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Abstract. In this paper range flow estimation is extended to handle
brightness changes in image data caused by inhomogeneous illumination.
Standard range flow computes 3d velocity fields from range and inten-
sity image sequences. To this end it combines a depth change model
and a brightness constancy model. In this contribution, the brightness
constancy model is exchanged by (1) a gradient constancy model, (2)
a combination of gradient and brightness constancy constraint that has
been used successfully for optical flow estimation in literature, and (3) a
physics-based brightness change model. Insensitivity to brightness
changes can also be achieved by prefiltering of the input intensity data.
High pass or homomorphic filtering are the most well known approaches
from literature. In performance tests therefore the well known version and
the novel versions of range flow estimation are investigated on prefiltered
or non-prefiltered data using synthetic ground-truth and real data from
a botanical experiment.

1 Introduction

In this paper influences of brightness models in 3d velocity field estimation are
investigated. The brightness model is only one module of usual motion estima-
tion methods. Typical methods consist of data prefiltering, brightness constraint
equations describing imaging physics locally (see e.g. [1,2]) calculated by suitable
convolution filtering [3,4], parameter estimation scheme like local least squares
[5], local total least squares [6], or variational approaches [7]. Occlusions and
other model violations are typically handled using robust error norms instead
of plain least squares [8,9]. Variational estimators in addition allow for incorpo-
ration of prior knowledge, e.g. in form of regularization terms closing holes or
reducing so-called aperture problems.

Motivation of this work is a target application, namely plant growth estima-
tion. Growth is one of the most important processes in plant life and therefore of
high botanical interest. However, this paper does not focus on a best estimation
system for this application, but isolates influences of brightness change models
frequently occurring in such botanical but also other data.

A lot of work has been carried out on estimating 3d motion fields. Range
flow estimation [10,11] uses data solely from range sensors whereas [12,13] in-
corporate information from both range and image sensors. Reconstruction of
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Fig. 1. Castor bean plant leaf. Top: Estimated motion vector fields. The two images to
the left and to the right show the same results, respectively, but with and without 3d
structure shown. Left images: standard range flow. Right: proposed TAYLOR model.
Bottom: Images of the input sequence.

scene flow and 3d structure from the observed optical flow in several cameras
has been proposed by [14,15,16]. These scene flow and most optical flow based
approaches [17,18] imply brightness constancy and are therefore not suitable if
substantial brightness changes are present in a sequence (cmp. Fig. 1, upper part
of the shown leaf). For optical flow estimation less brightness sensitive models,
e.g. constancy of intensity gradient vector [19,20] have been proposed, as well as
physics-based brightness change models [21,1]. The physics-based models of [1]
have been recently adapted and extended for moving surfaces under inhomoge-
neous illumination [2]. Suppressing brightness changes by prefiltering the inten-
sity data has been shown to be very efficient. One of the simplest approaches
is applying a spatial high-pass filter to minimize the effect of global brightness
inhomogeneities. Toth et al [22] show that using homomorphic prefilters [23]
can highly improve motion detection in image sequences with inhomogeneous
illumination. More recent approaches for scene flow estimation use statistical
similarity measures [24], a gradient constancy constraint [25] or probability dis-
tributions for optical flow and disparity [26] to make scene flow estimation more
robust against brightness changes.

Our contribution. The contribution of this paper is twofold: On the one hand
range flow estimation is extended to be able to handle inhomogeneous illumina-
tion. To this end the techniques known for optical flow estimation are introduced
in the range flow constraints, namely (1) gradient constancy [19] and (2) mix-
ture of brightness and gradient constancy [20] as well as physics-based brightness
modeling [2]. On the other hand performance of standard and the novel range
flow models is investigated. To this end the models are tested on two kinds of syn-
thetic data sets with ground truth available. These sequences are either used with
or without suppression of illumination inhomogeneities by high-pass or homo-
morphic filtering. A motion estimation result for a ”real” image sequence from a
botanical experiment on leaf growth is shown in Fig. 1. Performance experiments
focus on and therefore are especially designed for brightness model influences.
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Input data without occlusions, inner borders, holes or aperture problems has
been selected. Thus no robust estimators handling occlusion or variational es-
timators closing holes are needed, but local least squares estimation on a large
neighborhood is suitable. In a final system robust and/or variational estimators
may be used of course if needed, but not for investigations of model influences.

Paper organization. In Sec. 2 we derive the differential range flow model.
Then different prefilters and intensity constraints in the context of range flow
are presented in Sec. 3. In Sec. 4 we briefly review parameter estimation followed
by experiments on synthetic and real data in Sec. 5.

2 Range Flow

Range flow as used here is based on two motion constraints: one for range data
and one for intensity data. Following [13], we briefly derive these two constraints
in this section.

2.1 Range Constraint

Let a surface be described by its depth Z as a function of space and time
Z = Z(X, Y, t), where X , Y and Z are spatial coordinates and t denotes time.
We select X and Y being aligned with camera sensor coordinates x and y, respec-
tively. Z-axis points along the principal axis of the assumed projective camera.
The total derivative of Z with respect to time then yields the so called range
flow motion constraint equation

dZ

dt
= ∂XZ

dX

dt
+ ∂Y Z

dY

dt
+ ∂tZ (1)

where partial derivatives are denoted as e.g.∂XZ = ∂Z
∂X . Range flow is defined

to be f = [U, V, W ]T := [dX
dt , dY

dt , dZ
dt ]T.

Range data is given as data sets X = X(x, y, t), Y = Y (x, y, t) and Z =
Z(x, y, t) on the sampling grid. Partial derivatives are not computed on world
coordinate data but directly on the sensor grid in order to avoid interpolation
artifacts and expensive preprocessing steps. Range flow, i.e. the total derivatives
of the world coordinates with respect to time may then be calculated as

U = ∂xXẋ + ∂yXẏ + ∂tX (2)
V = ∂xY ẋ + ∂yY ẏ + ∂tY (3)
W = ∂xZẋ + ∂yZẏ + ∂tZ (4)

where total derivatives with respect to time are indicated by a dot. Being not
interested in the change on the sensor grid, i.e. optical flow, ẋ and ẏ can be
eliminated. This yields

∂(Z, Y )
∂(x, y)

U +
∂(X, Z)
∂(x, y)

V +
∂(Y, X)
∂(x, y)

W +
∂(X, Y, Z)
∂(x, y, t)

= 0 (5)
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where e.g.
∂(Z, Y )
∂(x, y)

=
∣
∣
∣
∣

∂xZ ∂xY
∂yZ ∂yY

∣
∣
∣
∣
= ∂xZ∂yY − ∂yZ∂xY (6)

is the Jacobian of Z, Y with respect to x, y. Equation (5) only depends on
derivatives in sensor coordinates and can be calculated easily using derivative
kernels. Assuming aligned world and sensor coordinate systems (∂yX = ∂xY =
0) (5) reduces to

(∂yY ∂xZ)U + (∂xX∂yZ)V − (∂xX∂yY )W
+ (∂xX∂yY ∂tZ − ∂xX∂tY ∂yZ − ∂tX∂yY ∂xZ) = 0 . (7)

2.2 Intensity Constraint

The range flow constraint is solely for range data and full flow can only be
estimated for corners or point-like structures. Plant surfaces are often nearly
planar, smooth surfaces resulting in aperture problems almost everywhere when
using solely the range flow constraint. As proposed in [12] intensity data should
be incorporated. Let the intensity of a point remain constant over the observation
time interval. Then the so-called brightness constancy constraint equation often
used for optical flow estimation (cmp. e.g. [17]) is valid. Linearization of this
constraint yields

dI

dt
= ∂xIẋ + ∂yIẏ + ∂tI = 0 . (8)

Eliminating optical flow (ẋ, ẏ) using (2) and (3) yields

∂(I, Y )
∂(x, y)

U +
∂(X, I)
∂(x, y)

V +
∂(X, Y, I)
∂(x, y, t)

= 0 . (9)

The estimated motion [U, V, W ] has to fulfill both constraints, the range flow
constraint (5) and the intensity constraint (9). The intensity constraint more re-
liably yields point-to-point correspondences and therefore often solves the aper-
ture problem. Together with the range constraint it allows also to solve for the
vertical motion W . Combining range and intensity constraint and estimation of
f via total least squares is shown in Sec. 4.

3 Handling Brightness Changes

Range flow estimation as presented in the previous section yields good results for
objects under homogeneous, diffuse illumination. Problems occur for directed,
inhomogeneous illumination, because the intensity constraint (9) is not well ful-
filled anymore. In the following section different approaches to handle illumina-
tion changes are presented. Three of them lead to constraints novel in range flow
estimation.
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3.1 Prefiltering

A well known technique for illumination change suppression is suitable prefilter-
ing making data illumination invariant.

Temporal and/or spatial high-pass filtering eliminates slow brightness changes
in the data. However faster illumination changes both in spatial and temporal
domain still remain in the data. In our experiments we test high-pass filtering
with the filter

Ĩ = (1 − B11) ∗ I (10)

where B11 denotes a spatial 11-tab binomial filter (see e.g. [27]) and ∗ is convo-
lution.

A more sophisticated approach is using a homomorphic filter [23]. Follow-
ing [22] we briefly derive a simple implementation of homomorphic filtering,
which proved to be very successful in suppressing illumination changes. Homo-
morphic filtering uses the fact that image intensity I(x, y) is proportional to
incident illumination intensity E(x, y), which is reflected by object surfaces with
reflectance R(x, y) in the observed scene. For Lambertian surfaces image inten-
sity can be modeled as

I(x, y) ∝ E(x, y) · R(x, y) . (11)

Reflectance R is the desired component for motion estimation as this part con-
tains the structure of the scene and is temporally invariant. The logarithm trans-
forms the multiplicative relation between illumination intensity E and reflectance
R into an additive one

log(I(x, y)) ∝ log(E(x, y)) + log(R(x, y)) . (12)

Ideally log(E) and log(R) are separated in frequency domain as E is assumed
to be low-frequent and R mainly high-frequent. In practice the two components
overlap. Thus a tradeoff between suppressing brightness changes and loss of sig-
nal has to be made. However high-pass filtering more efficiently suppresses the
illumination component after taking the logarithm of the signal. However, as
the nonlinear log-operation makes the camera noise variance signal-dependent,
therefore influencing parameter estimation, exponentiation returns an approxi-
mation of the sought for reflectance component.

3.2 Gradient Constancy Constraint

The intensity constraint (9) can be exchanged by an illumination invariant or
insensitive constraint instead of or in addition to prefiltering the data.

A method reported to be successful in the pure optical flow case [20] is to
assume that 2d image intensity gradient should not change along the motion
trajectory. Derivative filtering is a highpass operation therefore also suppressing
illumination changes (see Sec. 3.1). This leads to two linearized gradient con-
stancy constraints
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dIx

dt
= ∂xIxẋ + ∂yIxẏ + ∂tIx = 0 (13)

dIy

dt
= ∂xIyẋ + ∂yIy ẏ + ∂tIy = 0 (14)

where lower indices indicate partial derivatives, e.g. Ix := ∂xI, as before. Analo-
gous to derivation of (9) optical flow (ẋ, ẏ) is eliminated using (2) and (3)

∂(Ix, Y )
∂(x, y)

U +
∂(X, Ix)
∂(x, y)

V +
∂(X, Y, Ix)
∂(x, y, t)

= 0 (15)

∂(Iy, Y )
∂(x, y)

U +
∂(X, Iy)
∂(x, y)

V +
∂(X, Y, Iy)
∂(x, y, t)

= 0 . (16)

3.3 Combined Intensity and Gradient Constancy Constraint

A known drawback of the gradient constancy constraint proposed in Sec. 3.2
is that it noticeably reduces the structure in the image and leads to aperture
problems. Using both the intensity constraint and the gradient constraint simul-
taneously has reduced this effect in the optical flow case [20]. This leads to three
constraint equations ((9), (15) and (16)) which should be fulfilled simultaneously
for the horizontal and vertical range flow components U and V .

3.4 Physics Based Brightness Change Model

A different approach to handle brightness changes is to model them explicitly
and estimate both optical flow and brightness change parameters. Haussecker
and Fleet [1] proposed a generalized formulation of optical flow estimation based
on models of brightness variation that are caused by time-dependent physical
processes. Brightness changes along a temporal trajectory x(t) = (x(t), y(t))T.
This is described by a parameterized function hI

I(x(t), t) = hI(I0, t,a) (17)

where I0 = I(x(0), 0) denotes image intensity at time t = 0 and a = [a1, ...an]T

contains n brightness change parameters. Taking the total derivative on both
sides yields

∂xIẋ + ∂yIẏ + ∂tI = ḣI(I0, t,a) . (18)

Assuming brightness constancy, i.e. hI(I0, t,a) = c, (18) reduces to (8). Given
a physical model h for brightness changes both the optical flow (ẋ, ẏ) and the
parameter vector a need to be estimated. Several time-dependent illumination
change models are proposed in [1], i.e. changing surface orientation, motion of
the illuminant, and physical models of heat transport in infrared images. We
use a brightness change model presented in [2] which handles spatially varying
time-dependent illumination changes coming from directed, inhomogeneous illu-
mination and changing surface orientation. In [2] the brightness change function
is set to

hI(I0, t,a) = I0 exp{h(ΔX, ΔY, t, a)} . (19)
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The incident irradiance caused by the moving illuminant is assumed to be spa-
tially inhomogeneous, therefore changing not only by a time dependent factor,
but also varying smoothly in space. Approximating these brightness changes by
a second order Taylor series yields

h(ΔX, ΔY, t, a) :=
2∑

i=1

(ai + ai,xΔX + ai,yΔY ) ti (20)

with spatial neighborhood ΔX, ΔY and temporal derivative

ḣ(ΔX, ΔY, t, a) =
2∑

i=1

i (ai + ai,xΔX + ai,yΔY ) ti−1 (21)

using the notation a = [a1, a1,x, a1,y, a2, a2,x, a2,y]T. Analogous to Sec. 2.2 we get
the total differential

dI

dt
= ∂xIẋ + ∂yIẏ + ∂tI = Iḣ(ΔX, ΔY, t, a) (22)

and eliminate optical flow (ẋ, ẏ) using (2) and (3)

∂(I, Y )
∂(x, y)

U +
∂(X, I)
∂(x, y)

V +
∂(X, Y, I)
∂(x, y, t)

− Ia1 − Ia1,xΔX

− Ia1,yΔY − 2Ia2t − 2Ia2,xΔXt − 2Ia2,yΔY t = 0 . (23)

4 Parameter Estimation

For parameter estimation in a total least squares framework we closely fol-
low [13]. The range constraint (see Sec. 2.1) yields for every pixel an equation of
the form dT

rcp = 0 with

drc =
[
∂ (Z, Y )
∂ (x, y)

,
∂ (X, Z)
∂ (x, y)

,
∂ (Y, X)
∂ (x, y)

,
∂ (X, Y, Z)
∂ (x, y, t)

]T

(24)

and p = [U, V, W, 1]T. To solve this equation containing three unknowns, we
assume that within a local neighborhood Ω one parameter vector p solves all
equations but for an error e. Minimizing error e in weighted L2-norm yields

||e|| = pTJrcp
!= min (25)

with structure tensor Jrc = W ∗ (drcd
T
rc) and averaging filter W defining the

neighborhood Ω. As described in Secs. 2.2 and 3.2 to 3.4 we have more than one
constraint for the U and V component of the range flow. Analogous to the range
constraint dT

rcp = 0 the intensity (9) and the gradient constancy constraints
(15) and (16) may be formulated as dT

Qp = 0 using

dQ =
[
∂ (Q, Y )
∂ (x, y)

,
∂ (X, Q)
∂ (x, y)

, 0,
∂ (X, Y, Q)
∂ (x, y, t)

]T

(26)
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with Q = {I, Ix, Iy} respectively. By inserting zeros into the appropriate places
of data vector d we adapt all constraints to the same dimensions. The brightness
change model presented in Sec. 3.4 contains motion and brightness change pa-
rameters. Therefore both data vectors for the range and the brightness change
constraint have to be enlarged by zeros appropriately. Parameter vector p then
becomes p = [U, V, W, 1,aT]T.

As in [13] we combine the different constraints yielding a combined structure
tensor that is simply the weighted sum of the different tensors of the depth and
the intensity channels

J = Jrc +
j

∑

i=1

βiJi (27)

weighted with constants βi and 3 possible choices for j, namely for j = 1, 2, or
3, depending on the number of brightness constraint equations used and corre-
sponding to the constraints proposed in Secs. 2.2 and 3.2 to 3.4. Constants βi

may be used to account for different signal-to-noise-ratios of the structure ten-
sors. Furthermore the data channels should be scaled to same mean and variance
before they are combined.

As is well-known, this equation is minimized by the eigenvector b to the
smallest eigenvalue of J. Range flow is then given by

⎛

⎝

U
V
W

⎞

⎠ =
1
b4

⎛

⎝

b1
b2
b3

⎞

⎠ . (28)

a b c

Fig. 2. Scaled first (a), central (b) and last (c) frame of sinusoidal sequence with
illumination parameters a1 = 0 and a1,x = 0.06
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Fig. 3. Mean absolute value of relative error of U versus the brightness change para-
meter a1 with no ( � ), highpass ( � ) and homomorphic ( � ) prefilters for different
models



Range Flow for Varying Illumination 517

0,001

0,01

0,1

1

10

0 0,06 0,12 0,18 0,24

INTERRU

a1,x
0,001

0,01

0,1

1

10

0 0,06 0,12 0,18 0,24

GRADERRU

a1,x
0,001

0,01

0,1

1

10

0 0,06 0,12 0,18 0,24

INTGRADERRU

a1,x
0,001

0,01

0,1

1

10

0 0,06 0,12 0,18 0,24

TAYLORERRU

a1,x

Fig. 4. Mean absolute value of relative error of U versus the brightness change para-
meter a1,x with no ( � ), highpass ( � ) and homomorphic ( � ) prefilters for different
models

5 Experiments

For systematic error analysis of the different models sinusoidal patterns are used.
The models compared are combinations of the range constraint with

1. the intensity constancy constraint (INT, (9)),
2. the gradient constancy constraint (GRAD, (15) and (16)),
3. the combined intensity and gradient constancy constraint (INTGRAD, (9),

(15) and (16)) and
4. the intensity constraint with modeling of brightness changes by taylor series

(TAYLOR, (23)).

Further accuracy of motion estimates on a rendered cube illuminated by a di-
rected light source and motion estimation results on real data are demonstrated.
For all experiments we generate range data by multi camera stereo reconstruction
as presented in [28]. The weighting constants are set to βi = 1 in all calculations.

5.1 Sinusoidal Pattern

For evaluation of the different models we modeled moving patches with sinu-
soidal patterns under varying illumination. Three frames of one test sequence
are shown in Fig. 2. For our analysis we use patches translating with U =
0.0073mm/frame , V = 0mm/frame and W = 0.5mm/frame and angular ve-
locity of ω = 0.002 radians/frame around the Y -axis. For t = 0 the surface
normal of the patch is n = (1, 2, −1)T and the distance of the patch center to
the camera is Z0 = 100mm. The synthetic sensor contains 301 × 301pixels of
size 0.0044mm2. Focal length of the synthetic projective camera is f = 12mm.
For our analysis we compare the mean absolute value of the relative error of U

ERRU =
1
N

N∑

i

|Uestimated − Ureference|
|Ureference|

(29)

over all pixel N at a minimum distance of 60 pixel from the nearest image
border. To reduce systematic errors the structure tensor weighting matrix W is
realized by a 65-tab Gaussian with standard deviation σ = 19. Both prefilters
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a b c d

Fig. 5. First (a) and last (b) frame of cube sequence, (c) central frame of cube sequence
after homomorphic prefiltering, (d) regions of cube used for error analysis

are generated as depicted in Sec. 3.1. Following [2] we compare the estimation
of U for increasing illumination parameters a1|a1,x=0 and a1,x|a1=0 to simulate
brightness changes. Only errors for U are presented, as errors of V and W showed
similar characteristics.

In Fig. 3 and Fig. 4 errors of U for the proposed models in combination with
prefilters are shown for increasing a1 and a1,x respectively. Using homomorphic
prefilters performances of all models are comparable. For models INT and INT-
GRAD homomorphic prefiltering is the best choice. For small brightness changes
model GRAD with no prefilter produces even lower errors than using the homo-
morphic one. Lowest errors can be observed using model TAYLOR without pre-
filter. Overall these errors are about one order of magnitude smaller than for all
other model and prefilter combinations over a wide range of brightness changes.

For models INT and INTGRAD the positive effect of reducing brightness
changes using homomorphic prefiltering apparently overcompensates the nega-
tive effect of losing signal. For models GRAD and TAYLOR, which can handle
brightness changes better, it seems to be the other way round. Reduced accuracy
for non-changing brightness (a1 = 0 and a1,x = 0) proves the negative effect of
loss of signal due to prefiltering.

5.2 Synthetic Cube

The synthetic cube sequence allows to test the models on more realistic data
with groundtruth available. The cube moves with U = −0.2mm/frame, V =
0mm/frame and W = −2mm/frame. In addition to ambient light the cube is
illuminated by a fixed light spot from the right. Figure 5 shows two frames of the
cube sequence, a frame after homomorphic prefiltering as well as the investigated
regions on the left and right side of the cube. The size of the weighting matrix
W is realized by a 31-tab Gaussian with standard deviation σ = 11.

In Fig. 6 motion estimates of the standard range flow model INT is com-
pared with the three models, which performed best on sinusoidal test sequences,
i.e. model INTGRAD with homomorphic prefilter and both models GRAD and
TAYLOR without prefilter. As errors are too small to be visible for all models
the erroneous motion estimates are amplified for U and V by 50 and W by 20.

Table 1 shows numerical errors of the different models for the regions on the
left and right side of the cube. We compare the average angular error [17]
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AAE = arccos
(

fcfe

|fc| |fe|

)

[◦] (30)

and its standard deviation with the true and the estimated flow fc and fe respec-
tively. Interested in estimating plant growth we furthermore compare the average
relative growth rate and its standard deviation. According to [29] the relative
change in size dA of a local surface area s parameterized in sensor coordinates
x and y is calculated using the 3d displacement vector field f

dA =
|s(x+1, y)+f(x+1, y) − (s(x, y)+f(x, y))|×|s(x, y+1) + f(x, y+1)−(s(x, y)+f(x, y))|

|s(x+1, y)−s(x, y)|×|s(x, y+1) − s(x, y)|

(31)

with s(x, y) = [X(x, y), Y (x, y), Z(x, y)]T. The relative growth rate is determined
by RGR = (dA−1)·100%. In the experiment the 3d structure of the cube remains
constant in time, i.e. RGR = 0%.

Additionally we show results obtained by the recent scene flow approach of
[25]. We apply the algorithm the authors provide with the parameters of the
rotating sphere experiment. Only the weighting parameter of the gradient con-
straint was increased to γ = 30 to reduce the effect of the severe brightness
variations in the data.

Standard range flow estimation, i.e. model INT without prefilter (Fig. 6a)
yields highly corrupted estimation results on the side of the cube where illu-
mination changes due to the fixed spotlight. The other side does not suffer from
illumination changes. There motion estimates are much more accurate. As ex-
pected estimates are well improved by the other models when brightness changes
are present.

But using a homomorphic prefilter, e.g. with model INTGRAD (Fig. 6c), re-
sults on the left side of the cube are visibly worse than using standard range
flow. Models without prefilter (Fig. 6b+d) or with a highpass yield more or less
the same good results as standard range flow on the left side of the cube. These
observations coincide with the errors in Table 1.

On its right side, where the brightness changes dominate, model TAYLOR
(Fig. 6d) yields slightly more uniform, more accurate motion vectors than model
GRAD (Fig. 6b). Moreover Table 1 shows that model TAYLOR is more robust
with respect to prefiltering. With no prefilter or using a highpass rarely changes
results, whereas the other models yield much more varying errors depending on
the prefilter. The errors of [25] are much worse than any other used model, despite
the elaborate estimator. We assume that tuning parameters may reduce errors a
bit but did not find a good parameter set. This shows that using an elaborate es-
timator does not necessarily help, if the brightness model does not fit.

We conclude that homomorphic prefiltering should be avoided if possible and
modeling brightness changes yields slightly more accurate results than using a
model suppressing effects of brightness changes.
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Table 1. Average angular error, average relative growth rate and their standard de-
viations of regions on left and right side of the cube (see Fig. 5d). High and low errors
indicated in red and green respectively.

model prefilter left region right region
AAE RGR AAE RGR

NO 0.148 ± 0.074 0.093 ± 0.092 4.311 ± 4.024 4.372 ± 9.211
INT HP 0.137 ± 0.074 0.105 ± 0.097 0.069 ± 0.045 0.017 ± 0.057

HOM 0.322 ± 0.216 0.087 ± 0.429 0.096 ± 0.148 −0.175 ± 0.564

NO 0.142 ± 0.075 0.097 ± 0.094 0.120 ± 0.111 0.042 ± 0.102
GRAD HP 0.135 ± 0.072 0.110 ± 0.098 0.046 ± 0.017 −0.003 ± 0.057

HOM 0.664 ± 0.471 0.039 ± 0.862 0.139 ± 0.280 −0.29 ± 0.831

NO 0.147 ± 0.074 0.094 ± 0.092 4.400 ± 4.081 4.500 ± 9.356
INTGRAD HP 0.137 ± 0.073 0.107 ± 0.097 0.085 ± 0.066 0.028 ± 0.061

HOM 0.240 ± 0.146 0.090 ± 0.316 0.084 ± 0.110 −0.14 ± 0.465

NO 0.0149 ± 0.074 0.090 ± 0.094 0.055 ± 0.014 −0.009 ± 0.052
TAYLOR HP 0.139 ± 0.074 0.105 ± 0.097 0.047 ± 0.016 −0.012 ± 0.051

HOM 0.323 ± 0.216 0.087 ± 0.431 0.096 ± 0.149 −0.02 ± 0.565

NO 4.941 ± 1.812 −0.739 ± 11.59 2.216 ± 1.223 −3.36 ± 8.694
[25] HP 8.977 ± 3.714 −3.20 ± 15.51 4.041 ± 4.078 −4.19 ± 1.557

HOM 8.907 ± 2.995 −1.83 ± 13.02 2.093 ± 0.784 0.347 ± 7.358

a b c d

Fig. 6. Scaled motion estimates with amplified errors for different models: (a) INT
without prefiltering, (b) GRAD without prefiltering, (c) INTGRAD with homomorphic
prefiltering, (d) TAYLOR without prefiltering

5.3 Real Data

The previous experiments showed that model TAYLOR yields most reliable es-
timates. In Fig. 1 we show estimated 3d velocity fields for a freely moving castor
bean plant leaf. The scene is illuminated by directed infrared light emitting
diodes from the top right causing shadows on the leaf of interest. Depth recon-
struction was obtained according to [28] using five images from different camera
positions at each time step. For motion estimation a sequence of nine frames
from the center camera with a sampling rate of 1 frame per 2 minutes was
taken, i.e. acquisition time for the used images was 16 minutes.

The leaf rotates around the node where it is attached to the stem. This results
in a visible motion towards the camera and to the right while the shadow area
caused by the top leaf decreases. Model TAYLOR visibly improves estimation
results in regions with illumination changes compared to the standard range
flow model. As expected for a rigid motion, which can be assumed using a high
temporal resolution we obtain a smoothly varying vector field.
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6 Summary and Outlook

In this paper we extended range flow estimation presented in [13] with different
approaches to handle inhomogeneous illumination. We presented a detailed error
analysis for four different model constraints in combination with highpass and
homomorphic prefilters on synthetic sequences with sinusoidal patterns and a
translating cube. While prefilters improved estimation results on data when illu-
mination changes are present, they suppress information producing worse results
when no changes are present. Modeling brightness changes instead of prefiltering
provides equal or better estimation results whether illumination changes occur
or not.

In future work we plan to further improve the accuracy of the model and the
estimator.

Acknowledgments. The authors would like to thank Georg Dreissen for his
help with the acquisition of the plant leaf sequence.
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