sets) is slow primarily due to the small steps taken by the contour at each iteration.
This slowness is exacerbated by the fact that a small perturbation of the contour can
have a relatively large effect on the optimal reconstruction function. Additionally, these
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traditional methods often require many implementation choices (e.g., implementation
parameters) and these choices may produce differences in the final result.

Practical energy minimization problems formulated on a finite set of variables can
be solved efficiently using combinatorial algorithms [3l6l7]. Furthermore, because of
the well-established equivalence between the standard operators of multidimensional
calculus and certain combinatorial operators, it is possible to rewrite many PDEs for-
mulated in RY equivalently on a complex (graph). Reformulating the conventional,
continuous, PDE on a graph permits straightforward application of the arsenal of com-
binatorial optimization techniques to efficiently solve these variational problems. An
alternate view of our approach is to consider rewriting the continuous energy functional
in terms of the precise discrete operations that would be performed on a computer to
evaluate the energy of a particular solution. By writing this energy in discrete terms,
we can design our optimization method to optimize the energy value that would actu-
ally be measured by the computer. In this work, we reformulate the difficult MSF on a
graph so that we may apply a combinatorial optimization to reduce the difficulties of
speed and local minima associated with the small contour improvements obtained via
traditional contour evolution. An added benefit of reformulating an energy in a combi-
natorial setting is that such a generic formulation may be applied without modification
to higher dimensional data or general data analysis problems, such as point clustering,
mesh smoothing/segmentation or space-variant vision.

Graph based optimization techniques have previously been used as components in
optimization methods for functionals formulated in continuous space. Boykov et al.
suggest using a max-flow step to assist in level set updates [8]]. Zeng et al. [9] and El-
Zehiry et al. [10] employ a max-flow operation as a component of their minimization of
the piecewise constant MSF; we instead present a complete combinatorial reformulation
and solution of the more general piecewise smooth MSF. Likewise, graph techniques
have also been employed in the minimization of total variation methods [11]].

Traditional contour evolution optimizations pursue a contour update in the direction
of the highest gradient. Since this contour update represents a first variation of the MSF,
calculation of this update does not require knowledge of the idealized foreground and
background functions (images) at locations distant from the contour. In contrast, our
graph formulation leads us to a combinatorial optimization approach that is capable of
taking arbitrarily large steps of the contour location. Taking these large steps requires
us to address the estimation of the foreground/background function values at locations
(pixels) distant from the contour. To the knowledge of the authors, this work represents
the first proposal of extending these foreground and background functions outside their
region of evaluation.

2 Method

In this section, we define the continuous piecewise smooth Mumford-Shah model that
we use, and go through each energy term to formulate the combinatorial analogue of
the piecewise smooth MSF. With these combinatorial analogues, we then proceed to
show how to optimize the foreground/background reconstruction and contour location.
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2.1 Mumford-Shah Formulation: Continuous and Combinatorial

A graph consists of a pair G = (V, E') with vertices (nodes) v € V and edges ¢ €
E CVxV,with N = |V|and M = |E|. An edge, e, spanning two vertices, v; and v;,
is denoted by e;;. A weighted graph assigns a value to each edge called a weight. The
weight of an edge, ¢;;, is denoted by w(eij) or w;; and is assumed to be nonnegative.
The degree of a vertex is d; = > w(e;;) for all edges e;; incident on v;. The following
will also assume that our graph is connected and undirected (i.e., w;; = w;;). Animage
may be associated with a graph by identifying each pixel with a node and defining an
edge set to represent the local neighborhood of the pixels (e.g., a 4-connected lattice).

Since the inception of the Mumford-Shah functional, there have been several related
notions of what constitutes the Mumford-Shah functional. In this work, we follow the
level set literature to consider the piecewise smooth model [1/4]], formulated as

E(ﬂg?R):a</R(f—p)2+/mR(g—p)2)+
M(/R|Vf|2+/Q\R|V9|2>+VF(R)a 0

where (2 represents the image domain, f is the smoothed foreground function, g is the
smoothed background function, R is the region of the image comprising the foreground,
p is the pixel intensity, I'(R) is a function returning the length of the contour of region
R, and o, p, v are free parameters. We assume that the image consists of grayscale
values only, although the formulation can be extended to color or multispectral images.
To simplify the parameter space, we assume that all three free parameters are strictly
positive and divided by the value of p. Thus, we will omit the inclusion of y in the
remaining exposition. Similar models were considered by Blake and Zisserman, who
referred to the energy as the “weak membrane model” [12] and by the influential paper
of Geman and Geman [13]].

Formulation of (@) on a graph requires the use of combinatorial analogues of the con-
tinuous vector calculus operators (for an introduction to these combinatorial analogues,
see [14]). Although combinatorial representations of differential operations are fairly
well established, the challenge in the graph reformulation of any particular energy (or
PDE) is to associate variables in the continuous formulation with representative combi-
natorial structures (pixels, edges, cycles, etc.) and, as in the continuous case, to produce
a useful representation of a “contour”. Specifically, each integral may be considered
as a pairing between a chain (domain of integration) and cochain (function to be inte-
grated). Associating each pixel in our image with a node in the graph, the integration
over a collection of pixels (in set S C V) may be represented by the N x 1 chain

vector r, where
1 ifv; € Sg,
r = { e on @)

0 otherwise.

The other two variables in F are cochains taking real values, i.e., f; € R, g; € R. Note
also that the image [ is treated as a vectorized, real-valued cochain existing on the nodes
(pixels). Both chains and cochains will be treated as column vectors.
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The first (data) term in (I)) concerns quantities associated with pixels (i.e., intensi-
ties). We chose above to associate nodes with pixels, so p, f, and g must represent
a 0-cochain (a function mapping nodes to real numbers). This matches the continuous
conception of these quantities as scalar fields. Since the data term in (I)) integrates over a
set of the domain for which p, f and g are defined, » must represent a O-chain indicating
a region of the domain. Thus, the analogue of the first term on a graph is

E(f,g.r)=r"(f-p’+1-1T"(g-p)*. 3)

In order to formulate the second term, recall that the combinatorial analogue of the
gradient operator is given by the node-edge incidence matrix, A, [14]. Consequently,
we may write the gradient of f as the product A f. However, since gradients are vec-
tor functions (corresponding to cochains on edges in the combinatorial setting) and the
integral in the second term is performed over a scalar function (i.e., the norm of the
gradient at each point), we have to transfer the gradient cochain associated with edges
back to a scalar cochain associated with nodes. Such an operator may be represented by
the absolute value of the incidence matrix, although each edge is now double counted,
requiring a normalizing factor of one-half. Specifically, the second term may be formu-
lated as

Ea(f.gr) = o (\TIAIT (A1 + (1= )" 1A (49)°) @

Finally, the contour length term may be formulated on a graph by counting the edges
spanning from R to R. Such a measure may be represented in matrix form as

Es(f,g,7) =1"|Ar|. (5)

If our graph is a standard 4-connected lattice, then (3) produces the ¢; measure of the
contour of region R. If we view the graph as embedded in R and wish to measure
Euclidean contour length, it was shown [[13] that a suitably weighted graph and corre-
sponding incidence matrix could instead be used in (3). However, since this construction
was designed to produce a Euclidean contour length, we use this construction only in
term F5. For purposes of generality and clarity here, we will continue to use the same
Ain all terms.

All three terms may now be put back together to define the combinatorial analogue
of the piecewise smooth Mumford-Shah model, i.e.,

E(f,9.R) =a (1" (f =p)’ + (1= (9= p)°) +
y (AT A9+ (1= 0TI (49)) + 1T 4r]. (©)

Given the above definition of the combinatorial analogue of the Mumford-Shah func-
tional, we now proceed to show how to optimize the variables f, g and r.
2.2 Optimization

We adopt the alternating optimization procedure common to optimization of the MSF
3l4]. The alternating optimization procedure first treats the current contour, 7, as fixed
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and then finds the optimal f, g. Given an f and g, the optimal  may then be found. We
begin by considering the production of an optimal f and g from a fixed contour, r.
Taking a partial derivative of (@) with respect to f yields

OF
of

The diag(-) operator represents the diagonal matrix formed by placing the argument
vector on the diagonal. Since both the first and second terms of (&) are positive semi-
definite, the zero of ([Z) represents a minimum of (@). Therefore, the optimal f given a
contour satisfies

(2c diag(r) + A" diag (|A|r) A) f = 2a diag(r)p. (8)

We pause to consider the interpretation of this optimum for f. The construction AT C A,
for diagonal C, produces the Laplacian matrix with edge weights given by the diagonal
of C' [14]]. Note that in the standard conception of the MSF, these weights all equal
unity — the domain is homogeneous, except at the contour. Consequently, (8) can be
interpreted within region R as solving for the f that would be produced from initializing
f within R to the image and then running linear isotropic diffusion for time equal to i

Outside of region R, any values of f will satisfy (8). In the computation of the en-
ergy in (@) this part of f does not contribute and may be ignored. In fact, in the existing
literature, the values of f outside region R are never considered, since an infinitesimal
gradient step is being taken by the contour of the level set function and values of f
distant from the contour are inconsequential. However, in our combinatorial formula-
tion, we desire to take an optimal contour step, regardless of the proximity of the new
contour to the previous contour. Consequently, we will need to produce a meaningful f
outside of region R. An important assumption about f is that it is a continuous function
as it approaches the contour. Therefore, in order to enforce maximum smoothness be-
tween f inside R and the extended f outside of R, we propose to construct f outside of
region R to satisfy the Laplace equation while treating the f inside of R (from (8)) as
Dirichlet boundary conditions. We extend ¢ inside of R similarly. Note, however, that
other extensions of f and g are possible and may lead to improved performance. Using
this construction, we may produce the optimal f inside the region as

(al + Lr) fr = apg, 9

where [ is the identity matrix and L indicates the portion of the Laplacian matrix cor-
responding to the region R. Recall that the Laplacian matrix is defined L = AT C A, for
some diagonal matrix C' taking the edge weights along the diagonal. We may solve the
Laplace equation on a general graph, given boundary conditions, by using the technique
of [[16], which requires the solution to a linear system of equations with a subset of the
Laplacian. Using the same procedure, the optimal g is given by solving the system

(ol + Lg) g = app, (10)

and gr may also be found by solving the combinatorial Laplace equation as in [16].
We can now address the optimization of 7, given a fixed f and g. Noting that all three
terms of (@) are submodular linear functions of 7, we can solve for r as a max-flow/min-cut

=2« diag(r) (f —p) + AT diag (JA|r) Af. @)
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computation [6]. In effect, the first and second terms describe unary terms penalizing
data infidelity from the reconstructed image and nonsmoothness in the reconstructed
image. The third term penalizes contour length and is written in terms of strictly positive
weights, producing a submodular energy that may be optimized effectively with a max-
flow/min-cut computation. Minimum cut computations on graphs representing images
are very fast using the algorithm of Boykov and Kolmogorov [17].

We conclude the section with observations about our graph formulation compared
with discretized contour evolution approaches of the continuous energy. First, in con-
trast with standard continuous methods, at each iteration we are solving for a recon-
structed function and contour that optimally minimize the MSF given a fixed contour
or a fixed reconstruction, respectively. Due to these globally optimal steps, all correct
implementations will produce an equivalent answer. Thus, there is no need for any im-
plementation parameters. For example, any linear system solver will produce the same
answer to (0). One method may be faster than another, but both methods will produce
the same answer if run to convergence; thus, there is no need to be concerned that im-
plementation choices will affect the quality of the solution. Second, because our contour
optimization is not performed via gradient descent, the contour can move non-locally,
and “snap” to the lowest energy contour, even for distant initializations. This non-local
movement results in greater robustness to initialization, far fewer iterations and greater
robustness to choice of the three term weightings in the MSF. Additionally, as shown
in Section[3.3] this non-local movement capability allows our formulation to jump over
intervening structures of arbitrary size to find a low-energy solution to the MSF.

2.3 Relationship to Graph Cuts

The Graph Cuts algorithm for image segmentation/denoising was first introduced in
[18/19]. This algorithm has been greatly extended since inception to where it is some-
what unclear what comprises “Graph Cuts”. However, all algorithms under the title
“Graph Cuts” seem to have the following qualities: 1) Defined on a (possibly directed)
graph, 2) Using submodular edge weights to reflect likely contour locations, 3) Possibly
including an intensity prior assigning each pixel to foreground/background, 4) Possibly
including hard constraints (seeds) to force pixels to be foreground or background, 5)
Optimization via a max-flow/min-cut computation, 6) Produces a global optimum of
the desired energy.

With this definition of “Graph Cuts”, we observe that the contour optimization in
the combinatorial formulation of the MSF, (@), shares much in common. Specifically,
intensity priors are present (from the data term), the weights are submodular and the
optimum of (@) is obtained via a max-flow/min-cut computation. However, by examin-
ing the above list, one may also notice differences with the combinatorial MSF. First,
the edge weights are not modified to reflect image gradients. Second, in addition to the
intensity priors, (@) involves an additional unary term penalizing the estimate of the nor-
malized gradient near the pixel (from the smoothness term in the MSF). Third, no hard
constraints (seeds) are imposed to constrain the labeling of any pixels. Fourth, there is
no reconstructed image variable (i.e., f, ¢g) present in Graph Cuts. Finally, the solution
of r (contour) is just one part of one iteration in the overall optimization of the MSF.
Although the solution of 7 is optimal for each iteration, the overall energy minimization
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Fig. 1. Toy image to compare the speed of traditional contour evolution implementation with
proposed combinatorial optimization of the Mumford-Shah functional presented in this paper.
The contours (blue) indicate different initializations used to generate the results in Table[Il

of the MSF still produces a local minimum. It should be noted that certain extensions of
the Graph Cuts work also use Graph Cuts as a subroutine while re-estimating the inten-
sity priors at each iteration [20]. However, unlike the MSF, this work does not include a
specific smoothness penalty or a reconstructed image, but hard constraints are included
and the edges are weighted by image gradients.

3 Results

The positives and negatives of MSF segmentation and reconstruction have been well-
discussed in the literature. Our reformulation of the MSF on a graph is intended to
permit the usage of combinatorial optimization methods to minimize the MSF more
quickly and to find lower-energy solutions. Consequently, our experiments are dedi-
cated to answering the following questions about the merits of traditional contour evo-
lution optimizations of the MSF with the proposed combinatorial optimization applied
to our graph formulation:

1. Speed: Which procedure finds a solution with fewer iterations? What is the relative
cost per iteration? What is the dependence of performance on resolution?

2. Initialization: Which procedure is more robust to initialization of the contour?

3. Parameters: Which procedure is more robust to the choice of parameter settings?

4. Energy minimization: Which procedure produces solutions with lower energy?

To address the first three questions, we begin with a toy image of a black square on a
white background. Such a trivial image was chosen since 1) There is a clear energy min-
imum, 2) A relatively smooth energy landscape, 3) The same answer for a wide range
of parameters, 4) A clear stopping criterion (i.e., when the contour matches the square).
For these reasons, we can perform controlled experiments to probe the answers to the
questions posed above about the relative performance of traditional contour evolution
implementations (via level sets) and our new graph formulation of the MSF.

We compared the combinatorial optimization of our graph formulation method with
an efficient narrow-band level set implementation of the continuous formulation similar
to the one presented in [4]], although the original piecewise-smooth level set implemen-
tation was presented in [3]]. Great care was taken to ensure the correctness and efficiency
of the level set implementation so that a fair and accurate comparison could be made be-
tween the two methods. The method employed alternating optimizations of the contour
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Table 1. Results of experiment comparing speed of convergence for level set (LS) solver and our
graph (GR) formulation. Note: 1) The parameter settings were chosen to best favor the level set
method in every experiment, 2) Exactly the same initializations were given to both algorithms,
3) The size and spacing of the squares initialization was chosen to favor the LS method. Time
reported “per iteration” refers to update of the contour location, since computation of the recon-
structed image is the same in both methods (although this computation is effectively doubled
for GR since the inside/outside functions are extended beyond their respective region). Note that
while the displayed number of level set iterations may seem particularly high, it is important to
note that the initializations in these cases are very distant from the desired contour.

Initialization/Resolution LS iterations LS mean iter. time GR iterations GR mean iter. time

Box (64 x 64) 41 0.002s 2 0.0064s
Box (128 x 128) 126 0.0057s 2 0.0211s
Box (256 x 256) 140 0.0199s 2 0.0838s
Crown (64 x 64) 262 0.0023s 4 0.0091s

Crown (128 x 128) 1393 0.0061s 3 0.0239s
Crown (256 x 256) 110 0.0245s 4 0.1019s
Squares (64 x 64) 294 0.0072s 3 0.0094s
Squares (128 x 128) 940 0.0112s 3 0.0295s
Squares (256 x 256) 540 0.0624s 3 0.1177s

evolution and of the smooth functions as in the graph method and as has been used in
all MSF minimizations of which we are aware. For efficiency, the level set function was
computed and stored only in a narrow band around the contour, in which we maintained
the sub-pixel position of the contour. Force extensions were computed on pixels which
neighbored the contour as illustrated in [21]]. When computing the level set function
update, the spatial derivatives associated with the curvature term were computed with
central differences, and the spatial derivatives associated with the data terms were com-
puted with the numerical scheme detailed in [22] to ensure that the viscosity solution
was obtained for the portion of the level set evolution that is a Hamilton-Jacobi equa-
tion. At each contour evolution step, we updated with an explicit forward-Euler scheme
in which the maximally stable time step was taken to ensure both stability and speed of
the level set function evolution.

Our implementation of max-flow/min-cut was taken directly from the online code
of Vladimir Kolmogorov. In order to produce a comparable comparison between the
level set optimization and our graph framework in these 2D experiments, we choose to
calculate contour length of the cut with respect to a Euclidean measure in (3)) by using
the weighted incidence matrix of the graph corresponding to the construction of Boykov
and Kolmogorov with an approximation to the Euclidean distance represented by
a neighborhood connected with a distance of two pixels.

3.1 Speed and Initialization

Our first experiment examines the relative speed of traditional level set implementations
and our new graph formulation for the box image using various image resolutions and
contour initializations. In this experiment, we created three initializations — A larger
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Initialization 1 Initialization 2

iters. sec./iter.
Level Set 1523 0.0073
Graph 7 0.1176

iters. sec./iter.
Level Set 312 0.0061
Graph 4 0.0616

Initialization 3

iters. sec./iter.
Level Set 1920 0.0101
Graph 5 0.1187

Final segmentation

Fig. 2. Comparison of number of iterations and speed of iteration for different initializations on
ultrasound image. Parameters were chosen to best benefit the level set method.

square surrounding the target square, an erratic “crown”-shaped initialization centered
on the target square and small squares tiled throughout the image. These three initial-
izations are displayed in Figure [l For each of these initializations, we measured the
number of iterations required to converge the level set and graph methods to the known
optimum solution and the average time taken to produce one contour update for each
method when run on an Intel Xeon 2.40GHz processor with 1GB of RAM. In this ex-
periment, the parameters in the energy functional were chosen to favor the level set
method as much as possible.

Table [Il displays the results of this experiment. The time reported “per iteration” in
this table refers to the update of the contour location, since the computation of the re-
constructed image is the same in both methods (although this computation is effectively
doubled in our graph method since the inside/outside functions need to be extended be-
yond their region). Therefore, even though each iteration of our graph method is slightly
more expensive than an iteration of the level set method, the improvement of 1-3 orders
of magnitude in the number of iterations causes the total runtime of the graph method
to be much less than that of the level set method. Additionally, the graph method con-
verges within 2—4 iterations regardless of the resolution, initialization or parameters.
Note that while the displayed number of level set iterations may seem particularly high,
it is important to note that these initializations are very distant from the contour.

These experiments suggest that the proposed combinatorial optimization of the MSF
produces a solution much faster than the traditional level set optimization, regardless
of the resolution or contour initialization. We remind the reader that the energy term
parameters were chosen to favor the level set method. Choosing the parameters to favor
the proposed graph method would have resulted in an even stronger disparity in favor
of our method.

A third experiment was performed on a real ultrasound image in the same manner
as the first. Initializations were introduced inside the target object, outside the object
and then erratically inside and outside the object. The results in terms of number of
iterations and speed of each iteration are shown in Figure [2J and correspond well with
the results from our synthetic experiment. Once again, the parameters of the terms in the
MSF were chosen to favor the level set method and both methods converged to roughly
the same contour.
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3.2 Parameter Robustness

The choices of the term parameters in (1) can make drastic differences in the optimal
contour and reconstruction produced by minimizing the MSF. Even if the optimal con-
tour and reconstruction are the same for different choices of parameters, the parameter
choices could affect the speed of convergence for a given initialization. In this experi-
ment, we examine the robustness of both the contour evolution and graph formulations
of the MSF to the choice of parameters in terms of the number of iterations needed
to reach the optimum solution. Once again, we employ the toy example of Figure [Il
For this experiment, we used the most simple, “box”, initialization of Figure [I] since
we expect that both algorithms will reach the target contour for all parameter choices.
We ran fifty iterations in which the parameters for each of the three terms of () were
chosen independently from a uniform distribution within the interval of zero to one and
then both the level set and graph algorithms were applied to minimize the MSF. If the
target square was not the optimum solution for the randomly generated parameters, this
parameter set was rejected and the trial re-run. After each parameter set, the number of
iterations and average time per iteration were recorded.

Table 2. Comparison of robustness to the three term parameters in (). Using the (128 x 128)
toy image above with the “box” initialization, for 50 trials we randomly chose the three term
parameters from independent uniform distributions on the interval (0, 1) and ran both the level
set and graph optimizations of the MSF. A set of parameters was rejected and re-run if the target
square was not the minimum of the MSF. For all parameters, the graph optimization produced the
target square in 2 iterations. Note that the number of iterations reported for the level set method
in Table [Tl was much less than the averages reported here because all of the results reported in
Table[Tused parameters that were hand-selected to favor the level set convergence.

Optimization algorithm Mean iterations Median iterations Iteration number standard deviation

Level set 1614.40 1520 391.80
Graph 2 2 0

The results of this experiment are displayed in Table 2l We see that the rate of con-
vergence of the level set method is highly dependent on the parameters, while the rate
of convergence for the graph method is completely independent of the parameter set.
Both algorithms exhibited independence of the per iteration time on the parameter set.
Empirically, the results of this experiment concur with our experience that the con-
vergence rate, and solution achieved, of the graph method is much less sensitive to the
parameter settings than the level set method. Note that the number of iterations reported
for the level set method in Table [Tl was much less than the averages reported in Table
due to the fact that all of the results reported in Table [Il used parameters that were
hand-selected to favor the level set convergence.

3.3 Non-local Movement

A key advantage of the contour optimization in our graph reformulation of the MSF
is that it enables movement to the optimal location at each iteration. For this reason,
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Noisy annulus Millstone Distant Init.

Initialization

Final

Fig. 3. Non-local movement: Since the contour optimization step in our graph formulation of
the Mumford-Shah energy is not performed by gradient descent, the final contour is permitted
to jump to a location distant from the initial contour location. While this effect is sometimes
achieved in the level set literature by the use of mollified region indicator functions, we note that
the mollifier support must be wider than the width of the annulus for such an approach to succeed.

our method is able to move to arbitrary image locations as predicted by the solution to
(@ depending on the current estimate of the reconstruction functions. The motion of
the contour is thus not limited to local movements as are traditional optimizations of
the contour by gradient descent. Figure 3 illustrates three situations that are segmented
correctly by the combinatorial optimization of the MSF, but where standard gradient
descent methods fail.

The piecewise smooth MSF may drive non-local movement via insufficient smooth-
ness, permitting the penetration of an annulus with a center comprised of pure noise.
The final segmentation in Figure[3]is not achievable by gradient descent of the contour.

In the millstone image, we are able to achieve correct segmentation of the inner ring
instantly. We would like to draw attention to the method by which Chan and Vese [2]
were able to determine inner boundaries of objects. The ability to segment this inner
boundary was only due to the mollified Heaviside function that was used to approxi-
mate a region indicator function. Indeed, the ability to achieve segmentation of an inner
boundary in this manner is limited by the width of the resulting mollified Delta func-
tion, a quantity which should be kept low to maintain accuracy. We should also point
out the work of [23]] who indicate the ability to naturally attain such inner boundaries
due to their method of total variation optimization of a modified MSF. Some level of
non-local movement in solving the MSF with level set methods have been achieved in
[24] using additive operator splitting [25], however they only illustrated the technique
for the piecewise constant case.

Finally, we illustrate that distant (non-overlapping) initializations are not a problem
to the combinatorial method as they are in gradient descent methods. Such a poor ini-
tialization could occur via automatic initialization of outlier image data. Regardless of
the distance of the initialization from the object, our optimization is able to quickly
ascertain such salient object boundaries.
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3.4 Energy Minimization

Beyond speed, our purpose in introducing combinatorial optimization techniques for
solving the MSF is to produce solutions with a lower energy than the solutions obtained
by conventional level set techniques. In order to compare solutions in terms of minimal
energy, we must address natural images for which the energy landscape is nontrivial. In
this section we apply both the graph-based and level set algorithms to natural images
using the same initialization/parameters and then compare the MSF energy obtained
by the final solutions. The energy value is measured in exactly the same way for both
algorithms — By evaluating (@). Using (@) to evaluate the energy might at first seem
to be biased toward producing lower energies for the graph-based technique. However,
it is important to realize that (@) details in finite matrix form, the operations actually
employed on a computer for estimating gradients and contour length, with gradients
computed by finite differences.

Our next experiment empirically compares the energy obtained for the solution of
both optimizations for a variety of natural images, given the same initialization and
parameters. For each image, initializations and parameters were selected to produce a
contour (for at least one algorithm) that was semantically meaningful. Results of this
experiment are shown in Figure [l In every case, optimization of our graph formulation
of the MSF produced solutions with an equal or lower energy and in less time.

Initialization Level Set Graph Summary

Image 1 (256 x 256)

iters. MS energy
Level Set 2000 40.4041
Graph 7  37.2971
Image 2 (321 x 479)

' iters. MS energy
| Level Set 330 34.8106
¢ Graph 5  34.7846
Image 3 (321 x 481)

. iters. MS energy
Level Set 1508 14.1903
Graph 6  13.7786

Image 4 (1488 x 1984)
iters. MS energy

Level Set 7812 428.44
©¢ Graph 17 42844

Fig.4. Comparison of the energy obtained for a solution produced by our graph formula-
tion/optimization method with the traditional level set approach. For both algorithms, the ini-
tialization, parameters and energy calculation method were identical.
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4 Conclusion

In this work, we began by reformulating the classical Mumford-Shah energy functional
in terms of analogous differential operators on graphs. An equivalent, alternate way of
looking at this reformulation is to think of it as writing the MSF explicitly in terms of
the specific finite operations that would be applied on a computer to estimate gradients
and contour length. With this new reformulation, we may apply well-established com-
binatorial optimization techniques for producing reconstruction and contour updates.

Our experiments indicate a dramatic improvement of our graph-formulated optimiza-
tion over a traditional contour evolution approaches. This improvement is in terms of
speed, robustness to initialization, robustness to parameter settings and in production
of a solution representing a lower MSF energy. Additionally, we employ combinatorial
optimization that is not based on gradient descent to solve our graph formulation of
the MSF, which permits non-local movement of the contour to find low energy solu-
tions. It could be argued that several modifications to the level set method have been
suggested for improving speed (e.g., multiresolution [4]) that were not employed in our
experiments. Although we did not employ these modifications to the level set method,
it seems unlikely that they would converge on real images as quickly as the proposed
method. Even if it were possible to modify the contour evolution approach to converge
after a few iterations to a good, low-energy solution, such an achievement would only
serve to make the modified level set approach roughly equivalent in performance to the
proposed approach, at the cost of additional complexity and optimization parameters.
The contour evolution approach would still not permit non-local movement of the con-
tour. Additionally, some modifications (e.g., multiresolution) could equally be applied
to improve the performance of both approaches.

Finally, we hope that this work has illustrated the idea that a reformulation of tradi-
tional (continuous) PDE approaches in terms of their analogous differential operators
on graphs (combinatorial operators) can permit the use of powerful combinatorial opti-
mization techniques that may more quickly find lower energy solutions when compared
to their standard level set counterparts. Although our primary motivation for reformu-
lating traditionally continuous energies in terms of combinatorial operators is to provide
faster, simpler, lower energy solutions capable of non-local movement of contours, it is
important to note that a graph-based formulation permits application of the same tech-
niques to more abstract domains, such as data clustering, mesh processing and space-
variant vision.
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