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Abstract. We use segmentations to match images by shape. To address
the unreliability of segmentations, we give a closed form approximation
to an average over all segmentations. Our technique has many extensions,
yielding new algorithms for tracking, object detection, segmentation, and
edge-preserving smoothing. For segmentation, instead of a maximum a
posteriori approach, we compute the “central” segmentation minimizing
the average distance to all segmentations of an image. Our methods for
segmentation and object detection perform competitively, and we also
show promising results in tracking and edge–preserving smoothing.

1 Introduction

The shape of an object (as conveyed by edge curves) is among its most distinctive
features, yet many methods for recognition/detection or tracking neglect it. One
reason for this is that shape matchers confront a difficult global/local dilemma:
local edges carry too little information for reliable matching, while globally the
images have too much variability.

We classify shape matching strategies according to their shape representa-
tions. Methods representing shape locally [4,5] in terms of edgels confront a
combinatorial explosion in the number of potential matches. Global methods
have trouble extracting reliable global contours, and their matching suffers from
occlusions and dropouts; also, global matching is hard because of the huge search
space of possible deformations. Some recent shape-matching approaches [18,10]
use grouped edge fragments as intermediate representations. These have more
specificity and fewer potential matches than edgels yet occur often enough to
survive occlusion and detection failures. But bottom–up grouping isn’t reliable,
so applying fragment groups to match general images is hard without top-down
learning. As a result, [18,10] limit matching to specific objects or classes; they
learn distinctive fragment groups for the given object(s) and match these rep-
resentations. Other semi–local representations, e.g. SIFT [14] and HoG [8,6],
achieve robustness to shape variation by weakening the shape descriptions, re-
sorting to histograms instead of representing the exact boundary shapes.

We propose an approach to shape matching based on averaging over segmen-
tations. The method combines the advantages of global and local approaches: it
can match globally yet efficiently, and is robust to local variation yet remains
sensitive to the detailed boundary shapes. Others [21,2] have used segmentation
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for recognition, but we differ in using it to represent shape. For general recog-
nition, we can apply our method like SIFT as a (semi)local descriptor. Here, to
demonstrate its power to match despite large variability, we apply it globally, in
experiments on tracking and on localizing instances of an object class.

Our technique for averaging segmentations has implications beyond matching.
Using it, we derive a segmentation method which gives competitive results on
the Berkeley database. We also apply it for edge–preserving smoothing. Unlike
previous ones, our smoothings are sensitive to global image structures.

2 Shape Matching: Motivations and Overview

Region based shape matching. To resolve the global/local dilemma, as a
first step we avoid the local ambiguities of edge matching by instead matching
regions [3]. As global features, regions have robustness to local shape distortions
and occlusions, but they are difficult to extract reliably and can have complex
shapes which are hard to represent or match. Since they have closed boundaries,
they don’t adapt easily for matching open image curves.

Segmentation matching. We next upgrade region matching to matching seg-
mentations. This has several advantages: 1) By matching all regions at once, we
gain robustness to the grouping failures for any one region; 2) Since segmenta-
tions are computed using global image information, they can localize the true
edges more accurately than local edge–detection/grouping methods; 3) Segmen-
tations can reveal global shape structures which are more distinctive than local
features. This helps overcome difficulties caused by “hallucinated” boundaries;
4) An oversegmentation includes most of the strong curves and may be exploited
for matching open as well as closed curves.

A typical segmentation includes both true and hallucinated boundaries. In
matching segmentations, we need a similarity measure that detects the true
matching boundaries while ignoring the hallucinations. The measure should be
insensitive to small shifts and distortions in the boundaries.

A segmentation similarity measure. To achieve this, we propose a new
similarity measure. It relates to the mutual information as adapted to segmenta-
tions; the basic concept is the structure entropy (SE), i.e., the entropy measuring
a segmentation’s complexity. A segmentation with many small segments has high
structure entropy; large segments give low SE. (Note: we compute the structure
entropy for individual segmentations, not for the probability distribution over
segmentations.) We define the structure mutual information (SMI) between seg-
mentations in terms of the joint segmentation obtained by superimposing the
individual ones. When two segmentations have matching boundaries, the joint
segmentation has large regions and low SE, so the SMI is high. For non–matching
segmentations, the joint segmentation has smaller regions and higher SE, so the
SMI is low. Fig.1(a) illustrates the idea. The precise definitions are below.

This similarity measure achieves the desired aims. For example, shifting one
segmentation a small amount relative to another creates new small regions in
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(a)
H(s1) = log(7) H(s2) = log(7) H(s1, s2) = log(49)

(b)

Fig. 1. (a). Segmentation based shape matching. Left 2 columns: segmentations to be
matched. Right column: the joint segmentations. Two similar overlapping shapes (top)
gives larger regions than overlapping dissimilar shapes (bottom); (b) 2 segmentations
and their joint segmentation (right). The segmentations have VoI log(49) and MI 0.

the joint segmentation, but large segments continue to have large overlaps, so
the joint SE remains low and the SMI remains high.

However, the approach still depends on the quality of the precomputed seg-
mentations. In many cases, an oversegmentation includes enough of the true
boundaries for good results, but it will also include fake boundaries, weakening
shape accuracy. Our solution to this problem is our main theoretical contribu-
tion. Instead of using actual segmentations, we compute their average similar-
ity, averaging over all possible segmentations for both images weighted by their
probabilities. Indistinct boundaries also contribute to the average, so we get good
matching even for unstructured images.

Segmentation averaging. On its face, averaging over all segmentations seems
impossible. It is clear that we cannot do it exactly. We present an approximation
which gives the average similarity between segmentations in closed form.

The main ideas in our approximation are as follows. First, we make a stan-
dard approximation to the segmentation probability distribution, representing
it in terms of the local affinities between pixels. For example, one can consider
normalized cuts (NCuts or NC) [23] as computing the maximum a posteriori
(MAP) segmentation for a probability distribution defined by the affinities.

Our key realization is that we can compute the averaged structure entropy
(and similarly the averaged SMI) separately in terms of each pixel’s contribution.
We show that a pixel’s contribution to the SE is the geometric mean size of the
segment containing it. The geometric mean is also hard to compute exactly, but
we exploit a standard technique to approximate it in terms of the arithmetic
mean. This approximation is a mild one: roughly, it originates from a Taylor
expansion of the geometric mean around the arithmetic mean, and we show both
theoretically and experimentally that the higher order terms in this expansion
can be neglected. The following sections present the details of our approach.

3 Segmentation Similarity and Averaging

A segmentation similarity measure. We start by defining the structure
entropy (SE). Given a segmentation s, we define a r.v. x which we consider as
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ranging uniformly over all pixels. More precisely, we define the states of x by the
segment labels in s, so the probability pi for the ith segment is the probability
that a pixel lies in that segment, i.e., it is the area ratio of the segment to the
whole image. For n segments, the structure entropy for s is

H(s) ≡ H(x) = −
n∑

i=1

pi log(pi). (1)

For two segmentations s, s′ and corresponding r.v. x, y, the joint structure
entropy H(s, s′) ≡ H(x, y) is the structure entropy of the joint segmentation. See
Fig. 1(b). Let z be the r.v. for the joint segmentation. The possible states of z
are the label pairs (ls, ls′) where, for each pixel, ls and ls′ give the containing
segment from s and s′ respectively. A pixel with labels ls and ls′ lies in the
intersection of the corresponding segments.

Having defined the structure entropy, we define the mutual information (MI)
of two segmentations in the standard way:

H(x; y) = H(x) + H(y) − H(x, y). (2)

We call this the structure mutual information (SMI). We also define the variation
of information (VoI) [17] as V(x, y) ≡ H(x, y) − H(x; y) or, equivalently,

V(x, y) ≡ 2H(x, y) − H(x) − H(y). (3)

[17] showed recently that the VoI gives a distance metric for clusterings. In our
context, it gives a distance metric on segmentations1.

3.1 The Averaged Structure Entropy

As described in Section 2, we match images by computing the average similarity
of their segmentations. To do this, we need the average of the structure entropy
over all possible segmentations. This section describes our main theoretical con-
tribution: an approximation to this average.

Let F be the image. For a given segmentation s, the mth pixel contributes

H(m)(s) = −A−1
F log(A−1

F A(s(m))) ∼ log(A(s(m))) (4)

to the SE, where s(m) is the segment containing pixel m, A(·) gives its area, and
AF ≡ A(F ) is the total area of F . The SE is the sum of H(m)(s) over all pixels.

Let S denote the set of all possible segmentations of F . We define the averaged
structure entropy ASE by

Hω(F ) =
∑

s′∈S

p(s′|F )H(s′), (5)

1 We derived our measures independently but later than Meila.
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where p(s′|F ) is the conditional probability of the segmentation s′ given F and
H(s′) is the SE for s′. The contribution of the mth pixel to the ASE Hω(F ) is

H(m)
ω =

∑

s∈S

p(s|F )H(m)(s) ∼ log[
∏

s∈S

A(s(m))p(s|F )]. (6)

Our key insight is: we can evaluate the ASE without enumerating all segmenta-
tions if we can compute the geometric mean segment size G ≡

∏
s∈S A(s(m))p(s|F ).

The geometric mean is hard to compute. A common approximation [27] is
G ≈ μ − σ2/2μ, where μ is the arithmetic mean and σ2 is the variance. Then

G ≈ E{A(s(m))} − Var{A(s(m))}/(2E{A(s(m))}). (7)

(E is the expectation.) One can conveniently express the arithmetic mean and
variance in terms of the affinity matrix MF , defined by

MF (m, n) =
∑

s∈S

p(s|F )Ms(m, n), (8)

where Ms is the segmentation affinity matrix for s with entries 1 (the pixels
belong to the same segment) or 0. For an image with N pixels, MF ∈ �N×N .
Each entry measures the probability that the two pixels lie in the same segment.

For any pixels m, n, let χ(m,n) be the indicator variable representing the event
that the given pixels belong to the same segment. Then E{χ(m,n)} = MF (m, n).
The mth pixel’s segment–size mean and variance are

E{A(s(m))} = E[
∑

n

χ(m,n)] =
∑

n

MF (m, n) (9)

Var{A(s(m))} =
∑

k,l

cov(χ(m,k), χ(m,l)) =
∑

k,l

E[χ(m,k), χ(m,l)] − E[χ(m,k)]E[χ(m,l)]

(10)
≤

∑

k,l

min(MF (m, k), MF (m, l))(1 − max(MF (m,k), MF (m, l))). (11)

To apply in practice, we estimate MF from local image properties, e.g.

MF (m, n) ≈
{

exp(−(Fm−Fn)2

2σ2 ) if d(m, n) ≤ D;
0 if d(m, n) > D,

(12)

where Fm is the intensity, d(m, n) the distance between pixels m, n, and σ the
standard deviation of intensity within a segment. (12) embodies the principle
that nearby pixels with similar intensity are more likely to group than distant
pixels with different intensities. Other cues, e.g., texture or the presence of an
intervening edge [15], could be used as well.

We simplify further by treating the pairwise probabilities (that two pixels
belong to the same segment) as independent. Then we have:

p (s|F ) ≈ 1
Z

∏

m≥n

MF (m, n)Ms(m,n) (1 − MF (m, n))1−Ms(m,n)
,



Shape Matching by Segmentation Averaging 567

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.935

1  

Empirical Cumulative Histogram

FullGeoApprox
−−−−−−−−−−−−−

IndGeoApprox

C
D

F

Fig. 2. Empirical distribution shows small impact of the independence assumption

where Z is a normalization constant. As discussed in Section 2, this assumption
is a common one and underlies segmentation algorithms such as NC. Using it,

Var{A(s(m))} ≈
∑

n

MF (m, n)(1 − MF (m, n)). (13)

(9) and (13) imply V ar{A(s(m)}
2E{A(s(m))} < 0.5. Since meaningful segments are sizable, we

expect their mean segment size E{A(s(m))} = μ � 0.5, implying that the arith-
metic mean approximates the geometric mean well. We use this approximation
in all our experiments, taking Hω(F ) ≈

∑
m log

(∑
n MF (m, n)

)
.

Validation of pairwise independence. For us the pairwise–independent approxi-
mation is especially appropriate, since we only keep the affinities of nearby pixels
(only nearby affinities can be reliably estimated) and these are mostly near 1
with small covariances, see (11). As a check, Fig. 2 shows the empirical distrib-
ution of ḠF ull

GInd
over real images, where ḠF ull is a lower bound on the geometric

mean computed from (11) without the independence assumption, and GInd is
the mean computed assuming independence.

The images are the Berkeley segmentation training data [16] (200 images here
resized to 80×120). For any image, each pixel gives a sample of the lower bound.
We computed the affinity matrices using the Gaussian (12) with deviation σ = 10
(intensity range [0,255]) and D = 5. For over 93.5% of the pixels, the ratio lower
bound is above 0.8, implying that the independence assumption has little effect
in practice. Note that Fig. 2 plots a lower bound on the ratio, so the ratio itself
will have an even better empirical distribution.

A modification. A potential issue is that estimates of the pairwise probabilities
in MF are reliable only over a small region (D in (12) should be small). Thus,
we average the structure entropy with respect to the neighborhood size instead
of the full image size, redefining the ASE as:

Hω = − 1
AF

∑

m

log
(

E{A(s(m))}
Am

)
(14)

where Am is the neighborhood size for the mth pixel.
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3.2 Shape Similarity from Averaging Segmentations

We compare the shapes in two images by computing the average distance be-
tween the image segmentations. Recall the definition (3) of VoI, which gives a
metric on segmentations. The average value of this metric, averaged over all
possible segmentations for two images F1 and F2, is Vω(F1, F2) ≡ 2Hω(F1, F2) −
Hω(F1) − Hω(F2), where the Hω(Fa) are the ASE for the two images, and

Hω(F1, F2) =
∑

s1

∑

s2

p(s1|F1)p(s2|F2)H(s1, s2) (15)

is the ASE of the joint segmentations for the two images. As before, we approx-
imate Hω(F1, F2) ≈

∑
m log

(∑
n MF1F2(m,n)

)
; the joint affinity matrix is:

MF1F2(m, n) = MF1(m, n)MF2(m, n). (16)

The VoI V(s, s′) has the joint structure entropy H(s, s′) as an upper bound.
When one searches for the most similar segmentation to a given segmentation
or image, this biases the result toward segmentations of low complexity. To
compensate for the bias, we normalize our averaged distance, using Δ(F1, F2) ≡
Vω(F1,F2)
Hω(F1,F2) as our measure for image comparisons. Note that 0 ≤ Δ ≤ 1, where
Δ = 1 implies that the images are very dissimilar. Our approximations give

Δ(F1, F2) ≈ 2−
∑

m log (
∑

nn′ MF1(m, n)MF1(m, n′))∑
m log (

∑
n MF1(m, n)MF2(m, n))

= 2−
∑

m log
(
Ā1mĀ2m

)
∑

m log
(
ĀJm

) ,

(17)
where Āam is the mean size of the containing segment for the individual or joint
segmentation. Roughly, Δ measures the statistical independence of the segment
sizes in the two images. Sec. 5 applies Δ in tracking and detection experiments.

Comparison to other measures. The Probability Rand (PR) index [26] can
also be considered a similarity metric based on affinity matrices:

PR(F1, F2) ∝
∑

m

[2
∑

n

MF1F2(m, n) −
∑

n

MF1(m, n) −
∑

n

MF2(m, n)] (18)

Note that PR sums the affinities separately, ignoring all spatial interactions
between nearby pixels. Another affinity-based measure, the similarity template
[25] (ST), includes the spatial interactions for each image separately but not
for the joint affinity. Our metric does include spatial interactions. Sec. 5 shows
experimental comparisons of our approach with PR and ST.

4 Application to Segmentation and Smoothing

Segmentation algorithms such as NC can be considered as computing the MAP
segmentation. The wide divergence in segmentations found by different methods,
and the imbalance between small/large segments, suggest that the probability
of segmentations has a broad asymmetric peak. For any such r.v., the mean is
the estimator with least variance and usually superior to the MAP. Can we use
our averaging technique to approximate the mean segmentation?
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The central segmentation. Since the mean has least variance, we can compute
it for a r.v. x as x̄ = argminx

∑
y p(y)|y −x|2. Recall that V (s, s′) gives a metric

for segmentations. Given an image F , we define its central segmentation

ŝ ≡ argmins

∑

s′∈S

p(s′|F )V(s′, s) ≡ argminsVω(s, F ). (19)

ŝ is “central” in that it minimizes the average distance V to all segmentations
of F . It is the mean segmentation with respect to the distance metric

√
V . We

choose ŝ partly for convenience, since we already approximated Vω; also, we
expect better segmentations using

√
V and ŝ than for the metric V .

Our reasons for this expectation are as follows. A typical image has many
qualitatively different yet plausible segmentations, implying p(s|F ) has many
large peaks. Averaging over all s combines qualitatively different segmentations,
whereas we want the center of the dominant peak. Using the metric

√
V for the

average gives a robust estimate with more resistance to outlier segmentations.
Note that [11] also segments by averaging over segmentations. Differences

include: [11] computes the mean affinity matrix, not the segmentation directly,
and averages by sampling. Our result is closed form and applies more generally,
e.g., to matching; [11] focuses just on segmentation.

We again normalize the averaged distance, redefining ŝ ≡ argmins
Vω(s,F )
Hω(s,F ) ≡

argminsΔ(s, F ), where Hω(s, F ) ≡
∑

s′∈S p(s′|F )H(s, s′).

Fig. 3. Segmentation results for naive greedy merging

Segmentation algorithms. We use the simple affinity matrix MF of (12) to
compute Vω(s, F ), Hω(s, F ) in all our experiments. We compute ŝ by iteratively
minimizing Δ(s, F ). We used two iterations; the first is fast greedy merging
(GM). We start with each pixel as a segment, then merge neighbor segments if
this decreases Δ(s, F ). Because MF is nonzero just over small neighborhoods,
we can compute the merged segmentation with linear cost O(NW ), where W
is the neighborhood size determined by D in (12). We used D = 5 for GM,
giving W = 121. To avoid local minima, one can repeat the merge several times,
starting with a small σ in MF (e.g., 1) and then gradually increasing it to a
specified value. Fig.3 shows this naive method can give excellent segmentations,
indicating the robustness of our segmentation criterion Δ(s, F ).

Our second method uses gradient descent. We represent a segmentation by
real-valued labels sm at each pixel m, with neighboring pixels in the same segment
iff their labels differ by < 1. Letting I denote the indicator function,
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H(s) = −
∑

m

log
∑

n Ms(m, n)
Am

= −
∑

m

log
∑

n I(|sn − sm| < 1)
Am

(20)

Hω(s, F ) = −
∑

m

log
∑

n I(|sn − sm| < 1)MF (m, n)
Am

. (21)

We initialize s to the original intensity image. Since we require smooth gradi-
ents, we approximate the derivative of I(|sm − sn| < 1) by a smooth function.2

Using a smoother approximation speeds up convergence and extends the search
for ŝ over a larger range. Note that we do not change our criterion Δ(s, F ) for a
good segmentation. Though our approximations may cause Δ(s, F ) to increase
after some iterations, at the end the algorithm outputs the s giving the least
Δ(s, F ). For even faster convergence, we add a “force” term γ ∂Hω(s,F )

∂sm
to the

gradient, where we set γ = 0.5. Again, adding this term widens the search but
does not affect our criterion Δ(s, F ). The force acts as a regularization that
focuses the search on simpler segmentations, helping overcome local minimum.
With these changes, we usually get convergence in a few hundred iterations. We
always ran for 500 iterations in our experiments, which takes a few seconds on
a 3.2G Hz AMD for images with 10000 pixels (code available on our web page).

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. a). Input images (80×120); b)-g). Segmentations after 1 - 6 optimization rounds.
After each round, we update standard deviations via (22) to encourage merging of small
segments. 1st row: (D, σ, α, t) = (2, 50, 0.25, 20);2nd row: (D, σ, α, t) = (2, 30, 0.5, 20).

Initially, we set σ in MF to a constant. This doesn’t allow for changes across
the image [9], as occur especially in textured regions. To deal with such changes,
we adapt σ locally based on the current segmentation:

σ(m,n) ←− σ(m,n)(1 + e−
A(s(m))

t )(1 + e−
A(s(n))

t ), (22)

where the parameter t acts as a threshold that encourages segments smaller
than t pixels to merge into their neighbors, with little effect on large segments.
Finally, we repeat the whole round of gradient descent/σ-update. The results
stop changing after a few rounds; we ran 6 rounds in all our segmentation ex-
periments. As Fig. 4 shows, updating σ highlights the large salient structures,
adding some stability in textured regions. (We don’t model texture explicitly as
in [22], so we cannot expect competitive performance in texture segmentation.)
2 max(1, |sm − sn|)−αsign(sm − sn). We used α = 0.25, 0.5.
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Smoothing. Segmentation relates closely to edge–preserving smoothing; in fact,
one can consider it as a piecewise constant smoother. We implement edge–
preserving smoothing by finding the “most similar” image to the original image
F according to our criterion Δ. The algorithm is steepest descent, similar to
the second segmentation procedure (but without the derivative approximation
or extra force), except we optimize Δ over images instead of segmentations.

The most similar image Fsim does not equal the original. Instead, one can show
that it has a segmentation probability distribution which clusters around ŝ, the
central segmentation of F . As a result, Fsim agrees with the boundaries of F and
varies smoothly over its non–boundary regions (to discourage unlikely segmen-
tations). Unlike previous methods based on local computations, our approach
smooths according to the image’s global optimal structures. By averaging over
probabilities, it can adjust the smoothing according to boundary strength and
smooth across boundaries, not just within segments. Fig. 5 shows our algorithm
gives appealing smoothings which preserve accurate contours.

Fig. 5. Left: the original images; Right: results after 30 iterations of smoothing. D = 2.
The σ used are 60,20,60 respectively.

5 Experiments: Segmentation, Detection, and Tracking

Image segmentation. Fig. 6 shows sample segmentations by our methods
compared to the best ones from EDISON mean-shift (MS) [7]. On images with
faint structures and large local ambiguity, MS often gives less accurate bound-
aries. For a quantitative comparison, we use the Berkeley segmentation test set
[16] with each gray image resized to 80 × 120. Since the standard boundary-
consistency criterion isn’t optimal for evaluating segmentations, we use region
consistency as our criterion. We consider multiple human-labeled segmentations
as giving a probability distribution for the “ground truth,” and evaluate seg-
mentations by their averaged distance from this distribution using Δ(s1, s2) =
V (s1, s2)/H(s1, s2). (Note this is not the Δ(s, F ) minimized by our algorithm!)
We applied MS using default parameters and intensity cues only. Our method
used D = 2, α = 0.5, t = 2. We also tested NC [23]. For each method, we obtain
3 segmentations per image by: varying the minimum region size as 5, 10, and
50 (MS); choosing σ = 40, 60, 100 (ours); specifying 60,40,20 segments (NC).
The parameters are chosen s.t. the segmentations for different methods contain
similar number of segments. Table 1 shows our method does best.
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Table 1. The mean average distance to “ground truth” segmentations

average segment # Ours MS NC
20 0.644 0.653 0.662
40 0.632 0.654 0.685
60 0.629 0.657 0.699

Fig. 6. Sample segmentation results. 1st: Input images, size 120 × 80 or 80 × 120; 2nd:
segmentations by our approach; 3rd: segmentations by mean shift (EDISON).

Detection. The “bag of features” (BoF) approach to recognition compares im-
ages according to the appearance (textures) of small patches. To cope with global
variability, it takes a resolutely local approach, neglecting spatial layout almost
completely. More recent work uses some layout information [12], or local shape
descriptors [18,10,24], or a combination of local appearance and shape [19], and
gives improved performance especially for object detection (i.e., localization).
As discussed in the introduction, the local–shape approaches rely on supervised
learning: to match an image, they must first build a descriptor of its contents
from training images.

Our approach can match shapes for general images. It complements the local–
appearance methods, and we could combine the approaches by treating ours as
another semi-local descriptor (but for shape). This would be the appropriate
strategy for recognition of general non–rigid objects.

Here, we concentrate on testing our method, applying it for detection on its
own. To demonstrate its robustness against global variability, we apply it as
a global descriptor: We detect an instance by measuring test images against a
template containing the whole object plus context. We use minimal learning,
detecting objects by thresholding our similarity measure with non-maximum
suppression [1]. We ran detection experiments on the UIUC car side-views and
the CalTech car rear-view and face data. The UIUC data contains 550 posi-
tive exemplars. We used their average affinity matrix as the car-side template,
detecting cars in test images by thresholding the normalized distance from the
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template. For the face and car rear-view data, we manually cut 10 positive ex-
amples from the first 10 test images and detected by thresholding the average
distance from these exemplars. Templates were scanned across the test images.

Instead of using (12), we estimated the affinities separately for each image
based on its statistics. Given image F , let hF

r be the empirical histogram of the
absolute intensity difference between pixels at a relative distance r. To get the
affinities, we normalize so that hF

r ∈ [0, 1] and average over r:

hF (i) = D−1
∑

r=1:D

hF
r (i) (23)

The normalization gives higher weight to the closer pixels. The choice for the
cut off D should reflect the scale of the object. For the car-side, car-rear, and
face data, we used D = 2, 7, 5 respectively.

Table 2. Detection performances: equal error rates (percentage)

Ours [25] [26] [18] [24] [19]
Faces 98.1 93 92 96.4 97.2 99
Crear 100 98.2 86 97.7 98.2 100
Cside 90 − − 85 − 93.8

As expected, our method gives better results than [25,26] (see Table 2). Our
results are also better than [18,24], which learn local shape descriptors from
training images, assuming, as we do, that the object is delineated by a bounding
box. [19] does better on car-side and slightly better on faces, but unlike us uses
both shape and appearance. Considering all reported results on these data, our
performance on faces and car-rear views is close to the state of the art with
many fewer exemplars, with slightly worse results for the car-side data. The
latter contains images with significant occlusion, so our global matching strategy
cannot compete with approaches based on local features. The best result for the
car–side data is 97.5% [13], but this algorithm unlike ours has a verification
stage; without this stage, it gives performance similar to ours.

Tracking. We next present a simple application of our match measure to track-
ing. Many shape–based trackers use global active contours; these require good
initializations around the object of interest. Other approaches weaken the shape
representation to make it robust to shape distortion, for instance representing
the object in terms of histograms over gradients, e.g. [8].

Our approach tracks an object by its detailed curve shapes. As a shape tracker,
it can localize the object more accurately than histogram–based (“blob”) track-
ers. Since our matching measure has a built-in robustness to shape distortions,
we can implement tracking essentially as simple template matching.

The user selects a window around an object in the starting image, and the
algorithm tracks by moving the window to the best shape match in each new
image (no motion, background information, or learning). Currently, we use brute
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Fig. 7. Tracking results. Bottom corner of each frame shows expected segment size for
each pixel of current template: dark pixels lie near boundaries. Our brute-force search
Matlab routine takes a few sec/frame with a 3200HZ AMD.

force search to find the best location; using iterative gradient ascent would give a
faster algorithm. To handle occlusion, we include history into the current window
representation, updating its affinity matrix description by M

(n)
F = (19M

(n−1)
F +

MF (n−1))/20, where MF (n−1) is the affinity matrix for image n − 1 alone, and we
use M

(n)
F for matching. Our results (e.g., Fig. 7) on a PETS 2007 sequence, and

on outdoor and indoor sequences from [20], show the method’s robustness to
occlusion, deformation, camera motion, and changes in illumination, scale and
pose. Our tracking is near perfect; for complete results see our web page.

6 Conclusion

We use image segmentations for shape matching. Our approach can match curves
without correspondence, over large-scale image regions, and with good robust-
ness to local shape variations and occlusion. It can exploit global shape struc-
tures, which are more distinctive than local features. To address the unreliability
of image segmentations, we describe a closed form approximation to an average
over all segmentations. Our approach has many extensions, yielding algorithms
for tracking, segmentation, and edge–preserving smoothing. In addition, we can
apply our approach for the objective evaluation of segmentation algorithms, and
for comparing computed segmentations to multiple “ground–truth” segmenta-
tion produced by humans. Finally, since our approach compares signals based
on their internal structure, it can match signals from different modalities, e.g.
images from different frequency bands, or visual images matched to sonar data.
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