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Abstract. As part of an architectural modeling project, this paper in-
vestigates the problem of understanding and manipulating images of
buildings. Our primary motivation is to automatically detect and seam-
lessly remove unwanted foreground elements from urban scenes. With-
out explicit handling, these objects will appear pasted as artifacts on the
model. Recovering the building facade in a video sequence is relatively
simple because parallax induces foreground/background depth layers,
but here we consider static images only. We develop a series of methods
that enable foreground removal from images of buildings or brick walls.
The key insight is to use a priori knowledge about grid patterns on build-
ing facades that can be modeled as Near Regular Textures (NRT). We
describe a Markov Random Field (MRF) model for such textures and in-
troduce a Markov Chain Monte Carlo (MCMC) optimization procedure
for discovering them. This simple spatial rule is then used as a start-
ing point for inference of missing windows, facade segmentation, outlier
identification, and foreground removal.

1 Introduction

An important step in vision-based architectural modeling [1–3] is the creation of
texture maps representing each planar section of a building’s facade. A frequent
complicating factor is the presence of other, unknown objects in the scene be-
tween the camera and building plane—e.g., trees, people, signs, poles, and other
clutter of urban environments. In a similar class are objects reflected in building
windows. Without explicitly recognizing and removing them, these foreground
objects will be erroneously included in the building appearance model, as can
be seen in the results of [4, 5] among others. Many artifacts also arise due to the
lack of strict constraints on parallelism, continuity of linear edges, and symme-
try. With manual intervention one can cut out such features and replace them
with nearby symmetric or repeated building features [6]. The larger problem that
motivates this paper is whether and how foreground objects can automatically
be eliminated.
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(a) (b) (c) (d)

Fig. 1. Virtual graffiti removal. (a) Original image; (b) Automatically detected fore-
ground pixels (c) Tile-aligned exemplar-based inpainting (d) Eigenimage reconstruc-
tion. Tiles with > 25% outliers were sampled. While there is some loss of detail in (d),
many local characteristics are retained.

Considering Fig. 1, two major obstacles to overcome for background recovery
are (i) identifying the problem areas and, (ii) actually removing foreground ob-
jects to reveal the building structure behind them. Given a sequence captured by
a translating camera, parallax is an obvious cue to identify foreground objects
at different depths [7]. However, even from a single image, humans are adept at
“mentally scrubbing” away distracting elements and envisioning the appearance
of the obliterated regions.

We make the simplifying assumption that the background is strongly struc-
tured and exhibits characteristics of a near-regular texture that dominates the
image. This is frequently the case for close-up images of sections of buildings
with brick patterns or window grids. The basic idea is that by discovering these
textures automatically and collecting statistics on tile appearance, we can auto-
matically segment foreground objects as texture outliers and either reconstruct
them from or replace them with unoccluded patterns elsewhere in the texture.
We demonstrate how these spatial priors enable subsequent operations such as
inference of missing windows, facade segmentation, outlier identification, and
foreground removal.

1.1 Previous Work

Modeling of urban and architectural environments has been studied for several
years. Government agencies have traditionally used it for development planning
or military strategy. The success of recent products like Google Earth, SketchUp,
and Microsoft Virtual Earth has enabled urban modeling to be done in a dis-
tributed, voluntary, and “wikified” manner. However, the photogrammetric tech-
niques used to compute the geometry of a scene can be brittle when dealing with
large-scale and unconstrained urban scenes.

In this work, we ignore geometry and focus on recovering a “clean” mosaic of
the facade that can subsequently be used as a texture map. With the exception
of the MIT City Scanning Project [2] and the 3D City Model Generation work
at Berkeley [5], none of the systems listed previously address issues of missing
data, occlusions, perspective or other factors that degrade the visual quality of
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the texture maps. Even these two systems employ very crude methods of pho-
tometric blending and interpolation with little consideration of topology. There
are no safeguards against wall pixels being copied over windows or other mis-
alignment issues. Debevec’s view-dependent texture mapping [1] gets around this
issue without explicitly handling the occluding elements. Once the problem areas
are identified, inpainting techniques based on PDEs [8] or non-parametric exem-
plar methods [9, 10], combined with some prior knowledge of the architectural
domain, offer a principled way to remove large foreground elements.

We specifically try to interpret the building facade from a single static image.
Dick at al. [3] were among the first to attempt automatic labeling of architectural
elements. Mayer and Reznik [11] focused on facade interpretation using implicit
shape models to extract windows. Although both methods used Markov Chain
Monte Carlo (MCMC) [12] to simulate the posterior, there was no information
about the connectivity between the detected elements. This makes high-level
analysis and manipulation difficult. In graphics, split grammars were introduced
by Wonka [13] to formally describe the derivation of architectural shapes for
procedural modeling. A few researchers combined the grammar-based proce-
dural modeling with the concept of parsing images of buildings [14], although
inconsistencies and occlusion cause these systems to fail. Recently, Mueller [15]
presented an impressive interactive system that takes a single rectified image
of a building as input and computes a 3D geometric and semantic model with
much greater visual quality and resolution.

The above methods use very specialized models and show examples on a re-
stricted set of images. Like us, they require that the facades contain repetitive
elements (typically windows) exhibiting regularity. However, the input needs to
be clipped and rectified before any processing. The case of detecting occluding
elements or seeing through them is seldom handled, primarily because of strin-
gent assumptions on the nature of symmetric patterns. Instead of tuned window
detectors, we develop a generic grouping framework to detect near-regular lattice
structures. Texture-specific models (such as those for windows under perspective)
can be easily incorporated, while still being robust to occlusions and small irreg-
ularities. Reliably discovering the underlying symmetry in texture and structure
is crucial for facade analysis and reconstruction.

Approaches based on RANSAC [16] and the cascaded Hough transform [17]
have been used to find regular, planar patterns. However, many buildings in
our test set do not exhibit the “checkerboard” style consistency these methods
require. Our definition of a lattice structure is derived from the literature on
Near-Regular Textures (NRT) [18, 19]. An NRT is a geometric and photometric
deformation from its regular origin of a congruent wallpaper pattern formed by
2D translations of a single tile or texel. Any warped 4-connected lattice consti-
tutes an NRT. An iterative algorithm for NRT discovery by higher-order cor-
respondence of visually similar interest points was described by Hays et al. in
[20]. Besides being computationally expensive, directly applying their method
might retrieve tiles which do not correspond exactly to semantically meaningful
units. A technique to extract texels from homogeneous, 2.1D, planar texture
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(a) (b)

Fig. 2. MRF (a) local node and (b) clique potential “neighbor” vectors.

with partial occlusion was presented in [21], but assumed that the placement
of the texels was statistically uniform without any global structure. Bayesian
approaches based on Markov Random Fields [22] have also been utilized for lo-
calizing grid structures in genome sequencing [23]. We adopt a similar approach
that more generally applies to many different types of NRTs. Lin and Liu [24]
used an MRF model to track dynamic deformable lattices, but assumed that the
texels had already been discovered,

The next section describes our MRF/MCMC approach for efficient NRT
discovery. We then describe a series of methods, woven together by the common
goal of background recovery, to extract additional properties of the facade. This
kind of information efficiently computed on-board an autonomous platform could
also assist in view planning and focus of attention control. Finally, results are
shown on a variety of building images.

2 Discovering Building Texture

For brick images (Fig. 1), we used an efficient power spectrum approach [25]
that although simple, worked well on a variety of images. This section describes
our more general MCMC algorithm for discovering rectangular NRTs. Previous
algorithms for texture discovery [16, 17] have used interest point or corner detec-
tors to demarcate potential texels. Since we are interested in rectangular shaped
windows, straight lines are first detected in the input image. Similar to [26],
rectangles are hypothesized from pairs of approximately parallel line segments
resulting in hundreds of rectangles. Under perspective, each rectangle vi is de-
fined as (p0

k, p1
k, p2

k, p3
k) denoting the 4 corners of a quadrilateral in anti-clockwise

order with pk1 as the upper-left position. We do not represent them using van-
ishing points as in [26] to avoid estimation errors in earlier stages from cascading
through the pipeline.

The process results in a couple of thousand rectangles for a typical image.
Some amount of pruning can be done by sorting the rectangles based on mean
gradient strength along its boundaries and removing ones that are not well
aligned with the edges. We conservatively keep the top 700 such rectangles (the
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average number of windows in our images is 15). By overestimating this number,
the grouping algorithm is allowed to recover the best possible lattice without us-
ing hard thresholds early in the pipeline. Other image discretization methods
such as interest points, correlation peaks [20], or color segmentation may also be
used to generate vi.

Given the set of tokens vi ∈ V , we construct a pairwise MRF G = (V,E).
Each token is a random variable that constitutes a node of the undirected graph
G, with edges eij ∈ E representing the dependency between vi and vj . Since
the probability of the states of a texton in an NRT is only locally dependent,
the MRF model naturally preserves this Markov property. While [24] exploited
it for tracking by preserving the structure over time, our goal is to build up the
initial grid by linking together image tokens that exhibit the lattice topology.

The solution involves gradually evolving the lattice configuration by iter-
atively adding and removing edges within an MCMC framework. At the end
of the process, links are created along vectors to

i : o ∈ {r, l, u, d} to the most
likely right, left, up and down neighbors of vi (Fig. 2) without violating grid
constraints. Similarly, vo

i : o ∈ {r, l, u, d,NULL} denote its neighbors, if any,
in each direction. Since we do not assume that texels are tightly packed and
adjacent in the image, each node can potentially be linked to several others,
increasing the combinatorics of the problem. Given image I, we wish to obtain
the MAP estimate for the graph configuration

p(G|I, T, S) ∝ p(I|T, S, G) p(S|G)p(T |G) p(G). (1)

The image likelihood p(I|T, S, G) is encapsulated in the rectangle detection and
is neglected here. Color histograms, proximity of rectangle boundaries to image
edges, or learned appearance models are all possible likelihood models. The shape
prior p(S|G) can be used to favor known shape models, though here we set it
to unity since we are only dealing with rectangles. The graph prior p(G) models
any global intuition about the nature of the grid or the degree of connectedness.
We set this to be unity.

The topology prior P (T |G) is represented as a pairwise MRF whose joint can
be factored into a product of local node potentials Φ and clique potentials Ψ :

P (T |G) ∝
∏

i

Φ(vi)
∏

i,j∈E

Ψ(vi, vj).

To model a grid, we measure the symmetry of direction vectors from a node to
its neighbors. Let δ(t1, t2) = e−β||t1−t2|| be a similarity measure between two
neighbor vectors assuming both edges are in G. The potentials are now defined
as:

Φ(vi) = e−γ(4−ni) ∗ δ(tr
i ,−tl

i) ∗ δ(tu
i ,−td

i ), (2)
Ψ(vi, vj) = δ(tu

i , tu
j ) ∗ δ(td

i , t
d
j ) ∗ B(vi, vj). (3)

where ni denotes the degree of node vi. Thus we encourage increased connectivity
as well as left/right and up/down edge pairs to be 180 degrees apart with similar
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Fig. 3. Illustration of windows under perspective

magnitudes. The interaction potential between horizontal neighbors forces their
vertical edges to be approximately parallel. For missing edges, a small fixed
value of 0.2 is assigned to δ. These functions effectively model the generic lattice
configuration as will be shown.

The function B(vi, vj) is used to specify any texture-specific pair-wise rela-
tionships between the texels. For building images and windows under perspec-
tive, we incorporate constraints such as overlap, cross ratio, and appearance
similarity. Using Fig. 3 to illustrate, we list various heuristics that reflect the
probability of vi and vj being connected by a horizontal edge. The case of ver-
tical neighbors is analogous.

– Windows on the same level have their bottom and top edges aligned with
each other, implying that points (p0

i , p
3
i , p

0
j , p

3
j ) and (p1

i , p
2
i , p

1
j , p

2
j ) are collinear.

– One projective invariant is the cross ratio Cross. Assuming parallel window
sides and negligible noise, the 4 upper and lower points in Fig. 3 should have

approximately the same cross ratio. We define CR =
∣∣∣1.0− Cross(p0

i ,p3
i ,p0

j ,p3
j )

Cross(p1
i ,p2

i ,p1
j ,p2

j )

∣∣∣
to quantify this measure. For horizontal neighbors, this essentially measures
how parallel the vertical edges of the windows are.

– The horizontal dimensions of windows under perspective should vary smoothly
on both the upper and lower sides.

– Windows and texels in general should not overlap.
– The corners of each polygon are correlated with each other to ensure appear-

ance similarity. Correlating the entire window would be sensitive to occlu-
sions and pose variations, while the corners are typically more distinctive.

Formally, XC(vi, vj) =
3∑

k=0

NCorr(Patch(pk
i ), Patch(pk

j ))
4

where XC is the

mean normalized cross correlation NCorr of 11 × 11 patches centered at
each of the 4 window corners.

These heuristics are converted into Gaussian likelihood functions that penalize
deviations from our assumptions, and incorporated into B. They are then used
in conjunction with the generic lattice potentials defined in (2) and (3).
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Fig. 4. (a) Result of our window grid discovery method; (b) reported best lattice from
[20] which does not repeatably find the correct scale or centering while being less
efficient; (c) best handpicked lattice from the various iterations of [20].

2.1 Optimization

We use a Markov Chain Monte Carlo (MCMC) framework to iteratively maxi-
mize (1), probabilistically adding and removing edges from the initial graph G0

in a fashion similar to the multi-target tracking method of [27]. A Markov chain
is defined over the space of configurations {G} and the posterior is sampled using
the Metropolis-Hastings [28] algorithm. A new state G′

t is accepted from state
Gt with probability

p = min(1,
p(G′

t|I,T,S)q(Gt|G′
t)

p(Gt|I,T,S)q(G′
t|Gt)

).
The graph G0 is initialized by connecting each node with its lowest cost

neighbor. The cost Escore(i, j) for each pair of nodes vi, vj is measured as the
total number of other nodes within a threshold distance of the line parametrized
by the two nodes, scaled by rough shape similarity B. Distracting elements or
other deformations will cause inconsistencies in this Maximum Likelihood esti-
mate; nevertheless, it provides a useful starting point for the MCMC simulation.
Proposal updates Q(G′

t|Gt) for MCMC consist of edge additions or removals
applied to a node vk. Modifying edges one component at a time leads to bet-
ter success rate for transitions. The transitions are made only in the up and
right directions in order to keep the reverse transition probability simple. Two
functions, picked probabilistically, govern how vk is selected in each MCMC iter-
ation: (i) an unguided scheme Q1 in which vk is chosen uniformly from all nodes,
and (ii) a guided hypothesis generation Q2 in which the edge is selected from a
dynamic pool Pq of potentially good connections. As the grid converges to the
correct solution, Q2 facilitates lattice growth and completion by hypothesizing
edges close to the good parts of the lattice.
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Fig. 5. Inferred lattice for various building images (top two rows). Bottom row shows
results on a few images from the NRT database [29] by grouping purely on struc-
ture. Using a texture-specific B function could have prevented spurious links between
dissimilar texels.

Let eo
kl : l ∈ {1, . . . , nk} be potential edges from vk to its neighbors in direc-

tion o. In Q1 , o is uniformly chosen from the up and right directions. The edge
to
k from node vk is turned off with fixed probability poff or assigned a neighbor

by sampling from Escore(k, ·). Neighbors that seem to conform to the topological
and visual priors are picked more often. Random selection alone can be inefficient
in steering the optimization towards completing the lattice. When a node vk is
visited in Q1 , its unbalanced edges, if any, are identified. A new link is hypoth-
esized and added to priority queue Pq with a ranking function that encourages
symmetry between opposite edges. A new proposal in Q2 simply involves remov-
ing the highest priority edge from Pq and adding it as an edge in state G′

t. The
chain is irreducible because a series of edge additions and deletions can take the
graph from one state to any other state. The stochastic elements also guarantee
aperiodicity by not getting trapped in cycles. Together, they satisfy the MCMC
conditions of ergodicity to ensure that the chain will converge to the stationary
distribution.

2.2 Experimental Results

We show grouping results on building images as well as textures from the PSU
NRT database [29]. The number of MCMC iterations was set to 10000 and the
best MAP estimate chosen as the final configuration. A breadth-first traver-
sal separates out the connected components. A user can then iterate over the
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larger ones to pick a best lattice, or the selection can be done automatically. For
building images, we use edge alignment to rank each lattice. Figures 4(a) and 5
demonstrate our results on several images. The building images (top two rows)
are characterized by occlusions, shadows, reflections, and variation among win-
dows; purely appearance-based systems can be sensitive to these effects. Both
windows as well as its topological structure in the form of a neighborhood graph
has been captured. By only enforcing local smoothness in appearance and ge-
ometry, the grouping is robust to small changes in window dimensions and per-
spective effects.

Figure 4 compares the result of our method with the algorithm of Hays [20].
One of the main disadvantages of [20] is efficiency. Generating the results for an
image took approximately 30 minutes. In contrast, our method takes less than a
minute in total on a 1.6GHz Pentium M laptop. Execution times for our method
on the image of Fig. 4a are (i) rectangle hypotheses - 20.2 sec (in Matlab), (ii)
initial graph construction - 15.9 sec (C++), and (iii) MCMC grouping - 1.9
sec (C++). Rectangle hypotheses can be speeded up by porting to C++ while
the main bottleneck in the graph construction is due to exhaustive searching
among nodes for nearest neighbors. The correlation peaks used by [20] also
suffer from the lack of centering on windows or other semantically meaningful
aspects of the image. Finally, after repeated iterations, the best lattice that it
eventually outputs based on their metric is not perceptually the best and requires
handpicking.

In order to test the adherence of our potential functions to the 4-connected
definition of an NRT, we applied the grouping on pure NRTs after setting B
to unity. Firstly, candidate tokens of like elements need to be extracted from
the image. Similar to Hays, for images where MSER [30] gave a reasonably
good initialization, these point features were grouped. If not, we applied the
Matlab functions used by [20] to detect correlation peaks from a user-selected
patch identifying a texel. This interaction only involves drawing a bounding
box and eliminates some of the spurious lattices discovered from randomly se-
lected patches. Even though the window detection is automatic, the interaction
here is purely to evaluate the grouping and serves to separate out the token
extraction from the overall framework. MCMC grouping is then performed by
considering the dominant peaks (or MSER features) as tokens. Fig. 5 (bottom
row) show the inferred lattice configuration for a few NRT images. Note that
only the generic lattice functions in (2) and (3) have been used here. A suit-
able image-based B function could have prevented some of the incorrect links
between unlike elements. On images undergoing significant non-rigid distortions,
correlation may also not produce a strong enough peak, causing some interior
texels to be suppressed. Being less relevant to the current theme on buildings,
we do not explicitly address these issues in this work.
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(a) (b)

Fig. 6. Discovered grid shown as blue rectangles. Images were automatically rectified
as a pre-processing step. Rectangles plotted in red are occluded or missing windows
inferred from the result of grouping.

3 Facade Analysis and Manipulation

The window grid provides vital cues about positioning, layout, and scale. We
now give a brief overview of some simple techniques for extracting additional
properties . To ease processing, we work with rectified images in this section.

3.1 Lattice Completion

Occlusions or errors in the rectangle hypotheses can cause missing nodes in
the lattice. The already grouped elements facilitate parameter inference of the
regular grid. The median height, width, and magnitudes of the horizontal and
vertical t vectors are computed first. We then pick the node with the highest
likelihood according to (1) as an origin. This completely specifies a regular grid
that can be overlaid on the image to hypothesize missing or occluded lattice
elements. When window dimensions deviate from the perfect grid assumption,
we observed that windows on the same floor are similar and centered horizontally
and vertically with its neighbors. After overlaying the regular grid on the image,
each location is tested for detected windows. If the test fails, a missing grid
element is inferred at the location aligned with its neighbors in the two principal
directions. Figure 6 shows examples where the discovered grid (drawn in blue)
is used to identify occluded grid elements (drawn in red).

3.2 Facade Segmentation

By making assumptions founded on common architectural trends, building pix-
els can be segmented out from a static image without any prior knowledge of
appearance models. We first assume that the pixels immediately around the
perimeter of a window belong to the building wall and exhibit a Gaussian distri-
bution W . Although not valid for walls with multiple colors or shadows, many
buildings do exhibit such uniform color properties. Similar to MRF-based seg-
mentation [31], we assume that a color Gaussian Mixture Model (GMM) can
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(a) (b) (c) (d)

Fig. 7. (a) and (c): Mask of the wall pixels after maximum likelihood classification;
(b) and (d): thresholding on the row and column sum differences between adjacent
locations can be used to approximate the facade extent (blue rectangles).

describe the majority of pixels in the image. The RGB values are clustered into
N (typically less than 10) distributions Gi : i ∈ 1..N . Based on the homogeneous
texture assumption, the mean and covariance of the distributions can be used to
compute the Maximum Likelihood cluster Gw that corresponds best to the wall
color W . The left column of Figure 7 shows the mask separating out the compli-
cated foreground for a couple of images. We can also use the mask to compute
approximate facade boundaries (right column) by thresholding on adjacent row
and column sum differences.

3.3 Foreground Removal

Texture discovery gives a set of subimages centered on the tile elements that
should be very similar to one another. Appearance discrepancies arising from
material variations, spatial resolution, and non-planar features can be described
with low-dimensional Gaussian models or blurring and shifting of patches. How-
ever, foreground elements or reflections are best treated as outliers of the building
tile pixel mode. To first detect foreground, we look at pixel values in correspond-
ing locations over all tiles under the assumption that the background is visible
in a majority of them. A robust measure of spread, the median absolute devi-
ation (MAD) [32], can be used to assess which pixel values vary enough across
the tiles to arouse suspicion of foreground. 3 Unreliable pixels are identified by
thresholding their MADs—these are so-called MAD outlier pixels.

An obvious approach to background reconstruction is to do spatial inpainting
on pixels marked out according to the MAD criterion. Figure 1(c) shows the
result of inpainting MAD-induced holes in Figure 1(a) with the method of [9]
under the special case that the inpainting source patches are the same sizes as
and perfectly aligned with the discovered tiles. In spite of this, the more complex
the tile interior is, the less effective inpainting would be in avoiding geometric
and photometric artifacts.

3 A scalar MAD value is obtained at each pixel by computing it separately for each
color channel and summing
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(a) (b) (c) (d)

Fig. 8. Foreground removal by eigenimage reconstruction for tile aligned images (a)
and (c).

Another possibility suggested by the alignment of patches is to treat the
problem as one of eigenimage reconstruction. Assuming that a Gaussian process
describes inter-tile appearance variation fairly well, we can use principal compo-
nents analysis (PCA) to model it (e.g., [33, 18]). The intuition is that we want to
take each occluded tile in which some background is visible and “project” it down
onto a set of background-only bases in order to lessen the foreground influence.
However, with some fraction of the tiles “polluted” by unknown foreground ele-
ments, robust PCA (RPCA) techniques [34, 32] are required. In practice, these
methods had problems with our data when there were too many outlier pixels in
a tile. Sine the MAD mask identifies the outlier pixels well, we use another PCA
variant called probabilistic PCA (PPCA) [35] which works when missing data is
explicitly identified beforehand. As the percentage of pixels occluded in a given
tile rises, however, the reliability of the reconstruction naturally deteriorates.
We mitigate this issue by reconstructing only tiles that have ≤ 25% outliers in
them. All other tiles are treated as fully occluded and simply sampled de novo
from the learned PPCA basis. Figures 1(d) and 8 show results of using PPCA
on images containing complicated foreground or reflections within windows.

4 Conclusion

We draw the analogy that building facades are often examples of Near-Regular
Textures, and showed that discovering these textures could provide valuable
insight into the rest of the facade. We introduce a novel MRF/MCMC approach
to discover grid patterns from images. We then presented techniques that use a
partially discovered grid to infer occluded windows, segment out wall texture,
identify foreground pixels, and reconstruct the background – all from a single
image.

All the components described in the paper have much scope for extension.
Foremost among these, an extensive evaluation of our lattice discovery tech-
nique to more general NRTs is being done. An image-specific likelihood function
is required to prevent false links that might be topologically correct. One short-
coming of our proposal function is the inability to hypothesize a new token
during MCMC, which would require Reversible Jump MCMC. We have also
had encouraging results in parsing window interiors to describe them with split
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grammars. The PCA approach to recover the background currently disallows
tile non-regularity such as those in Fig. 7. However, the segmentation mask and
window grid provide enough information to allow inpainting of foreground pixels
and copying of whole windows to maintain coherency. It is also important to note
that each of the techniques presented in Section 3 can be replaced with more so-
phisticated methods. Alternative approaches such as gradient-domain methods
[6] could be used for texture replacement as long as the facade structure discov-
ered by the grouping framework is not violated during synthesis. Future work
includes comparing some of these methods based on the quality of the recovered
texture map.
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