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Abstract. We present a closed form solution to the nonrigid shape and motion
(NRSM) problem from point correspondences in multiple perspective uncali-
brated views. Under the assumption that the nonrigid object deforms as a linear
combination of K rigid shapes, we show that the NRSM problem can be viewed
as a reconstruction problem from multiple projections from P

3K to P
2. There-

fore, one can linearly solve for the projection matrices by factorizing a multifocal
tensor. However, this projective reconstruction in P

3K does not satisfy the con-
straints of the NRSM problem, because it is computed only up to a projective
transformation in P

3K . Our key contribution is to show that, by exploiting alge-
braic dependencies among the entries of the projection matrices, one can upgrade
the projective reconstruction to determine the affine configuration of the points in
R

3, and the motion of the camera relative to their centroid. Moreover, if K ≥ 2,
then either by using calibrated cameras, or by assuming a camera with fixed in-
ternal parameters, it is possible to compute the Euclidean structure by a closed
form method.

1 Introduction

Structure from motion (SfM) refers to the problem of reconstructing a 3-D rigid scene
from multiple 2-D images taken by a moving camera. This is a well studied problem
in computer vision (see for instance [1,2]), which has found numerous applications
in image-based modeling, human-computer interaction, robot navigation, vision-based
control, etc.

A fundamental limitation of classical SfM algorithms is that they cannot be applied to
scenes containing nonrigid objects, such as scenes containing articulated motions, facial
expressions, hand gestures, etc. This has motivated the development of a family of meth-
ods where a moving affine calibrated camera observes a nonrigid shape that deforms
as a linear combination of K rigid shapes with time varying coefficients [3,4,5,6,7,8].
This assumption allows one to recover nonrigid shape and motion (NRSM) using ex-
tensions of the classical rigid factorization algorithm of Tomasi and Kanade [9]. For
instance, Bregler et al. [5] use multiple matrix factorizations to enforce orthonormal-
ity constraints on camera rotations. Brand [3] uses a non-linear optimization method
called flexible factorization. Torresani et al. [7] use a trilinear optimization algorithm
that alternates between the computation of shape bases, shape coefficients, and camera
rotations. Xiao et al. [8] provide a characterization of the space of ambiguous solu-
tions as well as a closed form solution by enforcing additional shape constraints on the
shape bases. Their solution not only applies to shapes of full rank three, but can also be
extended to degenerate rank one and two shapes, as shown in [10].

D. Forsyth, P. Torr, and A. Zisserman (Eds.): ECCV 2008, Part I, LNCS 5302, pp. 276–289, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Perspective Nonrigid Shape and Motion Recovery 277

An important assumption made by these approaches is that the projection model
is affine and the camera is calibrated. One way of extending affine methods to the
projective case is to alternate between the estimation of the projective depths and the
estimation of shape and motion, similarly to the Sturm and Triggs algorithm [11]. This
approach was indeed explored in [12] for the NRSM problem. However, it is well
known that iterative schemes are often very sensitive to initialization. In the rigid case
the projective depths can be initialized using algebraic methods based on two-view
geometry. In the nonrigid case, the situation is obviously not as straightforward, and
hence the method of [12] simply assumes the initial depths to be all equal to one. To the
best of our knowledge, the only existing algebraic solution to the perspective NRSM
problem can be found in [13], where it is shown that the problem is solvable for a num-
ber of views F in the range (3K + 1)/2 ≤ F ≤ (3K + 1). However, the algorithm for
computing shape and motion relies on the factorization of a quintifocal tensor, and is
applicable only in the case of two shape bases seen in five calibrated perspective views.

In this paper, we present a closed form solution to nonrigid shape and motion recov-
ery for an arbitrary number of shape bases K and an arbitrary number F of perspective
uncalibrated views in the range (3K + 1)/2 ≤ F ≤ (3K + 1). Our solution exploits
the fact that the NRSM problem can be viewed as a reconstruction problem from P

3K

to P
2 where the projection matrices have a particular structure. As shown in [14], the

camera projections associated with any reconstruction problem from P
n to P

m can be
computed in closed form from the factorization of a multifocal tensor. However, the
projection matrices computed by this method do not necessarily conform with the par-
ticular structure of the NRSM problem, because they are computed up to a projective
transformation in P

3K only. The main contribution of our work is to show that one can
solve for the projective transformation, and hence for the camera matrices, shape basis,
and shape coefficients, in closed form using linear algebraic techniques which do not
require the use of iteration. More specifically, we show that the NRSM problem can be
solved as follows:

1. Linearly compute a multifocal tensor from point correspondences in multiple views
of a nonrigid object.

2. Factorize the multifocal tensor into P
3K → P

2 projection matrices, defined up to a
common projective transformation of P

3K .
3. Compute a normalizing projective transformation by enforcing internal constraints

on the projection matrices.
4. Compute the camera matrices, shape basis and shape coefficients from the normal-

ized projection matrices.

Using this method, we find the following results, when the number of shape bases is
K ≥ 2.

1. The structure of the point set may be determined in each frame, up to an affine
transformation common to all frames. This is in contrast with the classic recon-
struction problem with a single shape basis, where the structure may be computed
only up to a projective transformation.

2. If the cameras are calibrated, or have constant internal parameters, then the Euclid-
ean shape may be determined by closed form or linear techniques.
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3. Since the points are potentially moving (within the space spanned by the K shape
bases), it is possible to determine the camera motion only relative to the moving
points, and up to an individual scaling in each frame. This is the only ambiguity of
the reconstruction (other than a choice of the affine or Euclidean coordinate frame).
If the points are assumed to be centred at the origin, then the camera motion is
uniquely determined apart from a scale within the affine or Euclidean coordinate
frame.

Paper Contributions. This paper gives the first non-iterative solution for the general
nonrigid perspective structure-from-motion problem. Because of the deterministic na-
ture of the algorithm, it is guaranteed to find the correct solution at least for noise-free
data. This is not the case with previous iterative algorithms. (For the difficulties in-
volved with such iterative methods, see for instance [15].) Further, our analysis allows
us to discover the fundamental ambiguities and limitations of NRSM, both in the affine
and perspective cases. Our results clarify and complete the previous results on the am-
biguities of affine NRSM given in [16,13].

2 Nonrigid Shape and Motion Problem

Notation. We make extensive use of the Kronecker or tensor product A ⊗ B, where A
and B are matrices. This tensor product is given by

A⊗ B =

⎡
⎢⎣

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

⎤
⎥⎦ ,

where the aij are the elements of A. A basic property is that (A⊗B) (C⊗D) = (AC)⊗(BD)
whenever the dimensions are compatible so that this equality makes sense. Conse-
quently, if A and B are square, then (A⊗ B)−1 = A−1 ⊗ B−1.

We use the notation stack(. . .) to represent the matrix or vector created by stacking
its arguments (matrices or vectors) vertically.

Bold font (X,x) is used to represent vectors (one-dimensional arrays) and typewriter
font (A, W, . . .) to represent matrices (two-dimensional arrays). Given a homogeneous
vector, such as x or X, the corresponding non-homogeneous vector is denoted with a
hat, such as x̂ or X̂. Notation such as Πa:b represents rows a to b of Π.

Finally, for inline representation of simple matrices, we use the notation [a, b ; c, d],
where the elements are listed in row major order, rows separated by a semi-colon.

Problem statement. Let {xfp ∈ P
2 | p = 1, . . . , P ; f = 1, . . . , F} be the perspective

projections of P (possibly moving) 3-D points {Xfp ∈ P
3} onto F frames from a

moving camera. Let Pf =
[
Mf tf

] ∈ R
3×4 be the camera matrix associated with frame

f . Then
λfpxfp = PfXfp, (1)
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where λfp is an unknown scale factor, called projective depth. It follows that

W =

⎡
⎢⎣

λ11x11 · · ·λ1P x1P

...
...

λF1xF1 · · ·λFP xFP

⎤
⎥⎦ =

⎡
⎢⎣
P1X1

...
PFXF

⎤
⎥⎦ , (2)

where Xf =
[
Xf1 Xf2 · · · XfP

] ∈ R
4×P is called the structure matrix and is formed

from the homogeneous coordinates of all the P points in the f -th frame.
The structure from motion problem (SfM) refers to the problem of recovering the

camera matrices Pf , and the structure matrices Xf from measurements of the image
point trajectories xfp. Without some restriction on the moving 3-D points, the SfM
problem is of course not solvable.

When the P points lie on a rigid stationary object, the structure matrices are equal,
that is X1 = X2 = · · · = XF = X. Hence, given the depths one can factorize W into
a motion matrix Π ∈ R

3F×4 and a structure matrix X ∈ R
4×P as W = ΠX. This rank

constraint has been the basis for all factorization-based algorithms, e.g. [9,11]. In fact,
one can solve the SfM problem by alternating between the estimation of the depths,
and the estimation of motion and structure [17], though care must be taken to avoid
converging to trivial solutions [15].

In this paper we study the case where the 3-D points lie on a nonrigid object, thereby
allowing the 3-D points Xfp to move as a function of time. As suggested in [3,4,5,6,7],
we assume that the P points deform as a linear combination of a fixed set of K rigid
shape bases with time varying coefficients. That is, X̂f =

∑K
k=1 cfkB̂k, where the

matrix X̂f = [X̂f1 · · · X̂fP ] ∈ R
3×P is the object shape at frame f , the matrices

{B̂k =
[
B̂k1 · · · B̂kP

] ∈ R
3×P } are the shape bases and {cfk ∈ R} are the shape

coefficients.
Under this deformation model, the projection equation (1) can be rewritten as a pro-

jection equation from P
3K to P

2 of the form

λfpxfp = Mf

K∑
k=1

(cfkB̂kp) + tf =
[
cf1Mf · · · cfKMf tf

]
⎡
⎢⎢⎢⎣

B̂1p

...
B̂Kp

1

⎤
⎥⎥⎥⎦ = ΠfBp. (3)

Therefore, the matrix of image measurements W in (2) can be factorized into the product
of a motion matrix Π ∈ R

3F×(3K+1) and a basis matrix B ∈ R
(3K+1)×P as

W =

⎡
⎢⎣

λ11x11 · · ·λ1P x1P

...
...

λF1xF1 · · ·λFP xFP

⎤
⎥⎦ =

⎡
⎢⎣

c11M1 · · · c1KM1 t1

...
...

...
cF1MF · · · cFKMF tF

⎤
⎥⎦

⎡
⎢⎢⎢⎣

B̂1

...
B̂K

1�

⎤
⎥⎥⎥⎦ = ΠB . (4)

Note that the motion matrix Π has the form Π = [diag(M1, . . . , MF )(C⊗I3) | t], where
t = stack(t1, . . . , tF ). Furthermore, given the factorization in this form, we may read
off the camera matrices Pf = [Mf | tf ] and the 3-D points from

stack(X̂1, . . . , X̂F ) = (C⊗ I3)stack(B̂1, . . . , B̂K) . (5)
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Note here, however, a basic ambiguity: the individual projection matrices can be de-
termined from Π only up to independent scale factors, since scaling Mf can be balanced
by a corresponding inverse scaling to the corresponding row of the coefficient matrix C.

Iterative methods. The rank constraint implied by (4) has been the basis for exist-
ing projective NRSM algorithms. As shown in [12], when the depths are known, the
shape coefficients and shape basis may be computed from the factorization of W using
a factorization technique similar to that in [8] for affine cameras. In [12], they solve the
perspective reconstruction problem by alternately solving for the depths and the shape
and motion parameters, in a similar way to [17]. In this paper, we seek an alternative
purely algebraic solution to the problem that does not rely on any iterative optimization.
In doing so, we are able to determine exactly what it is possible to compute uniquely,
and what are the unavoidable ambiguities.

3 Nonrigid Shape and Motion Recovery

In this section, we propose a closed form solution to the NRSM problem from mul-
tiple perspective views. The key to our approach is to observe from equation (3) that
the NRSM problem is a particular case of a reconstruction problem from P

3K to P
2.

This interpretation will allow us to solve directly for the motion matrix Π in (4) up to a
projective transformation in P

3K×3K , as we will show in §3.1. We will then propose an
extremely simple linear algorithm for recovering the unknown projective transforma-
tion, hence the original camera matrices in P

3×2, shape bases, and shape coefficients.

3.1 Recovery of the Projection Matrices P
3K → P

2

While factorization methods such as [9,18,8] are commonly used in affine reconstruc-
tion problems involving affine or orthographic cameras, they are not so useful for re-
construction from perspective cameras, since they require iterative estimation of the
depth values [11,17]. For such problems an alternative is to use tensor-based methods.
The standard methods used for rigid structure and motion problems involve the funda-
mental matrix, trifocal or quadrifocal tensors [1]. It was shown in [14] that these tensor
based methods can be extended to projections between projective spaces P

n and P
m of

arbitrary dimensions with n > m. We will rely heavily on this method. In the particular
case of relevance to the current problem, n = 3K and m = 2.

In brief, given a suitable number of projections P
n → P

m, we may compute a tensor
that relates the coordinates of matching image points xfp in P

m. This tensor may be
computed linearly, and from it the set of projection matrices Πf may be extracted using
non-iterative techniques. Subsequently, points Bp in P

n may be computed by triangu-
lation such that λfpxfp = ΠfBp. Here, points Bp and the corresponding image points
xfp are expressed in homogeneous coordinates and the λfp are unknown scale factors,
which do not need to be known for this reconstruction to be computed.

One may stack the projection matrices Πf as well as the points xfp on top of each
other and form an equation

W = stack(Π1, . . . , ΠF )[B1 . . .BP ] = ΠB , (6)
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which is of exactly the same form as the type of decomposition formulated in (4). It was
shown in [14] that this factorization ΠB is unique except for the (non-significant) mul-
tiplication of each of the camera matrices Πf by an arbitrary scale factor kf and except
for modifying ΠB to ΠAA−1B, where A ∈ R

(3K+1)×(3K+1) is an invertible matrix. This
is exactly analogous to the affine ambiguity inherent in affine factorization algorithms.
However, here the matrix A represents a projective transformation, since we are using
homogeneous coordinates. Thus, using tensors, we may achieve a similar factorization
in the projective case as that computed by linear methods in the affine case. The only
difference is that the number of views that may be used is restricted.

In the case of projective nonrigid motion, the image projection may be expressed as
Πf : P

3K → P
2 and a factorization W = ΠB may be computed from any number of

views between (3K + 1)/2 and 3K + 1 (see [13]) using the tensor method. However,
this does not produce a solution of the particular required form, given in (4) and it
is impossible to extract the individual P

3 → P
2 projection matrices immediately. We

need to do some more work to find a matrix A that transforms each Πf into the correct
form. However, as will be seen, we gain from this since the remaining ambiguity is only
affine or Euclidean (for calibrated cameras). Thus affine or Euclidean reconstruction is
possible. How we enforce the correct form on the projection matrices Πf will be the
main focus of the rest of this paper.

3.2 Recovery of the Projective Transformation

As a result of our analysis in the previous subsection, at this point we have computed a
projection matrix Π ∈ R

3F×(3K+1). Our task is to transform this projection matrix by a
matrix A ∈ R

(3K+1)×(3K+1) such that ΠA is of the form [diag(M1, . . . , MF )(C⊗ I3) | t]
given in (4). To that end, we use the following steps.

Step 1. We assume that the matrix Π is full rank and, without loss of generality, that
the top 3K × 3K block of Π is non-singular. Hence, if we multiply Π by A1, where
A−1
1 = [Π1:K ; 0�, 1], we arrive at a matrix of a new form in which

(ΠA1)1:K =
[
IK ⊗ I3 0

]
. (7)

At this point, the first K row-blocks (in the block-representation) of ΠA1 are of the
desired form, but the remaining rows may be arbitrary.

Step 2. We multiply the matrix ΠA1 by the block-diagonal matrix A2, given by A2 =
diag(MK+1,1, . . . , MK+1,K , 1)−1. Here the matrices MK+1,k, k = 1, . . . , K , are ob-
tained from the (K +1)-st row-block of ΠA1. Under a suitable assumption of genericity,
these matrices will be non-singular, as will be seen in the proof of Theorem 1 below.
This results in a matrix such that

(ΠA1A2)1:K+1 = diag(M1, . . . , MK , I3)
[
IK ⊗ I3 0
I3 · · · I3 tK+1

]
, (8)

where now the first K+1 row-blocks of ΠA1A2 are in the desired form and the (K+1)-st
row-block contains only identity matrices.

Step 3. We are left with enforcing that the remaining F − K − 1 row-blocks of ΠA1A2

have the desired algebraic structure by multiplying by a further matrix A3. In order to
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preserve the block diagonal structure of the top 3K × 3K block of ΠA1A2, we can only
multiply by a matrix A3 whose top 3K ×3K is also block diagonal. Therefore, we seek
a matrix A3 = [diag(N1, · · · , NK),0 ; s1

� · · · sK
�, 1]. In order for the (K + 1)-st

row-block to remain as identity matrices, it is easily verified that Nk = I3 − tK+1sk
�,

so we need only compute the values of each sk.
For some f > K + 1, let Mfk be the matrix in position (f, k) of ΠA1A2, and tf

be the vector in position (f, K + 1). By multiplication by A3, Mfk is transformed to
M′fk = Mfk(I3 − tK+1sk

�) + tfsk
�, which we may write as Mfk + vfksk

�, where
the only unknown is sk. Our requirement on the form of the resulting matrix ΠA1A2A3

is that for each f > K + 1 and k > 1 we have c−1
fk M

′
fk = c−1

f1 M
′
f1 for some coefficients

cfk. This leads to equations

c−1
fk (Mfk + vfksk

�) = c−1
f1 (Mf1 + vf1s1

�) (9)

in which the unknowns are the vectors s1, . . . , sK and the coefficients c−1
fk . Note that

these equations are not linear. However, they may be written in the form
cf1

cfk
(mfk + Vfksk) = mf1 + Vf1s1 (10)

for suitable known matrices Vf1, Vfk ∈ R
9×3 and vectors mf1,mfk ∈ R

9. Multiplying
this equation by a matrix Γfk ∈ R

5×9 such that Γfkmfk = 0 and ΓfkVfk = 0 leads
to 5(F − K)K linear equations in s1 of the form ΓfkVf1s1 = −Γfkmf1. Once s1 is
known, one may rearrange (9) so that the equations become linear in the remaining sk

and coefficients cfk/cf1. Notice that there are many alternative ways of solving the
equations in (9). Experimentation showed the the current method performs on par with
other techniques.

3.3 Recovery of the Camera Matrices and of the Nonrigid Shape

After applying the transformation A1A2A3 to Π, we obtain a matrix that is nominally
of the desired form Π′ = [diag(M1, . . . MF )(C ⊗ I3) | t]. Indeed, the first K + 1 row
blocks will be exactly of the desired form. However, because of measurement noise, the
remaining blocks, corresponding to projections Π′f , f = K + 2, . . . , F , will not be, so
we need to correct this.

Consider a fixed frame f > K + 1, and let Π′f = [Mf1, . . . , MfK | tf ]. This matrix
will be nominally of the form [cf1Mf , . . . , cfKMf | tf ], but will be corrupted by noise.
Each correspondence Mfk = cfkMf may be seen as a set of 9 bilinear equations in the
variables cfk and Mf . We arrange the entries of all the Mfk into a matrix E9×K , one
column for the entries of each Mfk. The set of all equations (for a fixed f ) may then
be written as E9×K = mfcf

� where cf
� = (cf1, . . . , cfK) and mf is the vector of

entries of the matrix Mf . We can then solve for mf and cf by computing the best rank-
1 approximation of E9×K . Vectors mf and cf are computed up to a reciprocal scale
ambiguity, which is all that is possible, as remarked previously.

By this method, we compute all Mf for f > K + 1 and the corresponding shape
coefficients cfk. The resulting matrix Π′′ will be exactly in the required true form. A
solution for the shape bases B and projective depths λfp is then obtained by linear
triangulation using equation (4). Finally, the nonrigid shape is given by X̂ = (C⊗ I3)B̂,
and the camera matrices are Pf = [Mf | tf ].
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4 Algorithm Justification

In the previous section, a method was given for transforming the matrix Π to the required
form given in (4). However, there is no justification given that the resulting camera
matrices and nonrigid shape will correspond to the ground truth. For instance, we did
not show that the equations in (9) have a unique solution for the vectors sk, hence the
matrix A3 may not be unique. In this section we show that, under suitable assumptions,
the resulting product ΠA1A2A3 is unique.

To that end, we make various definitions. A matrix Π = stack(Π1, . . . , ΠF ) is said to
be in true form if it is of the form [diag(M1, . . . , MK)(C⊗ I3) | t], where all matrices Mf

are invertible. A matrix is said to be in canonical form if it is of the form given in (8)
with tK+1 �= 0, and in true-canonical form if it satisfies both conditions. We now state
an important result.

Theorem 1. Let Π = stack(Π1, . . . , ΠF ) be a motion matrix, and assume that there
exists A such that ΠA is in true form. Subject to possible reordering of the rows Πf of
Π and under suitable assumptions of genericity, there exists a matrix A′ such that ΠA′

is in true-canonical form. Furthermore, the true-canonical form is unique (for a fixed
ordering of the rows Πf ).

The meaning of the assumption of genericity will be made clear in the proof. Broadly
speaking, it means that the motion of the camera is sufficiently general and independent
of the shape deformation, and that the shape space is indeed K-dimensional, spanned
by the K shape bases. In addition we assume that we can find K + 1 frames such that
no K of the corresponding shape matrices X̂f are linearly dependent. We will order the
frames so that these K + 1 frames are numbered 1, . . . , K + 1. The first K shapes will
serve as the K shape bases.

Granted the truth of this theorem, the algorithm in the previous section will lead to
the correct and unique solution. In particular, the matrix A3 used in step 3 must lead to a
solution in true-canonical form. Therefore, the set of linear equations solved will have
a unique solution.

The proof of Theorem 1 given here is of necessity brief. In a possible expanded
version of this paper we can give more details, and in particular an exact analysis of the
required genericity conditions.

Existence. For the existence part of the proof, it is clear that it is enough to show the
existence of a matrix A′ that transforms a true form matrix to one in true-canonical form.
The steps of the proof follow the steps 1–2 of the algorithm of §3.2, except that we start
with a matrix of the form Π = [diag(M1, . . . , MF )(C ⊗ I3) | t].

In the first step, the required transformation matrix will be of the form [ C1:K ⊗
I3, t1:K ; 0�, 1 ]−1. This will exist as long as C1:K is invertible, which is the generic
case, meaning that the shape matrices {X̂f | f = 1, . . . , K} span the complete shape
space. If not, then we can reorder the frames so that this is so.

After the first step, the matrix remains in true form. Therefore, row K + 1 will
be of the form ΠK+1 = [c1M, · · · , cKM, tK+1]. We require that tK+1 �= 0, other-
wise we rearrange the matrices Πf so that this is so. The transformation matrix A2 =
diag(c1M, · · · , cKM, 1)−1 will transfer the matrix into canonical form. Observe that M is
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invertible by our assumption that the matrix is in true form. If one of the ck is zero, this
means that the shape X̂K+1 at frame K + 1 is in a space spanned by a proper subset of
the shape bases B̂k, which we rule out by an appeal to genericity. Since we started with
a matrix in true form, after these two steps, the matrix is now in true-canonical form.
This completes the existence part of the proof.

Uniqueness. For the uniqueness part of the proof, consider a possible transforma-
tion A3, which transforms a matrix Π in true-canonical form to Π′ = ΠA3, also in true-
canonical form. By the same argument as in §3.2, the matrix A3 must be of the form
A3 = [diag(N1, · · · , NK),0 ; s1

� · · · sK
�, λ], with λ �= 0 and Nk = I3 − tK+1sk

�.
Applying this transform to the f -th row-block Πf = [cf1Mf , . . . , cfKMf , tf ] of Π, re-
sults in a new block with entries M′fk = cfkMf (I3− tK+1sk

�)+ tf sk
�. Since this new

row-block must be in true form, for any two indices 1 ≤ j, k ≤ K , there must exist
constants c′fk and c′fj such that c′−1

fk M
′
fk = c′−1

fj M
′
fj . This leads to

c′fj

(
cfkMf (I3−tK+1sk

�) + tfsk
�)

= c′fk

(
cfjMf (I3−tK+1sj

�) + tfsj
�)

, (11)

which may be rewritten as

(c′fjcfk − cfjc
′
fk)Mf = c′fk(tf − cfjMftK+1)sj

�− c′fj(tf − cfkMftK+1)sk
� . (12)

Since Mf is a matrix of rank 3, and the two terms on the right are of rank 1, this is
impossible, unless c′fjcfk − cfjc

′
fk = 0 and

cfj(tf − cfkMftK+1)sk
� = cfk(tf − cfjMftK+1)sj

�, (13)

where we have used the fact that cfj/cfk = c′fj/c′fk to replace c′fk by cfk. Since the
factorization of a rank-1 matrix is unique up to scaling the two factors, this relationship
means that one of the following conditions must be true.

1. tK+1 = 0. However, this is ruled out by hypothesis.
2. tf = 0. If this is so for all f > K +1 this implies that the position of these cameras

are dependent on the position of the first K cameras. This is not a generic camera
motion.

3. The vectors tf and MftK+1 are linearly dependent. However, if this is true for all
f > K + 1, then it implies that M−1

f tf is a multiple of tK+1. This is a non-generic

camera motion, since −M−1
f tf is the position of the camera at frame f .

4. Finally, if MftK+1 and tf are linearly independent, then in order for the vectors
tf −cfkMftK+1 and tf −cfjMftK+1 to differ only by a scale factor, it is necessary
that cfj = cfk. This means that the f -th row-block of Π must be of the form
Πf = [cfI3, cfI3, . . . , cfI3, tf ], with all the coefficients cfk the same along this
row. Apart from a constant scale, these are the same set of coefficients as for the
(K + 1)-st row-block, which means that the shape of the scene is the same for this
frame as for frame K +1. If this is true for all f > K +1, it implies that the object
has the same shape, and does not deform for all of the frames K + 1 to F .

If on the other hand, the deformation of the scene is generic, then none of the con-
ditions given above can be fulfilled. In this case the canonical form is uniquely deter-
mined. This concludes the proof.
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5 Affine and Euclidean Shape Reconstruction

Having established the correctness of the proposed reconstruction algorithm, we now
turn to the question of uniqueness of the reconstructed shapes. In particular, we show
that, even though there are ambiguities in the reconstruction of shape bases and shape
coefficients, the reconstructed shape is actually unique. Moreover, we will show that
when K ≥ 2, one recover the shape up to an affine transformation, which represents a
significant improvement with respect to the case K = 1, where one can only recover
the shape up to a projective transformation.

Affine Shape Reconstruction. As a consequence of the proof of the uniqueness result
of Theorem 1, if Π and Π′ are two matrices in true form, then they are related by Π′ = ΠA,
where A is some product of matrices of the form

A1 =
[
C′ ⊗ I3 0

0� 1

]
, A2 =

[
I3 ⊗ I3 t

0� 1

]
, A3 =

[
I3 ⊗ M 0
0� 1

]
(14)

(not the same as the matrices A1, A2, A3 in §3.2) and their inverses. Here C′ has dimen-
sion a K × K , and the product matrix A may be written as A = [C′ ⊗ M, t ; 0�, 1].

In the factorization of W = ΠB, the inverse transformations are applied to B. The first
of these transformations causes a change of the shape bases through linear combina-
tions. However, it does not change the shape of the points Xfp. To see this, observe that
the corresponding change to B̂ is to replace it by (C′ ⊗ I3)−1B̂. At the same time, the
coefficients in the representation (4) of Π are multiplied by C′. However, from (5) X is
unchanged by this operation, since X̂ = (C⊗ I3)B̂ = (C⊗ I3)(C′ ⊗ I3)(C′ ⊗ I3)−1B̂ so
the matrix (C′ ⊗ I3) cancels with its inverse, leaving X̂ unchanged.

The other two transformations effect an affine transformation of the shape bases. By
an application of the transformation A2 each of the shape bases may be translated so
that the points it consists of have their centroid at the origin. The resulting reconstruc-
tion will be called “centred”. Since each of the shape bases is centred at the origin,
so will the sets of points Xf at any other frame, since they are linear combinations
of the shape bases. If desired, the reconstruction ΠB may be centred by applying a
transformation Π → ΠA4 and B → A−1

4 B, where A−1
4 = [IK ⊗ I3,−w ; 0�, 1], and

ŵ = stack(ŵ1, . . . , ŵK) is made up of the centroids ŵk of the points B̂k1, . . . , B̂kP

in each shape basis B̂k. A centred reconstruction is unique up to a common linear trans-
formation of all of the shape bases and a corresponding transformation of each of the
camera matrices.

We see that the reconstruction is unique except for the following ambiguities.

1. Individual scaling applied to each frame independently, as pointed out in §2.
2. Individual translations of each of the shape bases. Thus, there is a K-fold trans-

lation ambiguity in the global reconstruction over all frames. This ambiguity may
be removed by computing a centred reconstruction, or by assuming that the first K
translations are zero. However, observe that the obtained translations do not neces-
sarily correspond to the ground truth.

3. An overall linear transformation. In the case of calibrated cameras, this is an overall
global rotation with respect to a global coordinate frame, which of course can not
be determined.
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Euclidean Shape Reconstruction. If the cameras are calibrated, we may assume that
they are of the form Pi = [Ri | − Riti], where each of the Ri is a rotation. In this case,
any initially computed motion matrix Π will be equivalent (under multiplication by A)
to a Euclidean true form motion matrix (4), meaning all the Mf are rotations. Further-
more, the details of the existence part of Theorem 1 show that Π is then equivalent to
a Euclidean true-canonical form matrix. Since the true-canonical form is unique, this
shows that Euclidean reconstruction is possible and unique. Furthermore, the algorithm
of §3 will naturally lead virtually without modification to the correct Euclidean solution.
The details are simple to verify.

Autocalibration. It is interesting and somewhat surprising that for K ≥ 2 our algo-
rithm gives an affine reconstruction even from uncalibrated cameras. This contrasts with
the rigid motion case (K = 1), where the reconstruction is only projective. It is easily
seen that the affine reconstruction is easily upgraded to a Euclidean reconstruction using
standard linear autocalibration techniques. Indeed in the standard method of stratified
reconstruction and autocalibration the upgrade from projective to affine reconstruction
is difficult, but to upgrade from affine to Euclidean, given mild assumptions on common
parameters of the cameras is simple and linear. Details may be found in [1].

6 Experiments

Synthetic Data. We first evaluate our algorithm on synthetically generated data. The
K = 2, 3 shape bases are generated by randomly drawing P 2-D points uniformly on
[−1, 1]×[−1, 1] and then scaling these points with a depth uniformly drawn in the range
of 100-400 units of focal length (u.f.l.). The shape coefficients are also randomly drawn
from a uniform distribution in [−1, 1]. The 3-D points are then generated by taking
a linear combination of the shape bases with the shape coefficients. These points are
rotated and translated according to rigid-body motions with a random axis of rotation
and a random direction of translation. F = 4 to 6 perspective views are obtained by
projecting these points onto an image with 1000 × 1000 pixels. Zero-mean Gaussian
noise with a standard deviation of σ ∈ [0, 2] pixels is added to the so-obtained point
correspondences.

We evaluate the accuracy of our algorithm with respect to four factors: amount of
noise, number of shape bases, number of frames, and number of point correspondences.
The performance measures are the angles between the estimated rotations and transla-
tions (M̂f , t̂f ) and the ground truth (Mf , tf ),

θM =
1
F

F∑
f=1

arccos
(
(trace(M̂

�
f Mf ) − 1)/2

)
, θt =

1
F − K

F∑
f=K+1

arccos
(
t̂
�
f tf

)
,

averaged over 1000 trials. Note that, due to the reconstruction ambiguities, we assume
that the first K translations are zero. Moreover, recall that the remaining translations
are computed up to one scale factor per frame, hence the choice of the angle between
the true and estimated translation as an error measure.

Figure 1 shows average error versus amount of noise plots for several choices of
the parameters. The number of points is chosen either as P = 200, or as twice the
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minimum number of points needed to reconstruct the multifocal tensor, i.e., P ≥
3F /

∏F
f=1(3 − πf ), where πf ∈ {1, 2} defines the tensor profile for the f -th frame.

As expected, the error increases with the amount of noise and reduces with the num-
ber of points correspondences. However, the error does not necessarily reduce as the
number of frames increases. When K = 2, this can be seen by comparing the curves
for (F, P ) = (4, 200) and (F, P ) = (4, 82), with those for (F, P ) = (5, 200) and
(F, P ) = (5, 62), respectively. This is because the number of unknowns in the mul-
tifocal tensor increases exponentially with the number of frames, and a number of
nonlinear constraints on the entries of the tensor are neglected when computing and
factorizing this tensor using linear techniques. Notice also by comparing the curves for
(K, F, P ) = (2, 5, 62) and (K, F, P ) = (3, 5, 486) that the error reduces as the num-
ber of shape bases increases. However, the improvement comes at the cost of increasing
the number of points needed. Indeed, when the number of points is increased from 62
to 200, the performances for (K, F ) = (2, 5) and (K, F ) = (3, 5) are comparable.
Finally, notice also that the best existing affine algorithm by Xiao et al. [8] does not
perform well on perspective data. This algorithm requires a minimum of F ≥ K2 + K
images, so we only evaluate it for (K, F ) = (2, 6). Our algorithm, on the other hand,
requires a minimum number of frames of F ≥ (3K + 1)/2.

Fig. 1. Reconstruction errors as a function of noise, number of shape basis, number of frames,
and number of point correspondences

Real Data. We now test the performance of our algorithm on a video sequence con-
taining two hands moving in front of a static background shown in Fig. 2. The sequence
is taken from [13], and consists of F = 5 views taken by a moving camera observing
8 points on the static background and another 32 points on the gesturing hands. The 8-
point algorithm was used to compute the ground truth camera motion from the 8 static
points. We then applied our algorithm and the algebraic algorithm of [13] for K = 2
shape basis and F = 5 views. We chose the first image as the reference. The errors in
the estimation of the rotations are shown in Table 6. Note that our algorithm outper-
forms that in [13] for 3 out of 4 frames. Translation errors are not computed, as with
real sequences one cannot assume zero translations for the first K frames.
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Fig. 2. Frames 1-5 of a sequence of gesturing hands used in [13]

Table 1. Errors in the estimation of the rotations for a sequence of gesturing hands

Frame 2 3 4 5
Quintifocal method [13] 0.1644◦ 5.9415◦ 2.5508◦ 54.5860◦

Our method 5.5174◦ 0.6773◦ 0.1642◦ 27.1583◦

7 Discussion and Conclusions

We have presented several theoretical results pertaining to the nonrigid shape and mo-
tion problem from multiple perspective views. Most notably, we have shown that a
highly multilinear problem admits a closed form, linear solution. Furthermore, we high-
lighted several similarities and differences between the rigid and nonrigid case.

While our theoretical framework does provide an algorithm for solving the recon-
struction problem, we did not explore algorithmic aspects in this paper, such as robust-
ness to noise or outliers. The reader can see that our proposed method is very simple,
involving essentially a series of matrix multiplications. Each one of those steps can be
made robust. We argue that the real bottleneck with the current method is not in our ap-
proach, but rather in the tensor estimation and factorization approach of [14]. Improving
on the robustness of these methods is an interesting avenue for future research.
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