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Abstract. This paper improves recent methods for large scale image
search. State-of-the-art methods build on the bag-of-features image rep-
resentation. We, first, analyze bag-of-features in the framework of ap-
proximate nearest neighbor search. This shows the sub-optimality of
such a representation for matching descriptors and leads us to derive
a more precise representation based on 1) Hamming embedding (HE)
and 2) weak geometric consistency constraints (WGC). HE provides bi-
nary signatures that refine the matching based on visual words. WGC
filters matching descriptors that are not consistent in terms of angle and
scale. HE and WGC are integrated within the inverted file and are effi-
ciently exploited for all images, even in the case of very large datasets.
Experiments performed on a dataset of one million of images show a
significant improvement due to the binary signature and the weak geo-
metric consistency constraints, as well as their efficiency. Estimation of
the full geometric transformation, i.e., a re-ranking step on a short list of
images, is complementary to our weak geometric consistency constraints
and allows to further improve the accuracy.

1 Introduction

We address the problem of searching for similar images in a large set of images.
Similar images are defined as images of the same object or scene viewed under
different imaging conditions, cf. Fig. [l for examples. Many previous approaches
have addressed the problem of matching such transformed images [TU2I314lJ5].
They are in most cases based on local invariant descriptors, and either match
descriptors between individual images or search for similar descriptors in an
efficient indexing structure. Various approximate nearest neighbor search algo-
rithms such as kd-tree [I] or sparse coding with an overcomplete basis set [6]
allow for fast search in small datasets. The problem with these approaches is
that all individual descriptors need to be compared to and stored.

In order to deal with large image datasets, Sivic and Zisserman [4] introduced
the bag-of-features (BOF) image representation in the context of image search.
Descriptors are quantized into visual words with the k-means algorithm. An im-
age is then represented by the frequency histogram of visual words obtained by
assigning each descriptor of the image to the closest visual word. Fast access to
the frequency vectors is obtained by an inverted file system. Note that this ap-
proach is an approximation to the direct matching of individual descriptors and
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somewhat decreases the performance. It compares favorably in terms of memory
usage against other approximate nearest neighbor search algorithms, such as the
popular Euclidean locality sensitive hashing (LSH) [7I]]. LSH typically requires
100-500 bytes per descriptor to index, which is not tractable, as a one million
image dataset typically produces up to 2 billion local descriptors.

Some recent extensions of the BOF approach speed up the assignment of indi-
vidual descriptors to visual words [5l9] or the search for frequency vectors [TO/TT].
Others improve the discriminative power of the visual words [12], in which case
the entire dataset has to be known in advance. It is also possible to increase
the performance by regularizing the neighborhood structure [I0] or using mul-
tiple assignment of descriptors to visual words [T0[T3] at the cost of reduced
efficiency. Finally, post-processing with spatial verification, a re-occurring tech-
nique in computer vision [I], improves the retrieval performance. Such a post-
processing was recently evaluated in the context of large scale image search [9].

In this paper we present an approach complementary to those mentioned
above. We make the distance between visual word frequency vectors more sig-
nificant by using a more informative representation. Firstly, we apply a Hamming
embedding (HE) to the descriptors by adding binary signatures which refine the
visual words. Secondly, we integrate weak geometric consistency (WGC) within
the inverted file system which penalizes the descriptors that are not consistent in
terms of angle and scale. We also use a-priori knowledge on the transformations
for further verification.

This paper is organized as follows. The interpretation of a BOF representation
as a an image voting system is given in Section [2l Our contributions, HE and
WGC, are described in sections[Bland[dl Complexity issues of our approach in the
context of an inverted file system are discussed in Section Bl Finally, Section
presents the experimental results.

2 Voting Interpretation of Bag-of-Features

In this section, we show how image search based on BOF can be interpreted
as a voting system which matches individual descriptors with an approximate
nearest neighbor (NN) search. We then evaluate BOF from this perspective.

2.1 Voting Approach

Given a query image represented by its local descriptors y;; and a set of database
images 7, 1 < i < n, represented by its local descriptors z; j, a voting system
can be summarized as follows:

1. Dataset images scores s; are initialized to 0.
2. For each query image descriptor y;» and for each descriptor x; ; of the dataset,
increase the score s; of the corresponding image by

sj =85+ f(xij,Yir), (1)
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where f is a matching function that reflects the similarity between descrip-
tors z; j and y;. For a matching system based on e-search or k—NN, f(.,.)
is defined as

fo(y) = {1 if d(z,y) <e

0 otherwise

1 if x is a k-NN of y
0 otherwise
(2)

where d(.,.) is a distance (or dissimilarity measure) defined on the descriptor
space. SIFT descriptors are typically compared using the Euclidean distance.

3. The image score s7 = g; (sj) used for ranking is obtained from the final s;.
It can formally be written as

si=gi | D D flwgu) |- 3)

i'=1..m’"i=1..m;

Sonn(z,y) = {

The simplest choice is s} = s;. In this case the score reflects the number of
matches between the query and each database image. Note that this score
counts possible multiple matches of a descriptor. Another popular choice is to
take into account the number of image descriptors, for example s = s; /m;.
The score then reflects the rate of descriptors that match.

2.2 Bag-of-Features: Voting and Approximate NN Interpretation

Bag-of-features (BOF) image search uses descriptor quantization. A quantizer g
is formally a function

q:R?— [1,K]

x = q(x)

(4)

that maps a descriptor z € R? to an integer index. The quantizer ¢ is often
obtained by performing k-means clustering on a learning set. The resulting cen-
troids are also referred to as wvisual words. The quantizer ¢(z) is then the index
of the centroid closest to the descriptor z. Intuitively, two descriptors z and y
which are close in descriptor space satisfy ¢(z) = ¢(y) with a high probability.
The matching function f, defined as

fq(xall) = 6q($)¢1(y)7 (5)

allows the efficient comparison of the descriptors based on their quantized index.
Injecting this matching function in (@) and normalizing the score by the number
of descriptors of both the query image and the dataset image j, we obtain

1 m, my;
5 = S D Sdmawn = D (6)
m; m' L R moomy
i'=1..m' i=1..m; I=1..k

where m; and m; ; denote the numbers of descriptors, for the query and the
dataset image j, respectively, that are assigned to the visual word [. Note that
these scores correspond to the inner product between two BOF vectors. They
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are computed very efficiently using an inverted file, which exploits the sparsity
of the BOF, i.e., the fact that dq(s, ;),q(y,,) = 0 for most of the (i, j,i") tuples.

At this point, these scores do not take into account the tf-idf weighting scheme
(see [] for details), which weights the visual words according to their frequency:
rare visual words are assumed to be more discriminative and are assigned higher
weights. In this case the matching function f can be defined as

fetsae(z, y) = (EE4AE (9(9)))? Sg(a).a0) s (7)

such that the tf-idf weight associated with the visual word considered is applied
to both the query and the dataset image in the BOF inner product. Using
this new matching function, the image scores s; become identical to the BOF
similarity measure used in [4]. This voting scheme normalizes the number of votes
by the number of descriptors (L; normalization). In what follows, we will use the
Ls normalization instead. For large vocabularies, the Lo norm of a BOF is very
close to the square root of the L; norm. In the context of a voting system, the
division of the score by the Ly norm is very similar to s = s;/,/m;, which is a

J
compromise between measuring the number and the rate of descriptor matches.

2.3 Weakness of Quantization-Based Approaches

Image search based on BOF combines the advantages of local features and of
efficient image comparison using inverted files. However, the quantizer reduces
significantly the discriminative power of the local descriptors. Two descriptors
are assumed to match if they are assigned the same quantization index, i.e.,
if they lie in the same Voronoi cell. Choosing the number of centroids k is a
compromise between the quantization noise and the descriptor noise.

Fig. [M(b) shows that a low value of k leads to large Voronoi cells: the prob-
ability that a noisy version of a descriptor belongs to the correct cell is high.

Fig. 1. Illustration of k-means clustering and our binary signature. (a) Fine clustering.
(b) Low k and binary signature: the similarity search within a Voronoi cell is based
on the Hamming distance. Legend: -=centroids, 0=descriptor, x=noisy versions of the
descriptor.
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However, this also reduces the discriminative power of the descriptor: different
descriptors lie in the same cell. Conversely, a high value of k provides good preci-
sion for the descriptor, but the probability that a noisy version of the descriptor
is assigned to the same cell is lower, as illustrated in Fig. [[(a).

We have measured the quality of the approximate nearest neighbor search
performed by BOF in terms of the trade-off between (a) the average recall for
the ground truth nearest neighbor and (b) the average rate of vectors that match
in the dataset. Clearly, a good approximate nearest neighbor search algorithm
is expected to make the nearest neighbor vote with high probability, and at
the same time arbitrary vectors vote with low probability. In BOF, the trade-
off between these two quantities is managed by the number k of clusters. For
the evaluation, we have used the approximate nearest neighbor evaluation set
available at [I4]. It has been generated using the affine covariant features program
of [I5]. A one million vector set to be searched and a test query set of 10000
vectors are provided. All these vectors have been extracted from the INRIA
Holidays image dataset described in Section

One can see in Fig.[2 that the performance of BOF as an approximate nearest
neighbor search algorithm is of reasonable accuracy: for £ = 1000, the NN recall
is of 45% and the proportion of the dataset points which are retrieved is of 0.1%.
One key advantage of BOF is that its memory usage is much lower than concur-
rent approximate nearest neighbor search algorithms. For instance, with 20 hash
functions the memory usage of LSH [7] is of 160 bytes per descriptors compared
to about 4 bytes for BOF. In next section, we will comment on the other curves
of Fig.[2l which provide a much better performance than standard BOF.

(),7\HI\HI\HI\HI\HI\HY\

NN recall

ol - - " .
le-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1
rate of points retrieved (=1-filtering rate)

Fig. 2. Approximate nearest neighbor search accuracy of BOF (dashed) and Hamming
Embedding (plain) for different numbers of clusters k¥ and Hamming thresholds hy
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3 Hamming Embedding of Local Image Descriptors

In this section, we present an approach which combines the advantages of a
coarse quantizer (low number of centroids k) with those of a fine quantizer
(high k). It consists in refining the quantized index ¢(x;) with a dj-dimensional
binary signature b(z;) = (b1(x;),...,ba,(x;)) that encodes the localization of
the descriptor within the Voronoi cell, see Fig. [[((b). It is designed so that the
Hamming distance
B, b)) = S Gnern) (8)
1<i<d,

between two descriptors  and y lying in the same cell reflects the Euclidean
distance d(z, y). The mapping from the Euclidean space into the Hamming space,
referred to as Hamming Embedding (HE), should ensure that the Hamming
distance h between a descriptor and its NNs in the Fuclidean space is small.

Note that this significantly different from the Euclidean version of LSH (E2LSH)
[7U8], which produces several hash keys per descriptor. In contrast, HE implicitly
defines a single partitioning of the feature space and uses the Hamming metric
between signatures in the embedded space.

We propose in the following a binary signature generation procedure. We
distinguish between 1) the off-line learning procedure, which is performed on a
learning dataset and generates a set of fixed values, and 2) the binary signature
computation itself. The offline procedure is performed as follows:

1. Random matrix generation: A d; x d orthogonal projection matrix P is
generated. We randomly draw a matrix of Gaussian values and apply a QR
factorization to it. The first d;, rows of the orthogonal matrix obtained by
this decomposition form the matrix P.

2. Descriptor projection and assignment: A large set of descriptors x; from
an independent dataset is projected using P. These descriptors (21, ..., Zid, )
are assigned to their closest centroid g(z;).

3. Median values of projected descriptors: For each centroid ! and each
projected component h =1, ...,dp, we compute the median value 7, of the
set {zin|q(z;) = I} that corresponds to the descriptors assigned to the cell [.

The fixed projection matrix P and k x d; median values 73 are used to
perform the HE of a given descriptor = by:

1. Assigning x to its closest centroid, resulting in ¢(x).

2. Projecting x using P, which produces a vector z = Px = (21, ..., 2a,)-
3. Computing the signature b(z) = (b1 (x),...,bq,(2)) as
o 1 if z; > Tq(x),is
biz) = {0 otherwise. 9)

At this point, a descriptor is represented by ¢(z) and b(x). We can now define
the HE matching function as

fuan( 1) = {(t)f-idf(fJ(fv)) ;ftﬁ((:rfgv ;eq(y) and h (b(z), b(y)) < he (10)
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rate of 5S—-NN retrieved

rate of descriptors retrieved

: : : : : 16 bits ~-*
: : : : : 32 bits - B--
5-NN - ©— : : : 64 bits —+—
all descriptprs X ; ; ; 128 bifs X
: ol
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Hamming distance threshold h; rate of cells points retrieved

Fig. 3. Filtering effect of HE on the descriptors within a cell and on the 5 NNs. Left:
trade-off between the rate of cell descriptors and the rate of NN that are retrieved for
dp = 64. Right: impact of the number of bits d of the binary signature length.

where h is the Hamming distance defined in Eqn. 9 and h; is a fixed Hamming
threshold such that 0 < h; < dp. It has to be sufficiently high to ensure that
the Euclidean NNs of z match, and sufficiently low to filter many points that
lie in a distant region of the Voronoi cell. Fig. B] depicts this compromise. The
plots have been generated by analyzing a set of 1000 descriptors assigned to the
same centroid. Given a descriptor « we compare the rate of descriptors that are
retrieved by the matching function to the rate of 5-NN that are retrieved.

The left plot shows that the choice of an appropriate threshold h; (here be-
tween 20 and 30) ensures that most of the cell’s descriptors are filtered and that
the descriptor’s NNs are preserved with a high probability. For instance, setting
hy = 22 filters about 97% of the descriptors while preserving 53% of the 5-NN.
A higher value h; = 28 keeps 94% of the 5-NN and filters 77% of the cell descrip-
tors. Fig. Bl(right) represents this trade-off for different binary signature lengths.
Clearly, the longer the binary signature dj, the better the HE filtering quality.
In the following, we have fixed d;, = 64, which is a good compromise between
HE accuracy and memory usage (8 bytes per signature).

The comparison with standard BOF shows that the approximate nearest
neighbor search performed by BOF+HE is much better, see Fig. 2 Using HE
for the same number of vectors that are retrieved, increases the probability that
the NN is among these voting vectors.

4 Large-Scale Geometric Consistency

BOF based image search ranks the database images without exploiting geomet-
ric information. Accuracy may be improved by adding a re-ranking stage [9]
that computes a geometric transformation between the query and a shortlist of
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dataset images returned by the BOF search. To obtain an efficient and robust
estimation of this transformation, the model is often kept as simple as possi-
ble [TI9]. In [I] an affine 2D transformation is estimated in two stages. First, a
Hough scheme estimates a transformation with 4 degrees of freedom. Each pair
of matching regions generates a set of parameters that “vote” in a 4D histogram.
In the second stage, the sets of matches from the largest bins are used to estimate
a finer 2D affine transform. In [9] further efficiency is obtained by a simplified
parameter estimation and an approximate local descriptor matching scheme.

Despite these optimizations, existing geometric matching algorithms are costly
and cannot reasonably be applied to more than a few hundred images. In this
section, we propose to exploit weak, i.e., partial, geometrical information without
explicitly estimating a transformation mapping the points from an image to
another. The method is integrated into the inverted file and can efficiently be
applied to all images. Our weak geometric consistency constraints refine the
voting score and make the description more discriminant. Note that a re-ranking
stage [9] can, in addition, be applied on a shortlist to estimate the full geometric
transformation. It is complementary to the weak consistency constraints (see
Section [B).

4.1 Weak Geometrical Consistency

The key idea of our method is to verify the consistency of the angle and scale
parameters for the set of matching descriptors of a given image. We build upon
and extend the BOF formalism of ([l by using several scores s; per image. For a
given image j, the entity s; then represents the histogram of the angle and scale
differences, obtained from angle and scale parameters of the interest regions of
corresponding descriptors. Although these two parameters are not sufficient to
map the points from one image to another, they can be used to improve the
image ranking produced by the inverted file. This is obtained by modifying the
update step of () as follows:

sj(aavas) = Sj((saa(ss)"_f('ri,jayi’)a (11)

where §, and J, are the quantized angle and log-scale differences between the
interest regions. The image score becomes

si=g ( max sj(amas)> . (12)

ay0s

The motivation behind the scores of (IZ) is to use angle and scale information
to reduce the scores of the images for which the points are not transformed by
consistent angles and scales. Conversely, a set of points consistently transformed
will accumulate its votes in the same histogram bin, resulting in a high score.

Experimentally, the quantities §, and Js have the desirable property of be-
ing largely independent: computing separate histograms for angle and scale is as



312 H. Jegou, M. Douze, and C. Schmid

precise as computing the full 2D histogram of (II]). In this case two histograms
s and s} are separately updated by

S?’(éa) = 8?<6a) + f(‘ri;j’ yi/)’ (13)
5; 59) = 3;(69) + f(xi,ja yl')

The two histograms can be seen as marginal probabilities of the 2D histogram.
Therefore, the final score

a s

si=g (min (r%ax 7(6,), max s;(as))) (14)

is a reasonable estimate of the maximum of ([I2)). This approximation will be used
in the following. It significantly reduces the memory and CPU requirements. In
practice, the histograms are smoothed by a moving average to reduce the angle
and log-scale quantization artifacts. Note that the translation could be theoret-
ically included in WGC. However, for a large number of images, the number of
parameters should be in fewer than 2 dimensions, otherwise the memory and
CPU costs of obtaining the scores would not be tractable.

4.2 Injecting a Priori Knowledge

We have experimentally observed that the repartition of the angle difference §,
is different for matching and non-matching image pairs: the angle difference for
the matching points follows a non-uniform repartition. This is due to the human
tendency to shoot either in “portrait” or “landscape” mode. A similar bias is ob-
served for ds: image pairs with the same scale (65 = 0) are more frequent. We use
the orientation and scale priors to weight the entries of our histograms before ex-
tracting their maxima. We have designed two different orientation priors: “same
orientation” for image datasets known to be shot with the same orientation (i.e.
Oxford) and “m/2 rotation” for more general bases (i.e. Holidays).

5 Complexity

Both HE and WGC are integrated in the inverted file. This structure is usually
implemented as an array that associates a list of entries with each visual word.
Each entry contains a database image identifier and the number of descriptors of
this image assigned to this visual word. The tf-idf weights and the BOF vector
norms can be stored separately. The search consists in iterating over the entries
corresponding to the visual words in the query image and in updating the scores
accordingly.

An alternative implementation consists in storing one entry per descriptor in
the inverted list corresponding to a visual word instead of one entry per image.
This is almost equivalent for very large vocabularies, because in this case multiple
occurrences of a visual word on an image are rare, i.e., it is not necessary to store
the number of occurrences. In our experiments, the overall memory usage was
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Table 1. Inverted file memory usage and query time per image for a quad-core

descriptor memory usage time per query image (FlickrlM dataset)

image id 21 bits k = 20000 & = 200000

orientation 6 bits compute descriptors 0.88 s

log-scale 5 bits quantization + binary signature 0.36 s 0.60 s

binary signature 64 bits search, baseline 2.74 s 0.62 s
WGC 4 bytes search, WGC 10.19 s 211 s

total HE 12 bytes search, HE 1.16 s 0.20 s
WGCHHE 12 bytes search, HE4+WGC 1.82's 0.65 s

not noticeably changed by this implementation. This implementation is required
by HE and WGC, because additional information is stored per local descriptor.

HE impact on the complexity: For each inverted file entry, we compute the
Hamming distance between the signature of the query and that of the database
entry. This is done efficiently with a binary xor operation. Entries with a distance
above h; are rejected, which avoids the update of image scores for these entries.
Note that this occurs for a fair rate of entries, as shown in Fig.

WGC impact on the complexity: WGC modifies the score update by ap-
plying ([[3) instead of (). Hence, two bins are updated, instead of one for a
standard inverted file. The score aggregation as well as histogram smoothing
have negligible computing costs. With the tested parameters, see Table [If(left),
the memory usage of the histogram scores is 128 floating point values per image,
which is small compared with the inverted lists.

Runtime: All experiments were carried out on 2.6 GHz quad-core computers.
As the new inverted file contains more information, we carefully designed the
size of the entries to fit a maximum 12 bytes per point, as shown in Table[(left).

Table [M(right) summarizes the average query time for a one million image
dataset. We observe that the binary signature of HE has a negligible computa-
tional cost. Due to the high rate of zero components of the BOF for a visual
vocabulary of k& = 200000, the search is faster. Surprisingly, HE reduces the
inverted file query time. This is because the Hamming distance computation
and thresholding is cheaper than updating the scores. WGC reduces the speed,
mostly because the histograms do not fit in cache memory and their memory
access pattern is almost random. Most interestingly the search time of HE +
WGC is comparable to the inverted file baseline. Note that for £ = 200000 vi-
sual words, the assignment uses a fast approximate nearest neighbor search, i.e.,
the computation is not ten times slower than for & = 20000, which here uses
exhaustive search.

6 Experiments

We perform our experiments on two annotated datasets: our own Holidays dataset,
see Fig.[Bl and the Oxford5k dataset. To evaluate large scale image search we
also introduce a distractor dataset downloaded from Flickr. For evaluation we
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use mean average precision (mAP) [9], i.e., for each query image we obtain a
precision/recall curve, compute its average precision and then take the mean
value over the set of queries. Descriptors are obtained by the Hessian-Affine
detector and the SIFT descriptor, using the software of [I5] with the default
parameters. Clustering is performed with k-means on the independent Flickr60k
dataset. The number of clusters is specified for each experiment.

6.1 Datasets

In the following we present the different datasets used in our experiments.

Holidays (1491 images, 4.456M descriptors, 500 queries). We have collected
a new dataset which mainly contains personal holiday photos. The remaining
ones were taken on purpose to test the robustness to various transformations:
rotations, viewpoint and illumination changes, blurring, etc. The dataset includes
a very large variety of scene types (natural, man-made, water and fire effects,
etc) and images are of high resolution. The dataset contains 500 image groups,
each of which represents a distinct scene. The first image of each group is the
query image and the correct retrieval results are the other images of the group.
The dataset is available at [14].

Oxford5k (5062 images, 4.977M descriptors, 55 queries). We also used the Ox-
ford dataset [9]. The images represent Oxford buildings. All the dataset images
are in “upright” orientation because they are displayed on the web.

Flickr60k (67714 images, 140M descriptors) and FlickrlM (1M images,
2072M descriptors). We retrieved arbitrary images from Flickr and built two
distinct sets: Flickr60k is used to learn the quantization centroids and the HE
parameters (median values). For these tasks we have used respectively 5M and
140M descriptors. Flickr1M are distractor images for large scale image search.
Compared to Holidays, the Flickr datasets are slightly biased, because they in-
clude low-resolution images and more photos of humans.

Table 2. Results for Holidays and Ozford datasets. mAP scores for the baseline, HE,
WGC and HE4+WGC. Angle prior: same orientation for Ozford, 0,7/2, 7 and 37/2 ro-
tations for Holidays. Vocabularies are generated on the independent Flickr60K dataset.

Parameters Holidays Oxford
HE: h, WGC k= 20000 k = 200000 k£ = 20000 k = 200000

baseline 0.4463 0.5488 0.3854 0.3950
HE 20 0.7268 0.7093 0.4798 0.4503
HE 22 0.7181 0.7074 0.4892 0.4571
HE 24 0.6947 0.7115 0.4906 0.4585
HE 26 0.6649 0.6879 0.4794 0.4624
WGC no prior 0.5996 0.6116 0.3749 0.3833
WGC with prior 0.6446 0.6859 0.4375 0.4602

HE4+WGC 20 with prior 0.7391 0.7328 0.5442 0.5096
HE+WGC 22  with prior 0.7463 0.7382 0.5472 0.5217
HE4+WGC 24  with prior 0.7507 0.7439 0.5397 0.5252
HE4+WGC 26  with prior 0.7383 0.7404 0.5253 0.5275
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Impact of the clustering learning set. Learning the visual vocabulary on a
distinct dataset shows more accurately the behavior of the search in very large
image datasets, for which 1) query descriptors represent a negligible part of
the total number of descriptors, and 2) the number of visual words represents
a negligible fraction of the total number of descriptors. This is confirmed by
comparing our results on Oxford to the ones of [9], where clustering is performed
on the evaluation set. In our case, i.e., for a distinct visual vocabulary, the
improvement between a small and large k is significantly reduced when compared
to [9], see first row of Table

6.2 Evaluation of HE and WGC

INRIA Holidays and Oxford building datasets: Table[2l compares the pro-
posed methods with the standard BOF baseline. We can observe that both HE
and WGC result in significant improvements. Most importantly, the combination
of the two further increases the performance.

Large scale experiments: Fig. ] shows an evaluation of the different ap-
proaches for large datasets, i.e., we combined the Holidays dataset with a vary-
ing number of images from the 1M Flickr dataset. We clearly see that the gain
of the variant WGC + HE is very significant. In the case of WGC + HE the
corresponding curves degrade less rapidly when the number of images in the
database increases. Results for various queries are presented in Fig. [l We can
observe that HE and WGC improve the quality of the ranking significantly. Ta-
ble ] measures this improvement. It gives the rate of true positives that are in
a shortlist of 100 images. For a dataset of one million images, the baseline only

mAP
mAP

o C X
0.1 WGC+HE - O | 0.1 e WGCE &
| WGC+HE+re—janking — ¢ - i WGC+HE+re-ranking — ¢ -

10000

100000

database size

1000000

"baseline —+— |
WG

10000 100000
database size

1000000

k = 20000 k = 200000

Fig. 4. Performance of the image search as a function of the dataset size for BOF,
WGC, HE (h: = 22), WGCH+HE, and WGC+HE+re-ranking with a full geometrical
verification (shortlist of 100 images). The dataset is Holidays with a varying number
of distractors from FlickriM.
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query correct results and their ranks

baseline 49563
WGC 7114
HE 30657
Y HE+WGC 22036
re-ranked 22036
baseline 247839
WGC 2359
HE 9
HE+WGC 5
= re-ranked 3

Fig. 5. Queries from the Holidays dataset and some corresponding results for Holi-
days+1M distractors from Flickr1M

Table 3. Holidays dataset + FlickriM: Rate of true positives as a function of the
dataset size for a shortlist of 100 images, k = 200000

dataset size 991 10991 100991 1000991
BOF 0.673 0.557 0.431 0.306
WGC+HE 0.855 0.789 0.708 0.618

returns 31% of the true positive, against 62% for HE4+WGC. This reflects the
quality of the shortlist that will be considered in a re-ranking stage.

Re-ranking: The re-ranking is based on the estimation of an affine transforma-
tion with our implementation of [I]. Fig. @ also shows the results obtained with
a shortlist of 100 images. We can observe further improvement, which confirms
the complementary of this step with WGC.

7 Conclusion

This paper has introduced two ways of improving a standard bag-of-features
representation. The first one is based on a Hamming embedding which provides
binary signatures that refine visual words. It results in a similarity measure
for descriptors assigned to the same visual word. The second is a method that
enforces weak geometric consistency constraints and uses a priori knowledge
on the geometrical transformation. These constraints are integrated within the
inverted file and are used for all the dataset images. Both these methods im-
prove the performance significantly, especially for large datasets. Interestingly,
our modifications do not result in an increase of the runtime.
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