
Interactive Tracking of 2D Generic Objects with

Spacetime Optimization

Xiaolin K. Wei and Jinxiang Chai

Texas A&M University
xwei@cs.tamu.edu, jchai@cs.tamu.edu

Abstract. We present a continuous optimization framework for inter-
active tracking of 2D generic objects in a single video stream. The user
begins with specifying the locations of a target object in a small set of
keyframes; the system then automatically tracks locations of the objects
by combining user constraints with visual measurements across the en-
tire sequence. We formulate the problem in a spacetime optimization
framework that optimizes over the whole sequence simultaneously. The
resulting solution is consistent with visual measurements across the en-
tire sequence while satisfying user constraints. We also introduce prior
terms to reduce tracking ambiguity. We demonstrate the power of our
algorithm on tracking objects with significant occlusions, scale and orien-
tation changes, illumination changes, sudden movement of objects, and
also simultaneous tracking of multiple objects. We compare the perfor-
mance of our algorithm with alternative methods.

1 Introduction

Our objective in this paper is to track generic moving objects, including 2D loca-
tions, 2D scales and orientation, from a monocular video sequence. Building an
interactive, accurate object tracking system is challenging because appearances
of objects might change overtime due to occlusions, object deformations and
illumination changes. Background clutter and sudden movements of the camera
or object might further deteriorate the performance of a tracking system.

One solution to this problem is sequential object tracking, which initializes a
tracker in one frame and then performs tracking forward recursively in time [1,2].
The approach is computationally efficient for online applications but might not
be appropriate for many offline applications such as video-based motion capture,
object-based video annotation, compression, and editing, where tracking accu-
racy is more preferred than real time performance. We believe an ideal system
for offline object tracking should take full use of image measurements. When
tracking goes wrong, user interaction is also needed to correct errors. There-
fore, another desirable feature for offline tracking is to allow the user to specify
constraints throughout the video to remove tracking ambiguities. The “feed for-
ward” approach [1,2], however, does not consider frames and user constraints in
the future.

D. Forsyth, P. Torr, and A. Zisserman (Eds.): ECCV 2008, Part I, LNCS 5302, pp. 657–670, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

658 X.K. Wei and J. Chai

Another solution is to formulate offline tracking in a spacetime optimiza-
tion framework [3] and consider the entire motion simultaneously [4,5,6]. The
approach is appealing because the system can use image measurements and user
constraints in both past and future to estimate the current state. Previous work
in this direction often use discrete optimization to compute the optimal solution.
However, as the number of frames or dimensions of the object state increase, dis-
crete optimization might be too expensive to be conducted. Therefore previous
approaches either use expensive preprocessing [4] or an object detector trained
offline [5,6] to reduce the search space.

In this paper, we present a continuous trajectory optimization framework for
offline tracking of 2D generic objects. Our optimization is very efficient; the
speed of the spacetime tracker is comparable to that of sequential object track-
ing such as meanshift [1]. The system also does not require any preprocessing
and offline learning steps. Other benefits of the framework are automatic occlu-
sion handling with robust statistics, explicit modeling of illumination changes
with weighted template models, ambiguity reduction with motion priors, and
simultaneous tracking of multiple object with group priors.

We demonstrate the power and flexibility of this approach by interactive track-
ing of cars or sports players in various difficult video sequences. We show the
system can accurately track a 2D generic object or or a group of objects with a
minimal amount of user interaction. We also show its robustness to occlusions,
background clutter, lighting and scale changes. Finally, we compare alternative
techniques for 2D object tracking, including mean shift [2] and particle filter [1].
The experiment shows that the spacetime tracker can produce more accurate
results with comparable processing time as sequential trackers.

2 Background

In this section, we discuss related work in tracking 2D generic objects from video.
Previous work in 2D object tracking can be classified into three main categories:
recursive tracking [2,7,8,9,1,10,11,12,13,14], batch-based optimizations [15,4],
and tracking-by-detection [16,5,6].

Recursive object tracking methods initialize one frame and then recursively
track the evolution of the state forward in time. For example, kernel-based meth-
ods sequentially track the state of nonrigid objects by minimizing viewpoint-
insensitive histograms between consecutive frames [2,7,13,14]. Kalman filter
extensions achieve more robust tracking of maneuvering objects by introducing
statistical models of object or camera motion [8,9]. Tracking through occlusion
and clutter is achieved by reasoning over a state-space of multiple hypotheses
via sequential monte carlo sampling methods [1,10,12].

In contrast, batch-based optimization approach formulates the tracking prob-
lem as a trajectory optimization and computes the entire motion sequence simul-
taneously. In particular, Sun and his colleagues explored discrete optimization
to track the object state (2D positions and 1D uniform scale) throughout the
video [4]. To reduce the search space for discrete optimization, they first run

Interactive Tracking of 2D Generic Objects with Spacetime Optimization 659

the mean shift algorithm to identify 2D candidate regions of the object in each
frame, and then applied spectral clustering to extract a number of 3D trajec-
tory segments of the object. Our approach also uses batch-based optimization
for 2D object tracking. Unlike previous approaches, we formulate the problem
in a continuous optimization framework. The continuous optimization allows us
to simultaneously track a group of objects, a capacity that has not been demon-
strated in discrete optimization approaches. More importantly, our continuous
optimization does not require any preprocessing steps.

Another approach for 2D object tracking is to apply object detection algo-
rithms for tracking. For example, researchers have adapted SVM recognition al-
gorithms for efficient visual tracking [16]. Recently, detection and optimization
have also been combined to obtain some of the advantages of each approach [5,6].
However, detection approaches require an offline training step for particular ob-
jects, and might not be appropriate for tracking an arbitrary 2D objects.

Our approach is motivated by keyframe guided rotoscoping [15] which uses
continuous optimization to track contours of an object with user-specified con-
tours in two or more keyframes. Rotoscoping makes full use of the information in
the keyframes to improve the performance of contour tracking. Our work extends
this approach significantly by applying it to 2D generic objects.

3 Overview

We formulate object tracking as a spacetime optimization problem, which opti-
mizes over entire sequence simultaneously under user-specified constraints. The
system contains three major components:

User interactions. The user begins by clicking the location of target objects
in the first and the last frame. The keyframes are then used to interpolate in-
between motions based on image measurements of the entire sequence and pre-
defined priors.

Spacetime optimization. The system computes the “best” motion by opti-
mizing over the whole image sequence at once. The objective function includes
keyframe constraints, a weighted template model, an image measurement term
and motion prior terms.

Refinement. Because of the difficulty of the tracking problem, there will often
be unsatisfactory aspects of the tracking results. Once the optimization has
completed, the user may refine tracking results in any frame and then rerun the
optimization with these new constraints.

We define the feature model of target objects in the next section and then
discuss the spacetime tracking in detail in section 5.

4 Target Representation

In this section, we first discuss how to define a feature space to characterize
target objects (section 4.1). We then describe how to represent the template of

660 X.K. Wei and J. Chai

0 40 80 110
0

0.1

0.2

0.27

(a) (b) (c)

Fig. 1. Target representations: (a) A target object is approximated as an elliptic region;
(b) The elliptic region is parameterized by 5-dimensional vector zt = (xt, yt, at, bt, θt)

T ;
(c) The appearance of the object can thus be represented using histogram distributions
of color information in the HSV color space

target objects with weighted template models (section 4.2). We also show how to
evaluate the distance between the target template and target candidate (section
4.3).

4.1 Feature Space

In our experiments, a target object is approximated by an elliptic region (see
Figure 1(a)). The state of the target object at frame t can thus be described by
parameters of the ellipse (see Figure 1(b)):

zt = (xt, yt, at, bt, θt)
T (1)

where the parameters xt and yt represent the coordinates of the center of the
ellipse and the parameters at and bt specify the lengths of the long and short
axes respectively. The parameter θt is the orientation of the ellipse.

We choose the Hue-Saturation-Value (HSV) color space to model the appear-
ance of target objects. We further define the feature model of a target object as
a histogram distribution of all pixels within the elliptic region (see Figure 1(c)).
The feature model of a target object at frame t is represented by

h(zt) = (h1(zt), . . . , hM (zt))
T

,
∑M

m=1hm(zt) = 1 (2)

where the parameter M is the total number of bins used in the HSV color space
and the function hm(zt) is the density of the m-th bin. Let nt be the number
of pixels located inside the target region at frame t and pi

t, i = 1, ..., nt be the
image coordinates of the i-th pixel. Mathematically, we can define the function
hm(zt) as follows:

hm(zt) =
∑nt

i=1 δ(f(I(pi
t)) − m) (3)

where the function δ(·) represents the Kronecker delta function. The function
I(pi

t) represents the color of the i-th pixel at the location pi
t. The function f

maps I(pi
t) to the index of its bin in the quantized feature space.

Because color information is only reliable when both the saturation and the
value are not too small, we populate an HS histogram with NhNs bins using

Interactive Tracking of 2D Generic Objects with Spacetime Optimization 661

only the pixels with saturation and value larger than 0.1 and 0.2 respectively.
The remaining “color-free” pixels can however retain a crucial information when
tracked regions are mainly black and white. We thus use Nv bins to quantize
the V space separately. The resulting complete histogram is composed of M =
NhNs+Nv bins. In our experiments, Nh, Ns and Nv are set to 10 experimentally.
Figure 1(c) shows a histogram distribution computed from color information of
a target object shown in Figures 1(a).

We regularize the histogram distribution hm(zt) by masking the objects with
an isotropic kernel in the spatial domain. When the kernel weights, carrying
continuous information, are used in defining the feature space representation,
the regularized histogram distribution of target regions becomes a smooth and
continuous function of target states, zt.

An isotropic kernel, with a convex and monotonic decreasing kernel function
k(r), is used to assign smaller weights to pixels farther from the center. In our
experiments, we choose the Epanechnikov profile as our kernel function [17]:

k(r) =
{

1 − r 0 ≤ r ≤ 1
0 r > 1 (4)

where r ≥ 0. This kernel function makes the regularized histogram distribution
differentiable everywhere inside the elliptical region. Its gradients can, therefore,
be evaluated analytically.

The regularized histogram distribution of the feature in the target region at
frame t is computed as:

hm(zt) =

∑nt

i=1 k
(
(ui

a)2 + (vi

b)2
)

δ
(
f(I(pi

t)) − m
)

∑nt

i=1 k
(
(ui

a)2 + (vi

b)2
) (5)

The parameters ui and vi are the local coordinates of the i-th pixel (see Fig-
ure1(b)), which can be computed as follows:

(
ui

vi

)

=
(

cos θ sin θ
− sin θ cos θ

)

(pi
t − ct) (6)

where the vector ct is a 2D vector (xt, yt). Therefore, the feature model of a target
region h(zt) is a vector-valued function of the object state zt = (xt, yt, at, bt, θt)T .

4.2 Weighted Template Model

Our interactive tracking system starts with keyframe constraints defined at the
first and last frame. Let z1 and zT represent the state of the first and last frame
respectively. We start by computing the feature models of the first and last frame
h(z1) and h(zT).

We assume that the template model for any in-between frames can be modeled
as a linear interpolation of the feature models at keyframes:

Hm(βt) = βthm(z1) + (1 − βt)hm(zT) 0 ≤ βt ≤ 1, 1 < t < T (7)

662 X.K. Wei and J. Chai

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame t

L
in

ea
r

In
te

rp
o

la
ti

o
n

 P
ar

am
et

er
 β

t

Fig. 2. The optimized βt over time for the “Car Team” sequence: The red points are
the optimized β values for five frames shown on the top respectively

where the interpolation weight βt is a scalar value between 0 and 1. The inter-
polated feature model at frame t, H(βt) = (H1(βt), . . . , HM (βt))T , is therefore
a function of βt. One attractive feature of the weighted template models is to
model possible appearance changes between two keyframes with the parameter
βt. For example, when the weight βt is close to one, the appearance of the tem-
plate object becomes similar to that of the first keyframe. When the weight βt

approaches to zero, the template object looks more like the target object in the
last keyframe.

Figure 2 shows the evolution of the weight βt optimized from one testing video
sequence. The images on the top show five sample frames of the target vehicle.
The appearances of the target object is consistent with the reconstructed βt

values (red points).

4.3 Similarity Function

The similarity function is used to evaluate the distance between a template
object and candidate objects in the feature space.

We define their distance, d, as

d(zt, βt) =
√

1 − ∑M
m=1

√
hm(zt)Hm(βt) (8)

where the function hm(zt) is the feature model of an candidate object and the
function Hm(βt) is the weighted template model at frame t. Both functions
are regularized histogram distributions. A differential kernel function yields a
differentiable similarity function. We, therefore, can evaluate the gradient of the
similarity function in terms of βt and zt analytically.

Interactive Tracking of 2D Generic Objects with Spacetime Optimization 663

5 Spacetime Object Tracking

We formulate object tracking as a continuous trajectory optimization problem
and estimate the states of objects across the entire sequence simultaneously.
This section discusses how to derive the objective function and how to optimize
it efficiently.

5.1 Objective Function

The objective function consists of two types of energy terms: image term and
prior term. The image term prefers a solution which minimizes appearance differ-
ence between the template object and candidate object. The prior term penalizes
quickly moving objects and sudden changes of scales and appearances. The prior
term is pivotal for removing the tracking ambiguity due to occlusions or clutter.

Image Term. The data term, EI , measures similarity between the template
model H(βt) and candidate object h(zt) ranging from frame 2 to frame T − 1.

To deal with occlusions, we apply robust statistics to measure the data term.
Robust estimation addresses the problem for finding the values for the para-
meters from the measurement data with outliers, which correspond to heavily
occluded objects in our experiments. We therefore can define the data term as
follows:

EI =
∑T−1

t=2 ρ(d(zt, βt)) (9)

To increase robustness we will consider estimators for which the influence of
outliers tends to zero. We choose the Lorentzian estimator but the treatment here
could equally be applied to a wide variety of the other estimator. A discussion
of various estimators can be found in [18,19]. More specifically, the Lorentzian
function is defined as follows:

ρ(r) = log(1 + 1/2(r/σ)2) (10)

where the scalar σ is a parameter for the robust estimator. In our experiments,
σ is set to 0.2475.

Prior Terms. Due to occlusions, background clutter, illumination or scale
changes, image term might not be sufficient for tracking objects correctly. Prior
term is very important for reducing the tracking ambiguity. There are two types
of prior terms used in our paper:

– The state smoothness term, EP , minimizes state changes over time:

EP =
∑T

t=2‖zt − zt−1‖2 (11)

where zt is the state of the target object at frame t, which includes 2D
location, 2D scales, and orientation.

664 X.K. Wei and J. Chai

– The illumination smoothness term, EL, measures the temporal smoothness
of the interpolation weight, βt, over time.

EL =
∑T

t=2(βt − βt−1)2 (12)

Tracking objects only by prior terms is similar to performing smooth interpo-
lation of keyframes.

5.2 Optimization Method

After combining the image term and prior terms, our interactive object tracking
problem becomes the following constrained nonlinear optimization problem:

arg minZ,β EI(Z, β) + λP EP (Z) + λLEL(β)
s.t. 0 ≤ βt ≤ 1 t = 1, ..., T

(13)

where Z and β are the concatenation of the system states zt and the concate-
nation of the interpolation weights βt from frame 2 to frame T − 1. The weights
λP and λR are set to 0.0015 and 0.5 respectively.

The number of variables in our optimization can be quite large — about
five times the number of total frames. The Jacobian matrix for our objective
function, however, is very sparse. We therefore optimize the objective function
with large-scale trust-region reflective Newton methods.

A linear interpolation of the user-specified keyframes is used for optimization
initialization. We found that the optimization procedure runs very efficiently and
always converges quickly (usually less than 20 iterations). In our experiments,
we found that the spacetime tracker with a Matlab implementation can track
objects interactively (from 12 fps to 25 fps).

The gradient of the energy function is analytically evaluated at each itera-
tion (See Appendix). The two prior terms, Equation 11 and Equation 12, are
quadratic functions, whose derivatives can be easily derived. The partial deriva-
tives of the image term can also be evaluated analytically because the similarity
function is analytically differentiable (See Appendix).

Due to the complexity of a real world, it is almost impossible to build a
fully automatic system that can robustly track any interesting objects from
video. When a tracker fails, user interaction must be used to correct tracking
errors. Our system provides an efficient way to combine user interactions with
an automatic vision process. The user can refine the tracking result at any frame
and restart the optimization. When more than two keyframes are defined, the
spacetime solver computes the solution for each subsequence separately.

Like any gradient-based optimization methods, the system might fall in local
minima. Though, we rarely have this problem in our experiments. One strength
of the system is to involve the user into the loop. If the optimization falls in
a local minima, the user can briefly review the result and then specify more
keyframes to rerun the optimization.

Interactive Tracking of 2D Generic Objects with Spacetime Optimization 665

Table 1. The statistics for video sequences tested in our paper

Sequence Length Occlusions Scale changes Lighting changes Running Time

Touchdown 100 large large none 11.9s
IR 240 partial small large 14.9s

Rushing 94 large small none 9.4s
Truck in Forest 130 large medium large 22.4s

Car Teams (one car) 94 partial small medium 6.3s

#1 #45 #75 #90 #100

Fig. 3. The “Touchdown” sequence shows our algorithm’s robustness to scale changes

5.3 Multi-object Tracking

Our framework can also be used to track a group of objects simultaneously.
When multiple objects move as a group such as a group of racing cars or football
players, their movements are not independent. One advantage of simultaneous
tracking of multiple objects is to utilize motion prior between multiple objects
to reduce tracking uncertainty.

Similarly, we can formulate the multi-object tracking problem as the following
optimization problem:

argmin{Zn,βn}
∑

n(En
I (Zn, βn)+λP EP (Zn) + λLEL(βn)) + λGEG(Z1, ...,ZN)

s.t. 0 ≤ βn
t ≤ 1 t = 1, ..., T

(14)
where N is the total number of objects to be tracked. The parameters Zn and
βn are the concatenation of the system states zt and the concatenation of the
interpolation weights βt over time for the n-th object. The optimization term EG

models group prior for multi-object movements. In our experiments, we choose to
minimize the changes of the relative distances between multiple objects, though
more sophisticated group priors might be used.

6 Experimental Results

In this section, we first test the performance of our algorithm on real video
sequences. We then compare our algorithm with two alternative object tracking
techniques–particle filter [1] and mean shift [2]. A short summary of testing
video sequences and their computational time is reported in Table 1. All the
computational time reported here is based on Matlab implementations. Our
tracking results are best seen in the accompanying video.

666 X.K. Wei and J. Chai

6.1 Testing on Real Video

We tested the effectiveness of our system on different kinds of video sequences
with occlusions, scale changes, and illumination changes (see Figures 3, 4, 5, and
6). We have also done experiments on simultaneous tracking of multiple objects
(see Figure 7).

The “Touchdown” sequence contains a target object with significant scale
changes (see Figure 3). Throughout the testing sequence, the scales of the player
increase from (a1, b1) = (10.1, 22.5) to (a100, b100) = (45.1, 117.7) because of the
zooming of a camera.

The “IR” sequence has significant illumination changes. The low-resolution
and noisy video makes the tracking problem even more challenging. Figure 4
shows our system can track the video accurately.

The “Rushing” sequence demonstrates the performance of our algorithm on
tracking target objects with significant occlusions (see Figure 5). The video has
significant occlusions in two different places. From frame 15 to 27, the target player
is occluded by an opponent player in a different uniform. The second occlusion
lasts longer (from frame 59 to 81); the target player is completely occluded by his
teammate with the same uniform during a certain period of time.

The “Truck in Forest” sequence demonstrates the performance of our
algorithm on tracking target objects with significant occlusions, illumination
changes (shadows) and orientation changes (see Figure 6). In addition, the robust
estimator for the data term allows the system to automatically detect when the
object is heavily occluded (see blue ellipses).

#1 #50 #170 #200 #240

Fig. 4. The “IR” sequence includes significant illumination changes and is successfully
tracked by our algorithm

#1 #25 #45 #65 #94

Fig. 5. The “Rushing” sequence includes significant occlusions and is successfully
tracked by our algorithm

Interactive Tracking of 2D Generic Objects with Spacetime Optimization 667

#1 #50 #70 #90 #130

Fig. 6. The “Truck in Forest” sequence shows the performance of our algorithm on
tracking an object with significant occlusions. The system can also detect when the
target is occluded (in blue ellipses).

#1 #40 #55 #75 #94

Fig. 7. Simultaneous tracking of three cars with group priors

The “Car Team” sequence demonstrates the power of our algorithm on
tracking multiple objects simultaneously (see Figure 7). It is a difficult sequence
to track. The cars have a sudden turn in the middle of the sequence and target
objects also look very similar. With the group prior described in section 5.3, we
successfully track the movements of three cars in the same team.

#40 #60 #80 #100 #120

Fig. 8. Comparisons on the “Truck in Forest” sequence. Our spacetime tracker (first
row) successfully tracked the whole sequence. The particle filter (second row) and the
mean shift method (third row) failed to track the object across the entire sequence.

668 X.K. Wei and J. Chai

Table 2. The number of keyframes needed and the running time (in brackets) for
different methods. The running time is based on Matlab implementations.

Sequence Mean shift Particle filtering Our method

Touchdown 4 (214s) 5 (74s) 2 (12s)
IR 6 (31s) 5 (19s) 2 (15s)

Rushing 6 (33s) 6 (19s) 2 (9s)
Truck in Forest 9 (180s) 8 (52s) 2 (22s)

Car Teams (one car) 5 (49s) 4 (27s) 2 (6s)

6.2 Comparisons with Other Methods

This section compares the performance of our spacetime tracking algorithm with
particlefilter [1] andmeanshift [2].Figure8showscomparisonresults for the“Truck
inForest” sequence.Table 2reports, for differentmethods, thenumber of keyframes
and the computational time needed in order to track the targets successfully. Our
method provides better performance than the two alternative algorithms.

7 Discussion

We have presented a spacetime optimization approach for 2D generic object
tracking. Unlike previous offline tracking algorithms [4,5,6], our system uses con-
tinuous optimization for 2D object tracking and does not require any preprocess-
ing or off-line learning learning steps. The system can achieve high quality results
with minimal user input. Our experiments demonstrate the power of our algo-
rithm on tracking objects with occlusions, scale changes, illumination changes,
and sudden movement of objects. We also show the performance algorithm on
simultaneous tracking of multiple objects which might be too expensive for pre-
vious offline tracking algorithms.

As compared to recursive tracking methods, our method is more appropriate
for interactive applications such as object-based video annotation, compression,
editing, and video based motion capture. For those applications, high quality
results are far more important than real-time performances. In the mean time,
all video frames are available in advance. Combining user interaction with image
measurements across the entire video sequence provides more accurate results
than automatic tracking methods.

We believe the basic idea of our spacetime tracking could also be used for
tracking other types of objects. One of immediate directions for future work is,
therefore, to extend our spacetime optimization for interactive feature tracking
and articulated object tracking.

References

1. Isard, M., Blake, A.: Condensation conditional density propagation for visual track-
ing. International Journal on Computer Vision 29(1), 5–28 (1998)

2. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans.
Pattern Analysis and Machine Intelligence 25(3), 564–577 (2003)

Interactive Tracking of 2D Generic Objects with Spacetime Optimization 669

3. Witkin, A., Kass, M.: Spacetime constraints. In: Proceedings of ACM SIGGRAPH
1998, pp. 159–168 (1988)

4. Sun, J., Zhang, W., Tang, X., Shum, H.Y.: Bi-directional tracking using trajectory
segment analysis. In: Proceedings of ICCV, vol. 1, pp. 717–724 (2005)

5. Buchanan, A., Fitzgibbon, A.: Interactive feature tracking using k-d trees and dy-
namic programming. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, vol. 1, pp. 626–633 (2006)

6. Wei, Y., Sun, J., Tang, X., Shum, H.Y.: Interactive offline tracking for color object.
In: Proceedings of ICCV (2007)

7. Elgammal, A., Duraiswami, R., Davis, L.: Probabilistic tracking in joint feature-
spatial spaces. In: Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, vol. 1, pp. 781–788 (2003)

8. Blackman, S., Popoli, R.: Design and analysis of modern tracking systems. Artech
House Publishers (1999)

9. Koller, D., Daniilidis, K., Nage, H.: Model-based object tracking in monocular
image sequences of road traffic scenes. International Journal on Computer Vi-
sion 10(3), 257–281 (1993)

10. Rasmussen, C., Hager, G.: Joint probabilistic techniques for tracking multi-part
objects. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 560(n)-576
(1993)

11. Jepson, A., Fleet, D., El-Maraghi, T.: Robust online appearance models for visual
tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 25(10), 1296–
1311 (2003)

12. Wu, Y., Huang, T.S.: Robust visual tracking by integrating multiple cues based
on co-inference learning. International Journal on Computer Vision 58(1), 55–71
(2004)

13. Guskov, I.: Kernel-based template alignment. In: Proceedings of the IEEE Com-
puter Vision and Pattern Recognition (CVPR), vol. 1, pp. 610–617 (2006)

14. Megret, R., Mikram, M., Berthoumieu, Y.: Inverse composition for multi-kernel
tracking. In: Computer Vision, Graphics and Image Processing. LNCS, pp. 480–
491 (2007)

15. Agarwala, A., Hertzmann, A., Salesin, D.H., Seitz, S.M.: Keyframe-based tracking
for rotoscoping and animation. ACM Transactions on Graphics 24(3), 584–591
(2005)

16. Avidan, S.: Support vector tracking. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26(8), 1064–1072 (2004)

17. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 24(5), 603–619
(2002)

18. Huber, P.: Robust statistics. Wiley, Chichester (1981)
19. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust statistics:

The approach based on influence functions. Wiley, Chichester (1986)

Appendix

This appendix shows how to derive the Jacobian matrix of Equation 8. The
Jacobian matrix can be analytically evaluated based on the following partial
derivatives.

670 X.K. Wei and J. Chai

∂d(zt, βt)

∂xt
= − 1

a2
t

F (zt, βt)

hm(zt) �=0�
m=1..M

�
Hm(βt)

hm(zt)

nt�
i=1

ui
t

�
δm(pi

t) − hm(zt)
�

(15)

∂d(zt, βt)

∂yt
= − 1

b2
t

F (zt, βt)

hm(zt) �=0�
m=1..M

�
Hm(βt)

hm(zt)

nt�
i=1

vi
t

�
δm(pi

t) − hm(zt)
�

(16)

∂d(zt, βt)

∂at
= − 1

a3
t

F (zt, βt)

hm(zt) �=0�
m=1..M

�
Hm(βt)

hm(zt)

nt�
i=1

(ui
t)

2
�
δm(pi

t) − hm(zt)
�

(17)

∂d(zt, βt)

∂bt
= − 1

b3
t

F (zt, βt)

hm(zt) �=0�
m=1..M

�
Hm(βt)

hm(zt)

nt�
i=1

(vi
t)

2
�
δm(pi

t) − hm(zt)
�

(18)

∂d(zt, βt)

∂θt
= (

1

a2
t

− 1

b2
t

)F (zt, βt)

hm(zt) �=0�
m=1..M

�
Hm(βt)

hm(zt)

nt�
i=1

ui
tv

i
t

�
δm(pi

t) − hm(zt)
�

(19)

∂d(zt, βt)

∂βt
=

1

4d(zt, βt)

Hm(βt) �=0�
m=1..M

�
hm(zt)

Hm(βt)
(Hm(βt) − Hm(β1)) (20)

where,

F (zt, βt) =
1

2d(zt, βt)
�nt

j=1 k ((ui
t/at)2 + (vi

t/bt)2)
and δm(pi

t) = δ(f(I(pi
t)) − m)

Note that, in Equation 15, 16, 17, 18 and 19, we should drop off the compo-
nents when hm(zt) = 0 in the summations over m. Because when hm(zt) = 0,
hm(zt) will not change with respect to zt (see Equation 5). Thus partial deriv-
atives of

√
hm(zt)Hm(βt) (in Equation 8) with respect to zt are zeros, so the

m’s with hm(zt) = 0 should be dropped off. Similarly, the components with
Hm(βt) = 0 in Equation 20 also need to be dropped off.

The distance function (Equation 8) is differentiable everywhere inside the
elliptical region. Therefore the whole objective function is also differentiable
inside the elliptical region.

	Interactive Tracking of 2D Generic Objects with Spacetime Optimization
	Introduction
	Background
	Overview
	Target Representation
	Feature Space
	Weighted Template Model
	Similarity Function

	Spacetime Object Tracking
	Objective Function
	Optimization Method
	Multi-object Tracking

	Experimental Results
	Testing on Real Video
	Comparisons with Other Methods

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

