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Abstract. Segmentation has gained in popularity in stereo matching.
However, it is not trivial to incorporate it in optical flow estimation due to
the possible non-rigid motion problem. In this paper, we describe a new
optical flow scheme containing three phases. First, we partition the input
images and integrate the segmentation information into a variational
model where each of the segments is constrained by an affine motion.
Then the errors brought in by segmentation are measured and stored in
a confidence map. The final flow estimation is achieved through a global
optimization phase that minimizes an energy function incorporating the
confidence map. Extensive experiments show that the proposed method
not only produces quantitatively accurate optical flow estimates but also
preserves sharp motion boundaries, which makes the optical flow result
usable in a number of computer vision applications, such as image/video
segmentation and editing.

1 Introduction

Accurate motion estimation is required for solving many computer vision prob-
lems, including moving object segmentation and video understanding. However,
high-quality motion estimates are usually difficult to be obtained, especially for
occluded pixels, discontinuous motion boundaries, and textureless regions.

In stereo matching [1,2,3], color-segmentation-based approaches have demon-
strated their strong capability in handling textureless and occluded regions.
These methods generally assume a specific (e.g. planar) model for each segment.
Regularization is then applied to the model parameters. However, similarly em-
ploying the segmentation in modern optical flow frameworks is not easy, owing
to the insufficiency of using the segmented regions to constrain the non-rigid
motion in consecutive frames. Small-size segments were used in [4] to alleviate
this problem. But it usually suffers from the following limitations. For one thing,
small segments cannot faithfully represent the structure of natural scenes and
thus weaken the regularization power brought forth by segmentation. For an-
other, small patch size might result in poor estimation of the motion parameters
due to the local aperture problem.

In this paper, we address two important issues of using segmentation in op-
tical flow - that is, 1) how to know whether the motion model fits the flow in

D. Forsyth, P. Torr, and A. Zisserman (Eds.): ECCV 2008, Part I, LNCS 5302, pp. 671–684, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



672 L. Xu, J. Chen, and J. Jia

a segment or not, and 2) how to handle the non-rigid motion while faithfully
preserving the image structures. To this end, a three-step optical flow framework
is proposed. In particular, we first segment the input images based on the color
information and the initial motion estimate. The segmentation is then incor-
porated into a variational model to estimate the motion parameters combining
the regularization terms. To reduce the possible segmentation errors caused by
inappropriate motion parameterization for non-rigid objects, we compute a con-
fidence map that represents the likelihood whether the parametric flow estimate
for a specific pixel is trustworthy or not. This confidence map is taken into a fi-
nal global optimization step to selectively and locally refine the problematic flow
estimates. Our experimental results show that the proposed method is capable
of handling both the rigid and non-rigid motions.

2 Related Work

Optical flow is a long studied problem [5,6,7]. Following the framework of Horn
and Schunck [6], efforts have been recently put in improving the accuracy and
efficiency using a variational model [8,9,10,11,12]. The main issue yet to be ad-
dressed is the recovery of high quality motion boundary in the presence of large
occlusion.

There exist ways to alleviate the boundary problem. Black and Anandan [7]
applied a robust function to handling the possible outliers and the motion dis-
continuity. This function is also employed in other methods [8,10] and is solved
as a modified L-1 norm minimization problem.

Anisotropic diffusion is a method using the gradient information to reduce
over-smoothing in the processed region. Tschumperlé et al. [13] proposed a
matrix-valued scheme for nonlinear diffusion in estimating the matrix-form mo-
tion tensor. The adaptive diffusion function returns small values at object bound-
ary, which controls the smoothness over the motion discontinuity. Xiao et al. [11]
extended the work by substituting the diffusing tensor with an adaptive bilat-
eral filter, and controlled the diffusion process according to the occlusion detec-
tion. Although these methods can sharpen the motion boundary, they do not
handle well large occlusions, possibly making the recovered motion boundary
over-smoothed.

Segmentation- or layer-based approaches assume a parametric motion model
(e.g., translational or affine model) for each segment. To handle non-rigid mo-
tion, the size of segments has to be small. Zitnick et al. [4] generated consistent
segments between frames and enforced a translational model within each seg-
ment. Piece-wise parametric motion model is also used in [5,7,14] within small
patches. This assumption may result in poor estimation of the motion parame-
ters because of the local aperture problem. Black and Jepson [15] relaxed the
affine constraint by adding local deformation to the parametric model, result-
ing in a non-parametric motion. Mémin and Pérez [16] combined the piece-wise
parametric motion with local disturbance in a hierarchical setting to mix lo-
cal flow field with different parameterizations. For these methods, as the model
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Fig. 1. Overview of our algorithm

is no longer piece-wise parametric, the regularization power is weakened. The
underlying difficulties of the segmentation-based methods are the handling of
non-rigid motion and the robust estimation of parameters with the presence of
occlusion. These difficulties hinder the widely studied color segmentation from
being trivially employed in optical flow estimation.

Another topic related to optical flow is the motion segmentation which aims
at extracting moving objects. The segmentation is usually accomplished based
on motion [17,18] or the combination of color and motion [19,20,21,22]. Joint
estimation of motion and segmentation has recently been studied [17,18,21],
where the contour evolving and motion estimation are iteratively performed.
The motion segmentation methods cannot be directly applied to flow estimation
since extracting a moving object does not need to accurately estimate flow for
each and every pixel.

3 Our Approach

Given an image pair (I1, I2) that contains objects undergoing small spatially-
variant, and possibly non-rigid motion, our objective is to estimate the motion
flow vector w(x) = (u(x), v(x))T for each pixel x = (x, y)T in image I1. Our
approach consists of three main steps. We illustrate the block diagram in Fig. 1.
Briefly speaking, we first estimate an initial motion field based on a simple vari-
ational model. The initialized flow is then combined with the color information
to generate segments. The flow field is refined by segmentation using a robust
parameter estimation process. In order to handle the non-rigid motion, a con-
fidence map is constructed measuring the confidence of using the motion para-
meterization in each segment. The final flow is obtained by relaxing the motion
parameterization constraint in a global optimization step using the confidence
map.

To visualize the dense flow, in this paper, we adopt the color coding in [23]
where the chromaticity is used to distinguish the motion direction and the
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(a) (b) (c) (d)

Fig. 2. Flow representation. (a) A reference color wheel. (b) One input image of the
Yosemite sequence. (c) Traditional flow field representation using arrows. (d) Optical
flow field with the color-coded representation.

intensity corresponds to the motion magnitude. Fig. 2 shows the reference color
wheel and our Yosemite result represented by both flow arrows and colors.

3.1 Initial Flow

In this stage, we enforce the color constancy and use the variational model similar
to that in [8,10] to initialize the flow field. The data term is expressed as

EData(u, v) =
∫

Ω1

3∑
c=1

Ψ(|I2(x + w, c) − I1(x, c)|2, εD)dx, (1)

where Ω1 is the domain of image I1, Ψ(x, ε) is the Total Variation (TV) regu-
larizer [8] defined as Ψ(x, ε) =

√
x + ε2, and I(x, c) denotes the color of pixel x

in the cth channel of image I. The smoothness term is given by

ESmooth(u, v) =
∫

Ω1

Ψ(‖∇u‖2 + ‖∇v‖2, εS)dx, (2)

where ∇ is the first-order derivative operator. In the rest of this paper, we denote
ΨD(x) = Ψ(x, εD) and ΨS(x) = Ψ(x, εS) for simplicity’s sake. The initial flow is
estimated by minimizing the combined energy

(a) (b) (c)

Fig. 3. An example of the initial flow. (a) and (b) show the image pair of the “Teddy”
example from the Middlebury dataset [23]. (c) The dense flow result obtained in ini-
tialization. It is over-smoothed and contains errors around the object boundary.
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Fig. 4. Two-pass segmentation demonstration

E0(u, v) = EData(u, v) + αESmooth(u, v), (3)

where α is a weight balancing the two terms. E0(u, v) is minimized by solv-
ing the corresponding Euler-Lagrange equations using the nonlinear multigrid
scheme [10]. In this step, we compute the flow bidirectionally, i.e. a flow pair
(w0

1,w
0
2), indicating mappings from I1 to I2 and from I2 to I1 respectively.

This initial flow estimates contain errors mostly in the occluded and texture-
less regions. One example is shown in Fig. 3 where the flow does not preserve
clear edges and the whole map looks over-smoothed. We thus propose incorpo-
rating segmentation to improve it.

3.2 Color-Motion Segmentation

In our optical flow framework, the segments are produced counting in both the
color and initial flow information, which reduces the possibility of mis-classifying
a pixel to a segment only using color. Our method uses a two-pass segmen-
tation scheme which first partitions the input images with regard to color to
preserve edge structures, and then further “splits” each segment into more
motion-distinctive patches. The two-pass segmentation is performed, in our
approach, by the Mean-shift method [24] using the 3D color and 2D flow in-
formation respectively. The segmentation parameters all have fixed values in ex-
periments (7 for spatial bandwidth, 6.5/0.02 for the range bandwidth of color/
motion, 200 for minimum region size). Fig. 4 illustrates that segments A and
B are produced using the color information. They are further split into more
motion patches. A merging operation is performed to remove small patches near
color discontinuities, as they are typically caused by occlusions and should not
be treated as independent segments.

3.3 Parametric Flow Estimating Incorporating Segmentation

Regional information is used in stereo or the motion estimation by assuming a
parametric model [7,4] – that is, within each segment, all pixels are in comply
with a single translational or affine motion model where the model parameters
are estimated either by a regression method [7], or using plane fitting [2,3].
However, these methods have inherent drawbacks when applied to noisy data in
dense flow estimation. The regression method is known as possibly suffering from
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the local aperture problem. When the size of a segment is not large enough, this
approach may lead to an unpredictable parameter estimate. The robust fitting
technique depends too much on the initial variable values within each segment. In
addition, both of the above methods do not enforce an intra-segment constraint,
which is found quite useful in our method to reduce region-wise errors.

We estimate the parametric motions in a regularization framework, similar
to that used in [14,16]. Specifically, we define an affine model and denote by
as = (as0, as1, as2, as3, as4, as5)T the vector of all affine parameters for segment
s. The motion field w(as,x) = (u(as,x), v(as,x))T in segment s is given by

u(as,x) = as0x + as1y + as2,

v(as,x) = as3x + as4y + as5.

With the above parametric flow representation in each segment, the energy func-
tion w.r.t. all a’s for image I1 can be written as:

E1(a) =
∫

S

∫
s

3∑
c=1

ΨD(|I2(x + w(as,x), c) − I1(x, c)|2)dxds +

α

∫
Ω1

ΨS(‖∇u(as,x)‖2 + ‖∇v(as,x)‖2)dx, (4)

where S is the set of all segments in image I1. (4) is minimized in a coarse-
to-fine manner using a Gaussian pyramid. The affine parameters ak+1 in level
k + 1 are computed by adding increments to the estimated result in level k,
i.e., ak+1 = ak + Δak+1. In each pyramid level, we use the Taylor expansion to
approximate the increments by throwing away high-order terms. This gives us a
new increment data term

ED′(Δak+1,x) =
3∑

c=1

ΨD

(|(Ic
x)k·u(Δak+1

s ,x) + (Ic
y)k·v(Δak+1

s ,x) + (Ic
z)k|2)(5)

where (Ic
i )k = ∂iI2(x + w(ak

s ,x), c), i = {x, y}, denoting the spatial derivatives.
ak

s is the affine parameters for segment s estimated in level k. (Ic
z)k = I2(x +

w(ak
s ,x), c) − I1(x, c). It represents the temporal difference. The smoothness

term is written as

ES′(Δak+1,x) = ΨS

(‖∇u(ak
s + Δak+1

s ,x)‖2 + ‖∇v(ak
s + Δak+1

s ,x)‖2
)
, (6)

where ∇u and ∇v are approximated by the forward difference. In implemen-
tation, the smoothness term is further separated into two parts, i.e., the inter-
segment and the intra-segment smoothness w.r.t. the locations of neighboring
pixels in computing ∇u and ∇v. The inter-segment smoothness is imposed on
the segment boundaries and is used to propagate information among regions.
The intra-segment smoothness is enforced within each segment and is uniformly
represented as (ak+1

s0 )2 + (ak+1
s1 )2 + (ak+1

s3 )2 + (ak+1
s4 )2. It regularizes the affine

parameters and enforces a translational motion model. This is useful for the
ubiquitous small-size textureless regions when the data term is not trustworthy.
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(a) Robust Regression (b) RANSAC Fitting (c) Our Variational Model

Fig. 5. Comparison of the estimated motion by three methods incorporating the same
segmentation information. Our result not only preserves high-quality boundary, but
also contains accurate motion estimate within small patches.

The final energy to be minimized in pyramid level k + 1 combining ES′ and
ED′ is expressed as

E(Δak+1) =
∑
x

{
ED′(Δak+1,x) + αES′(Δak+1,x)

}
. (7)

Since (7) is continuous, differentiable, and convex with respect to Δak+1, we can
use any gradient-based method (our system uses the Quasi-Newton method) to
minimize it. In experiments, the flow estimation for each level of the pyramid only
needs 5−7 iterations. The total number of variables (i.e., the affine parameters)
to be updated is only 6Ns (Ns is the number of segments), which is much smaller
than the number of dense flow vectors. So the optimization in this step is efficient
and robust.

To demonstrate the effectiveness of the segmentation-combined variational
model, we show in Fig. 5 a comparison of the motion results generated by ro-
bust regression, robust fitting, and our method based on the same initial flow and
segmentation. The robust regression [7] is achieved by removing the regulariza-
tion term in (4). The plane fitting result is obtained by performing RANSAC [25]
for the initial flow to fit the affine parameters. We take 1000 iterations to pro-
duce the result. Comparably, these two methods have difficulties to get accurate
flow estimates for small segments in the textureless or occluded regions. Our
method, on the contrary, takes the advantages of segmentation as well as the
intra-segment smoothness, thus can significantly reduce the errors.

3.4 Confidence Map Construction

Segmentation can improve flow estimation in textureless regions. However, it also
induces problems for regions undergoing non-rigid motion. In this circumstance,
the affine model in each segment could be over-restrictive. In order to alleviate
this problem, we propose constructing a confidence map to indicate how likely
the estimated flow vectors in the above step are correct, respectively based on
the pixel-wise motion coherence and segment-wise model confidence. In what
follows, we first detect image occlusion using the motion information.
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Occlusion detection. To compute the occlusion in I1, we simply warp I2 to
I1 based on the motion vectors in the flow field of I2. If a pixel x in I1 does not
receive projection from I2, we set its occlusion value O(x) to 1; otherwise, O(x)
is set to 0. We do not use a global optimization to enforce smoothness since it
is found that the detected map is already sufficiently usable for the purpose of
our motion confidence evaluation.

Pixel-wise motion coherence. In the following discussion, we denote by
(w0

1,w
0
2) the flow pair estimated in the initial step and (ws

1,w
s
2) the flow pair

computed in the second step for images I1 and I2 respectively. We construct
function Ep(wi

1,x) for each point x in flow field wi
1 to measure the motion

coherence:

Ep(wi
1,x) = exp(−

∑3
c=1 |I2(x + wi

1(x), c) − I1(x, c)|2
3σ2

I

) ·

exp(−‖wi
1(x) + wi

2(x + wi
1(x))‖2

σ2
w

). (8)

Here, the superscript i = s, denoting the confidence for the flow field in the
2nd step. Ep(ws

1,x) is composed of two terms. |I2(x + ws
1(x), c) − I1(x, c)|2

models the color constancy between two matched pixels by a motion vector;
‖wi

1(x) + wi
2(x + wi

1(x))‖2 models the motion coherence with respect to both
images, similar to the cross check error defined in [3]. In all our experiments,
I2(x + ws

1(x), c) and ws
2(x + ws

1(x)) are obtained using bilinear interpolation.
The pixel-wise confidence for the flow computed in the second step is defined as:

Cp(ws
1,x) =

{
ς if O(x)=1,
Ep(ws

1,x) otherwise, (9)

where O(x) is the occlusion value. ς is a constant to penalize the occluded pixels.

Segment-wise motion confidence. Only defining the pixel-wise motion co-
herence is not enough for the textureless segments with complex motion, since
both the color constancy and motion coherence measure in Ep could have small
values, which contradicts the true confidence definition. So we introduce the
supplementary segment-wise confidence Cs, i.e. the confidence of the motion in
a segment being affine, to handle the above problem. We define

Cs(ws
1, s) =

∑
x∈s exp(−‖ws

1(x) − w0
1(x)‖2 Ep(w0

1,x)/σ2
A)(1 − O(x))∑

x∈s(1 − O(x))
, (10)

where s denotes a segment. (1 − O(x)) is to exclude the occluded pixels in
computing the confidence of a segment since the initial flow is usually erroneous
for these pixels. Ep(w0

1,x) is defined in (8) by setting i = 0, modeling the pixel-
wise flow confidence for the initial estimate. A small value of Ep(w0

1,x) means
we should not trust the initial flow. ‖ws

1(x) − w0
1(x)‖2 measures how the flow

in the second step is modified over that in initialization. If the initial flow is
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Fig. 6. Confidence maps for examples “Schefflera” (top row) and “Teddy” (bottom
row). From left to right: one input image, initial optical flow (from step 1), optical
flow with segmentation (from step 2), the constructed confidence map. Note that most
pixels in the confidence map of “Teddy” are with high confidence. “Schefflera” contains
non-rigid motion. So more flow vectors are problematic.

trustworthy, i.e., with large Ep(w0
1,x), a large difference between ws

1(x) and
w0

1(x) indicates that the affine model in a segment does not fit the actual pixel
motion. So we should re-estimate the flow vectors for these pixels.

In (10), Cs returns a small value only if many pixels in a segment have high
initial flow confidence and the corresponding initial flow vectors are quite differ-
ent from those with segmentation (from step 2). It reflects that the parametric
affine motion estimate in one segment is erroneous. The final confidence for ws

1

is a combination of the two measures:

conf(x) = Cp(ws
1,x)·Cs(ws

1, s(x)), (11)

where s(x) denotes the segment that contains pixel x. Two examples of conf(·)
are shown in Fig. 6 where dark pixels indicate the possible erroneous estimates
generated in the segmentation step (step 2). In these maps, many low confidence
pixels are in non-rigid bodies.

3.5 Final Variational Model

We integrate the estimated confidence map into a final flow refinement phase to
correct the possible flow errors due to segmentation. The final energy function
is defined as

E2(u, v) =
∫

Ω1

(1 − O(x))
3∑

c=1

ΨD(|I2(x + w, c) − I1(x, c)|2) +

βconf(x)‖w − ws
1‖2 + αΨS(‖∇u‖2 + ‖∇v‖2)dx. (12)

There are three energy terms defined in E2(u, v). (1 − O(x)) is to make color
distance not be considered on the occluded pixels. βconf (x)‖w−ws

1‖2 imposes
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a soft constraint. When weight conf (x) has a large value, the flow computed
with segmentation (in step 2) will be trusted. Otherwise, other energy terms will
be more influential in estimating the flow vector.

E2(u, v) selectively refines the flow vectors computed in the segmentation step,
where the confidence map provides an essential clue whether the flow estimated
in this step is correct or not. We minimize (12) by solving the corresponding
Euler-Lagrange equations, similar to how we minimize (3).

4 Experimental Results

Experiments on both the synthesized and real images were conducted. Parame-
ters in all experiments are configured with constant values as shown in table 1.

Table 1. Parameters used in our experiments

(a) stage 1 & 2

α εD εS

50 0.1 0.01

(b) stage 3

α β εD εS σI σw σA ς

30 100 0.1 0.01 80 0.15 0.3 0.2

In regard to the parameter adjustment, specifically, εD and εS are set only for
numerical stability. α and β are used to balance the energy terms. Note that the
smoothness weight is set lower in our final stage as the segmentation information
is incorporated. σI , σw and σA control the impact of the terms in constructing
the confidence map. Larger values imply lower impact.

4.1 Quantitative Evaluation

Quantitative evaluation of the optical flow algorithm is conducted using the
dataset in [23]. The overall rank of our method is high amongst all recorded
optical flow algorithms on the Middlebury website based on the average angular
error (AAE). We show in the second column of table 2 the average rank of the
top eight algorithms at the moment we submit the data. Other columns on the
right only show the AAE around motion discontinuities. Statistics show that
our method has an advantage in faithfully preserving motion boundaries. The
optical flow results are shown in Fig. 7.

For the computation speed, although the segmentation adds extra cost to the
flow estimation, by using the multigrid scheme in the first and third steps, the
total running time to process one image does not increase much. Typically, for
an image with size 316 × 252, the running time of our algorithm is about 15
seconds on a PC with an Intel Core2Due 2.4G CPU.
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Table 2. Average Angular Error (AAE) comparison obtained from the Middle-
bury website [23]. The second column shows the average ranks and other columns on
the right show AAEs around the motion discontinuities.

Avg.
Algorithm Rank Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

Our Method 3.1 13.52 14.94 17.32 18.11 4.161 21.45 3.492 9.231

Fusion 3.3 13.73 8.911 9.681 19.82 4.825 17.31 5.788 13.64

SO prior 4.7 11.21 13.12 17.73 20.93 5.277 22.07 6.889 13.43

Dynamic MRF 4.8 15.04 15.35 17.84 23.74 4.634 19.14 5.295 17.87

LP Registration 5.8 16.85 13.83 17.84 24.55 4.563 21.45 5.487 17.98

B. & A. 6.4 18.76 21.97 23.76 30.06 5.236 18.22 4.443 14.35

2D-CLG 6.6 22.69 16.96 28.29 31.18 4.252 22.28 3.141 12.92

H. & S. 7.8 19.98 23.210 25.97 30.67 5.277 25.810 5.416 17.56

Fig. 7. Our optical flow estimates on a set of challenging examples. Incorporating
segmentation and using paramatric motion models do not degrade our results because
of the multi-step estimation framework.
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Table 3. Average percentage of the mis-matched pixels (defined in Sect. 4.2) for the
three sequences by warping frames 10, 15 and 20 to frame 0. For comparison, we also
show the statistics from the method of Black and Anandan [7].

Our results Black and Anandan [7]

frame 10→0 0.88 % 3.33 %
frame 15→0 3.42 % 5.98 %
frame 20→0 6.13 % 9.26 %

(a) Our result (b) Black and Anandan [7]

Fig. 8. One example of warping frame 15 to frame 0

4.2 Image Warping Results

We also conducted experiments on natural image sequences to estimate the
flow field. By warping a frame in the tail back to one at the head using the
flow computed in all intermediate frames, we can evaluate the quality of optical
flow in terms of the accumulated accuracy. Three different sequences are used1

in experiments with the following evaluation criteria. We first compute the in-
tensity difference between the warped frames and the original one. Then the
average percentage of pixels whose intensity difference is greater than 0.1 of the
maximum intensity is computed. The statistics are shown in Table 3, attained
by warping frames 10, 15, 20 to frame 0, respectively.

One warping result is shown in Fig. 8 where we warp frame 15 back to frame
0. To produce the result in (b), we use the code from the authors by hand tuning
the parameters. The close-ups in the bottom row show that our method faithfully
preserves motion discontinuities and produces sharp warping boundaries.
1 Available at http://www.cse.cuhk.edu.hk/∼leojia/publication.html

http://www.cse.cuhk.edu.hk/~leojia/publication.html
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5 Conclusion

In this paper, we have described a segmentation-embedded optical flow frame-
work which can be used to compute accurate flow field as well as high quality
motion boundary. The proposed method accommodates the parametric and seg-
mented motion estimation in a variational model. Then a confidence map is
constructed to measure the confidence whether the segmentation and the cor-
responding motion model suit the flow estimation or not. This map enables
the recognition of non-rigid motion and detection of the error caused by seg-
mentation. Evaluation on the Middelbury data set validated the effectiveness of
our method. Our segmentation-based method produces sharp motion boundary,
having a clear advantage in applications such as video editing.
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13. Tschumperlé, D., Deriche, R.: Diffusion tensor regularization with constraints
preservation. In: CVPR (1), pp. 948–953 (2001)

14. Ju, S.X., Black, M.J., Jepson, A.D.: Skin and bones: Multi-layer, locally affine,
optical flow and regularization with transparency. In: CVPR, pp. 307–314 (1996)

15. Black, M.J., Jepson, A.D.: Estimating optical flow in segmented images using
variable-order parametric models with local deformations. IEEE Trans. Pattern
Anal. Mach. Intell. 18(10), 972–986 (1996)
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