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Abstract. We present a novel method for unsupervised classification,
including the discovery of a new category and precise object and part
localization. Given a set of unlabelled images, some of which contain an
object of an unknown category, with unknown location and unknown size
relative to the background, the method automatically identifies the im-
ages that contain the objects, localizes them and their parts, and reliably
learns their appearance and geometry for subsequent classification. Cur-
rent unsupervised methods construct classifiers based on a fixed set of
initial features. Instead, we propose a new approach which iteratively ex-
tracts new features and re-learns the induced classifier, improving class
vs. non-class separation at each iteration. We develop two main tools
that allow this iterative combined search. The first is a novel star-like
model capable of learning a geometric class representation in the unsu-
pervised setting. The second is learning of ”part specific features” that
are optimized for parts detection, and which optimally combine differ-
ent part appearances discovered in the training examples. These novel
aspects lead to precise part localization and to improvement in overall
classification performance compared with previous methods. We applied
our method to multiple object classes from Caltech-101, UIUC and a
sub-classification problem from PASCAL. The obtained results are com-
parable to state-of-the-art supervised classification techniques and su-
perior to state-of-the-art unsupervised approaches previously applied to
the same image sets.

1 Introduction

The goal of this paper is unsupervised classification, including discovery of a new
category, learning a model of geometric arrangement of object parts and their
appearance, and obtaining object and part localization, from a set of unlabeled
images, which contains non-class images mixed with some unknown (usually
small) percent of class images. The class instances may be uncropped, unaligned
and of small size relative to the background.

The problem of unsupervised object classification has gained considerable re-
cent interest [1,2,3,4,5,6,7,8,9,10,11,12], however, this task is still far from being
completely solved. In this study we present a novel methodology to approach the
problem. A common approach is to start from some limited, manageable set of
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Fig. 1. Illustration of the feature re-extraction approach. (a) In the initial feature
space (x-y) it is difficult to separate class (blue crosses) and non class (green circles)
examples. In this feature space, the best separating hyperplane (which the unsupervised
classification seeks to determine) is marked by the dashed line. Instead, our method
identifies a subset of sure class examples separated from the rest (red solid line). (b)
Using these examples, the method extracts a new feature set (z-w), in which a larger
set of class examples can be identified. The process then continues iteratively. Each
iteration uses new features, rather than previous features (or their combinations).

initial features F , for example, a set of local descriptors extracted around image
interest points or clusters extracted from such descriptors [1, 2, 11, 12, 13, 14, 15,
16, 5, 6, 7, 8, 9]. The set of features can be optimized by selecting a subset of the
most useful features F1 ⊂ F , or sometimes combinations of features in F1 are
used as new features [2, 8, 14]. However, there is no guarantee that the choice of
initial features will in general be sufficient for complete separation. In contrast,
we approach the problem as a combined iterative search for features and a clas-
sifier. We do not use the initial feature set to obtain the final class separation,
but only for identifying a subset of sure class examples which can be reliably
separated from the rest (Fig. 1a). This goal is achieved by unsupervised training
of a classifier that combines both appearance and part-geometry information.
The extracted class examples are used to guide the subsequent extraction of
new features, which were not a part of the initial feature set. It is not a-priori
clear that this iterative approach will continue to improve classification: if the
intermediate classification results are partly incorrect, their use could lead the
process astray and cause deteriorating performance. In this work, we demon-
strate that in the proposed algorithm, the constructed features become more
class-specific as the computation evolves, and the class vs. non-class separation
continuously improves (Fig. 1b), reaching a final high level of performance even
compared with recent supervised methods.

We develop two main tools that allow the iterative combined search. One is
the incremental discovery of part specific features, which combine different part
appearances discovered in the training examples. The other is a novel star-like
class-geometry model of object parts, which differs from the similar past models
[3, 4, 5, 15, 16, 17, 13] and which can be learned efficiently without supervision
in very noisy conditions. These two aspects are described briefly below, and
explained in more detail in Sections 2.1 and 2.2.
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Fig. 2. (a) Example results of unsupervised object and part localization on two datasets
(UIUC cars, flamingo). The yellow star is the detected model center location (see text),
color coded rectangles are examples of detected object parts (for each object several out
of about 150 modeled parts are shown). (b) Schematic diagram of the UCA algorithm.

Feature learning. most unsupervised approaches [1, 2, 5, 6, 7, 8, 9, 11, 12], in-
cluding ours, start from some generic set of features F . During learning, when a
particular class is considered, the approaches select a subset F1 ⊂ F of so-called
Class Specific Features (CSF), which coincide better with the class compared
with the background or other classes. In contrast, our method extracts and
learns a new set of features, termed Part Specific Features (PSF). The PSF are
optimized to have higher detection scores at specific locations on the class ob-
jects, and at the same time to have lower scores at incorrect locations on the
same objects and in non-object detections. Different part specific features have
been used successfully in a number of supervised approaches, such as k-fan [17]
and semantic hierarchy [18], and were shown to be useful for both object and
part localization. Constructing such features in an unsupervised manner is chal-
lenging; our method is the first unsupervised method that learns and uses such
features, resulting in improved object and part detection and localization.

Geometry learning. Past supervised and unsupervised classification methods
can be categorized by their modeling of object geometry. In bag-of-feature meth-
ods [2, 9], geometry is ignored. Methods, such as [2, 8, 1, 14], extend the bag-of
feature approach by using feature combinations. In [3, 4, 5, 11, 13, 15, 16, 17] ob-
ject geometry is modeled by the spatial distribution of each feature in the object
reference frame. A geometric part model is useful for classification, but it is chal-
lenging to construct such a model in an unsupervised setting. Most previous un-
supervised methods therefore do not use a full geometric model [2,6,7,8,9,11,12].
Our method uses star-like geometry. It has several differences compared with
similar past models. The method is not restricted by a small number of parts as
in [3,4], unlike [13,15,16,17] it does not require any supervision, unlike [3,5,15,11]
it models distribution of feature locations on the background, unlike [5,12] it does
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not rely on non-geometric pLSA [2] for internal supervision, and unlike [10,6,7],
it is not based on prior image segmentation. These differences are explained in
more detail in Sections 2 and 2.1.

In terms of class vs. background classification performance, our method out-
performs the state-of-the-art unsupervised methods [2,5,7,10,11,12] on 18 classes
from the Caltech 101, Weizmann horses and UIUC cars datasets. Surprisingly,
the method is also comparable in performance to existing state-of-the-art super-
vised (and weakly supervised) methods applied to the same datasets. We further
demonstrate how our method can be used to separate different object views on
the cars class from the PASCAL challenge 2007 dataset. As the method achieves
precise object and part localization, it provides a basis for top-down segmenta-
tion, as illustrated in supplementary material.

The rest of the paper is organized as follows. Section 2 presents an overview
followed by a detailed description of each of the method stages. Section 3 presents
results obtained on various datasets, together with an analysis and comparison
with previously reported results. Conclusions are discussed in Section 4.

2 The Consistency Amplification Method

Our approach alternates between model learning and data partitioning. Given
an image set S, an initial model (learned using initial features) is used to induce
an initial partitioning by identifying highly likely class members. The initial par-
titioning is then used to improve both the appearance and geometrical aspects
of the model, and the process is iterated. In this manner the process exploits
intermediate classification results at a given stage to guide the next stage. Each
stage leads to an improved consistency between the detected features and the
model, which is why the process is termed Unsupervised Consistency Amplifi-
cation (UCA). Each UCA iteration consists of two phases of learning: the fea-
ture learning Appearance-phase (A-phase) followed by the part model learning
Geometry-phase (G-phase), explained in detail in sections 2.2 and 2.1 respec-
tively. The approach and the order of the phases are summarized in Fig. 2b.

Initial Appearance-phase. In all our experiments, we use a generic codebook
of SIFT descriptors of 40×40 patches for the initial (appearance) features. This
codebook, denoted by F0, is computed by a standard technique [19] from all the
images in given set S. The codebook descriptors are compared to the descriptors
at all points of all the images in S and storing the points of maximal similarity
(either one or several, see below) in each image.

Geometry-phase. The detection of parts using the generic features is usually
noisy, due to detections in non-class images, and at some incorrect locations in
the class images. The goal of the geometric part model learning is to distinguish
between the correct and incorrect detections, based on consistent geometric re-
lations between features. This is accomplished by the G-phase of the algorithm,
which is also used for the selection of the most useful features and the automatic
assignment of each of their detections in every image in S to either object or



Unsupervised Classification and Part Localization 325

background model. In contrast with [3,4,5,15,11] that use uniform distribution
of features on the background, we model the background by a distribution of the
same family as the class object distribution, which allows to prevent the spurious
geometric background consistency from being accounted for by the learned class
model. In our experiments we found that modeling the background distribution
is better than assuming uniformity with mean performance gain of 12±7% EER
in the first iteration of the UCA that uses initial generic appearance features.
The learned background model is then discarded after the learning and is not
used for classifying new images. Thus, the model used in the G-phase is a mixture
of two stars, one for object and the other for background. It is learned without
supervision from all the images in S using a novel graphical model formulation
explained in detail in Section 2.1. After the geometric structure has been learned,
a subset H ⊂ S of images which contain class objects with high confidence is
selected. In these images the object centers and parts are localized. Unlike [5,12]
that learn the geometric constraints using only a set of objects identified by the
non-geometric pLSA [2], our method identifies and localizes objects, and learns
their part geometry, jointly and explicitly from the entire data.

Appearance-phase. Each part-specific feature constructed in the A-phase rep-
resents an object part by extracting several typical appearance patches of the
part, from different images. Part-patches can be extracted, because the loca-
tions of the parts in the images of the subset H are already estimated from the
previous G-phase. An optimal subset of these part patches is learned by a dis-
criminative model described in section 2.2. The set of all part specific features
extracted during the A-phase is denoted by F .

Computing the output. After the G-phase at each iteration, the learned model
is applied to produce classification, as well as object and part localization results
for either the given dataset or an unseen test set. This is done without introduc-
ing any supervision to the system. The way we apply the learned model to test
images is described in detail in section 2.3.

2.1 The Geometry Phase

We first describe the G-phase model, and then explain how it is learned from
the data. The main goal of the G-phase is to identify the most likely locations
of objects and their parts in all images of the given set S and to estimate a
subset H ⊂ S of images which contain class objects with high confidence. The
G-phase models the data by a generative probabilistic graphical model depicted
in Fig. 3a. Let the image set S have N unlabelled images: S = {I1, I2, . . . IN}
and the current feature set F consist of M features: F = {F1, F2, . . . FM}. In
the G-phase of the first UCA iteration these features are a codebook of generic
SIFT descriptors F0, and in the following UCA iterations these are the learned
PSFs. During the G-phase each feature is associated with an object part or the
background. Denote the detected location of feature Fm in image In by Xn

m (the
G-phase uses a single (maximal) detected location per feature in each image, see
extension below.) The G-phase model independently generates observed samples:



326 L. Karlinsky et al.

Data = { (Fm, In, Xn
m) |1 ≤ n ≤ N, 1 ≤ m ≤ M } The probability of observing

a specific image Pr(I = In) is taken to be uniform. The overall observed data
likelihood under the G-phase model can be written as:

Pr(Data) ∝
N∏

n=1

M∏

m=1

2∑

Cn
m=1

∫

Ln
m

Pr(Cn
m |In ) Pr(F = Fm |Cn

m )

Pr(Ln
m |In, Cn

m ) Pr(LF = Xn
m |Fm, Cn

m, Ln
m )dLn

m

(1)

The meaning of the product inside the integral in eq. 1 is that each data sample
(Fm, In, Xn

m) observed in image In for the feature Fm is independently generated
as follows. First, the latent discrete binary ”class” variable Cn

m is drawn with
probability Pr(Cn

m = k |In ) = αn
k , independent of the feature Fm. Cn

m = 1
means that In contains a class object and Fm is generated from the class model.
Cn

m = 2 means that Fm is generated from the background model, because either
In does not contain an object or Fm was not detected consistently with the class
model. After learning, the value αn

k is the likelihood of class k (either object
or background) in image In. Next, the latent location variable Ln

m is drawn
from a Gaussian distribution Pr(Ln

m |In, Cn
m = k ) = N(μn

k , Σn
k ). Ln

m represents
the image position of the center of the star model (chosen by Cn

m ), which
generates the feature Fm in image In. Note that for every feature detected in
image In that has chosen the class k, there is a separate variable Ln

m, but all of
these variables are generated from the same distribution specific to In. Next, the
observed feature variable F draws its value Fm from the distribution Pr(F =
Fm |Cn

m = k) = βm
k which depends on the chosen class k, but is independent

of the image In. After learning, the value βm
k is the likelihood of feature Fm to

be consistent with the geometric model of class k. Finally, the observed feature
location variable LF draws its value Xn

m from a linear Gaussian distribution
Pr(LF = Xn

m |Fm, Cn
m = k, Ln

m ) = N(Ln
m + ρm

k , Λm
k ). This distribution models

the uncertainty of the offset ρm
k of the feature Fm from the Ln

m - center of the
star model chosen by Cn

m. It is specific to the feature Fm and the chosen class k
and is independent of the specific image In.

To summarize, the parameters of the model are α, β, μ, Σ, ρ and Λ, all of
them are learned by soft EM as described further below. A schematic draw-
ing illustrating the data generation process and the meaning of the main model
parameters is shown in Fig. 3b. The model uses a star-like geometry, but an im-
portant difference between the current model and past star model formulations
is worth noting. In contrast with [17, 16, 15], that have a single reference point
or k-fan per image, in our model there exists a separate reference point (cen-
ter) random variable for each part, drawn, however, from the same distribution
specific to the given image. This allows the features detected in the same image
to be updated individually: features assigned to the class update the class star
and features assigned to the background update the background star, both the
assignments and the updates are soft. Although it may sound technical, it has
fundamental importance, since, as we saw in our experiments, in different class
images, different subsets of features are geometrically consistent with the object
model. It is interesting to note that the transition from the standard star-model
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Fig. 3. The probabilistic models used by UCA. Shaded ellipses are observed variables,
unfilled are hidden (latent). (a) Graphical representation of the G-phase generative
model. (b) Generating the object and background. The object model illustrated in red,
the background in green. Each generates centers, denoted by � (star) and features
denoted by � (triangle). The ellipses denote the uncertainty in position. Xn

m denotes
the detected location of feature Fm. Every feature Fm detected on the object is gener-
ated using its own star center point Ln

m, but all these Ln
m are generated from the same

distribution N(μn
1 , Σn

1 ) specific to the image. As illustrated, the learned object distri-
butions are tighter than the background distributions. (c) Graphical representation of
the “Continuous Noisy OR” discriminative model.

to our version is entirely analogous to the transition from Naive Bayes (NB) to
pLSA. In the NB there is only a single class node generating the entire feature
vector of an image, while in pLSA each feature has a separate topic node gener-
ated from an image specific distribution. The pLSA is more flexible than NB and
was found useful for unsupervised classification [2, 9]. Similarly we found that
the modified star is useful in modeling feature geometry in the unsupervised
setting.

Learning: The model is learned from the data using the soft EM algorithm. The
EM update equations are provided in the supplementary material. As mentioned
above, the data samples fitted by our model are of the form (Fm, In, Xn

m). In
order to incorporate the features’ detection scores into the learning process, we
weight each sample by its score. Namely, the sample (Fm, In, Xn

m) is weighted by
Rn

m - the similarity of Fm with In at location Xn
m. The parameters of the model:

α, β, μ, ρ and Λ, are initialized at random and EM is run until convergence.
In order to have the object model learned with respect to Cn

m = 1, in all our
experiments, we initialize |Σn

1 | << |Σn
2 | for every n. During EM iterations, this

initialization causes the object feature detections to tend to update the Cn
m = 1

model, since they usually appear in more tight and repeatable configurations (i.e.
fit a star with smaller center uncertainty Σn

1 ). At the same time, background
feature detections, that are usually loosely scattered all over the image, will tend
to coincide with the Cn

m = 2 model. This method of the initialization of all the
parameters (including Σ) was identical throughout all our experiments.
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Identifying the set of high-likelihood images: After the EM converges,
the value of αn

1 (the image probabilities to belong to the class) shows a strong
separation between a subset of class images and all the non-class images, see
figure 6a. As a result, by the end of G-phase it becomes possible to identify a
subset of high-likelihood class candidate images H . In all our experiments, we
marked an image In as high likelihood class candidate if αn

1 > η · max
n

(αn
1 ),

where η = 0.85 was chosen empirically and used throughout all the experiments.
Examples of objects automatically identified and localized by the G-phase of
the first UCA iteration are shown in Fig. 6b. These are examples of the first
G-phase output, obtained using the initial generic features. As can be seen, the
localized object model centers appear at similar locations within the object in
the different images. In the A-phase, these points are used to extract stacks of
corresponding fragments, which are used to construct the part specific features
- the CNOR part-detectors, as explained in the next section.

2.2 The Appearance Phase

In the G-phase we learned the position of each part relative to the object model
center, and detected this center in the images belonging to H . We localize each
part in these images by assuming it is located at the learned relative position ρm

1
from the center located at μn

1 . In the A-phase we learn for each part a detector
trained to distinguish image patches in correct part locations from patches in
incorrect ones. The detector is trained using the detected part locations as pos-
itive examples and all other locations on the images of H as negative examples.
The constructed part detectors form the new feature set F for the G-phase of
subsequent UCA iteration. We next describe the novel probabilistic discrimina-
tive model used by the part detector, the Continuous Noisy OR (CNOR), and
how this model is trained.

For each part m, corresponding to Fm above, we extract a set of appearances
in the following way. In each class candidate image In ∈ H , we take the 40x40
image patch at position μn

1 + ρm
1 , where μn

1 is the location of the learned object
center in In and ρm

1 is the learned offset of part m from the object center. The
accumulated set of image patches is the candidate set of part appearances: Am =
{Zm

1 , . . . , Zm
T }. The next step is to select a subset of appearance representatives

Rm ⊆ Am, and learn to optimally combine their detection evidence in order
to reliably detect the object part. Both tasks are achieved simultaneously by
training the CNOR model, depicted in Fig.3c. Let P be an arbitrary image
patch taken from an arbitrary location L in a new image. The binary variable
OP is set to OP = 1 iff L and P are the location and appearance of part m
respectively. The probability of OP is discriminatively modeled as:

Pr(OP |V ; Θ) =
∑

Y

Pr(O|Y ) ·
T∏

t=1

Pr(Yt|Vt; θt, Rm) (2)

The Θ = {Rm, θ1, . . . , θT } are the learned parameters of the model. V = {Vt},
where Vt is the output of a continuous SIFT similarity measure between P and
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Fig. 4. (I) Example of a CNOR part detector. (a) Selected representative appearances.
(b) Cumulative histograms of detections within 15px from ground truth location rela-
tive to the number of detection score local maxima used. (II) Evaluation of object and
part localizations obtained by the UCA method showing a distribution of localization
error in pixels relative to manually marked ground truth. 10px is less then 7% of object
size in all the sets in the figure. (c) Object localization, 100% = number of class images.
(d) Part localization on UIUC cars, each part was detected in about 95% of objects.
In the graph 100% = number of part detections.

Zt ∈ Am. Note that we do not explicitly model Pr(V ), which can be a complex
distribution. Y = {Yt}, where Yt is a latent binary variable representing the
detection of appearance Zt with:

Pr(Yt = 1|Vt; θt, Rm) =
{ 1

1+e−αt(Vt−τt) Zt ∈ Rm

0 Zt ∈ Am\Rm
(3)

Here θt = {τt, αt} are the parameters of the sigmoid in 3. Yt = 1 becomes likely if
patch P exceeds a similarity threshold τt with the representative patch Zt ∈ Rm,
with αt representing the uncertainty of τt. If Zt ∈ Am\Rm (meaning Zt is not
a chosen representative) then Vt and Yt have no effect on Pr(OP |V ; Θ). Finally,
Pr(OP |Y ) is a deterministic ”or” of Y :

Pr(OP = 1|Y ) =
{

1 ∃t.Yt = 1
0 otherwise

(4)

The entire model can intuitively be described as follows: the part is detected
(Op = 1) whenever P is ”sufficiently” similar to at least one of the part m’s
representative patches in Rm.

To learn the model parameters, a training set of image patches E is con-
structed by taking all 40 × 40 image patches (on a fixed step grid) from all the
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images in the current class candidate set H . For each patch P ∈ E the observed
data vector is constructed as: DP =

〈
V P , OP

〉
where V P =

{
V P

t

}
is computed

by measuring similarity between P and Am patches and OP = 1 iff P ∈ Am (and
OP = 0 otherwise). Finally the training data for the CNOR model of part m is:
D =

{
DP |P ∈ E

}
. By treating the correct part appearances (Am) as positive

examples and all other appearances (either other parts of the object or back-
ground patches) as negative examples, the object part detector is trained for cor-
rect localization of the part. To limit the number of representatives, the learning
objective is to find the Minimum Description Length (MDL) parameters Θ, in
other words, to find Θ that maximize a combined score of the model complexity
(number of representatives) and model performance (data likelihood). We solve
this learning problem using the Structural EM (SEM) algorithm optimizing the
Bayesian Information Criterion (BIC) score [20]:

BIC =
∑

P∈E

log(Pr(OP |V P ; Θ)) − log T

2
· |Rm| (5)

The SEM algorithm iterates between two stages. The first stage is, given a set
of representatives Rm, to find the optimal values for the {θt} parameters. This
stage is solved using the EM algorithm. It is computed efficiently, since in our
model each EM iteration has linear time complexity. The second stage is, given
the current assignment of {θt}, to estimate an improved Rm. This is achieved
by running several iterations of a greedy search over subsets of Rm ⊆ Am, where
at every step of the search a current subset Rm is modified by either adding or
removing one element.

After learning, the set of part m detections is obtained by identifying first
few local maxima of the probability Pr(OP |V ; Θ) computed for all patches P
in a given image. Selected representatives for an example part are shown in
Fig. 4a. The resulting CNOR part detectors for all parts m, are a significantly
more reliable set of object features then the initial generic set of features, as
demonstrated in Fig. 4b and in section 3, and it provides a general method for
reliable part detection for both supervised and unsupervised classification.

2.3 Applying the Learned Model to Classify and Localize Objects
and Parts

To compute the classification score for an unseen test image, and to localize the
class objects in it, we use the learned ρm

1 (offsets from object star center) and Λm
1

( STDs for these offsets) parameters in a voting scheme similar to [13] as follows.
For each part detector, a number (five in our experiments) of highest-scoring lo-
cations at each image are marked. To identify the object star’s center location,
each detection X votes for a center location, by placing a Gaussian mask with
STD Λm

1 around the expected location X −ρm
1 . After all the detectors voted, the

point with the maximal accumulated vote determines the location of the object
star’s center in each image (in case there are multiple objects, several local max-
ima that exceed a global threshold are taken). The accumulated vote value at
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the detected center point serves as the object detection score in the image. These
scores are then used to create the ROC that tests the separation between the
class and the non-class images in the results section 3. The object localization
results of our method are evaluated in Fig. 4c. The parts are localized by ”back-
projection” as in [13]. Each part detector that voted into one of the selected
object center locations (with one of its five detections) is declared as ’detected’
and is marked in the image. The accuracy of our part localization is demon-
strated in figures 2a and 5 and evaluated in Fig. 4d. Marking all the detected
parts in the image can be used for a top-down segmentation of the detected
object (see examples in supplementary material). The details of the top-down
segmentation are outside the scope of the current discussion.

3 Results

To test the performance of the UCA method, it was applied to the task of fully
unsupervised classification and object and part localization on 18 different ob-
ject classes. The list of the classes, the parameters of the datasets and ROC
EERs obtained by the UCA are summarized in Table 1. The results show that
our method obtains superior performance over the existing unsupervised meth-
ods in challenging conditions such as small objects relative to the background
(e.g. UIUC cars, Caltech101 cars, flamingo), small percent of class images in
the set (e.g. schooner, guitars), significant inter-class variability due to non-rigid
deformations (e.g. bonsai, horses, crab, flamingo, starfish) and significant lack of
alignment (e.g. UIUC cars, faces, PASCAL car views). Examples of the classes
and object and part localizations obtained by UCA are shown in figures 2a and
5. Fig. 4c,d shows quantitative evaluation of automatic object and part local-
ization by UCA compared to hand generated ground truth on several dataset.
The background images for each dataset were chosen randomly out of Caltech
backgrounds set containing 900 images. To challenge our method, we tested it
on different class vs. non-class mixes, namely 10%, 20%, 30% and 50%. This is
compatible with experimenting with Google data, since manual validation done
by [5] showed that on average, above 25% of images returned by Google image
search are good examples. For every dataset, increasing percent of class images
above the percent reported in the table gives even better results. The UIUC
cars dataset contained only the 170 non-cropped and non-aligned test images of
the original set (and equal amount of random background images), the training
images of the original set are cropped, so to make the task harder they were not
used. The Caltech-5 datasets (from [3]) were tested in order to compare with past
unsupervised approaches that were tested on the same data, namely [2,12,5,10,7].
To ensure that the chosen Caltech101 classes are sufficiently hard, 9 of the 11
tested Caltech101 classes are the ones with lowest reported performance by [7]
(average of entries for these classes on [7]’s confusion matrix diagonal is 49%).
Note that unlike [7], we do not use color information in our scheme.

An important characteristic of the UCA is its ability to deal with a low per-
centage of class images in the dataset. Methods such as [5, 12] that apply the
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Table 1. Summary of fully unsupervised classification results obtained by the UCA
method. For all datasets, the EER STD for UCA was ≤ 2% (computed by cross-
validation). For motorbikes, airplanes and cars-rear, the class images were randomly
chosen from larger sets and remaining images were also used for testing the learned
models obtaining 1.3%, 2.3% and 2.8% average EER respectively. The average EER
of UCA on the Caltech-5 datasets was 2.65%. Results of other unsupervised methods
reported for Caltech-5 were: average EER of 4.08% [12], 7.35% [5] and 11.38% [2] and
average multiclass detection rate of 5.4% [7]. Results of leading supervised methods on
Caltech-5 are comparable to our unsupervised result: average EER of 2.25% [15] and
1% [21] ( [21] did not test on cars-rear class). The object size relative to the background
for each dataset was approximated from several characteristic images.
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Fig. 5. More examples of unsupervised object and part localizations obtained by the
UCA method. See explanation in fig. 2a.

pLSA method of [2] as a pre-processing step to identify and localize class exam-
ples may fail on such datasets. This was validated by testing the pLSA method
with eight topics (optimal number proposed by [5]) on the schooner dataset that
contains only 10% class images. From the N examples with maximal score in
the class topic, less then 40% were class examples (N = 10, 20, . . . , 100).

In the PASCAL car views experiment, we tested the ability of UCA to separate
related sub-classes. In particular, out of the PASCAL 2007 training images,
images depicting frontal and side views of cars were extracted. The scale of the
images was normalized by vertical size and large background areas around each
car was taken to make the set un-cropped and un-aligned. The UCA was then
applied to this set in order to separate the views. Furthermore, when applied
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Fig. 6. Improvements due to consistency amplification. (a) Example of class vs. back-
ground separation obtained by the first iteration for the schooners class. Yellow part
are the class images and the rest are backgrounds (the ordering is only for illustration
purposes). The horizontal line shows the adaptive threshold η · Max used to select the
set H of high likelihood class examples for the next UCA iteration. (b) Examples of
the objects identified and localized. (c) Table of EER improvement with UCA itera-
tions. Only the classes that ran for more then two iterations are shown. The iterations
continue until the set H stops growing. The average EER of the first iteration (that
used the generic features and not PSFs) was 30% for these classes. This illustrates
the low (relative to the PSFs) consistency between the generic features and the class
objects.

on a set of about 700 images containing all the car views, UCA successfully
learned the ”frontal cars” subclass with similar EER to the two view experiment.
Applying pLSA to the same set has yielded high error (32% EER). The ability
of our method to separate similar sub-classes and specifically different views of
the same class can also be useful in supervised learning applications. If a given
training set of images of the same class can be automatically separated into a
meaningful set of (inherently similar) subclasses, then it can greatly facilitate
the learning task, by allowing the modeling of each subclass separately.

4 Conclusions

The UCA method has a number of basic advantages compared with previous
unsupervised classification methods. First, the overall classification results are
higher than obtained previously, and remain high even when class examples
are sparsely distributed within the dataset. Surprisingly, on the tested classes,
results of the unsupervised method are as good as leading supervised methods.
Second, the method obtains precise object localization, indicated by a repeatable
reference point on each detected object. Third, precise locations of the parts
participating in the model are also made available. Fourth, the method is capable
of separating similar classes and sub-classes, such as different views of the same
class. The main novel aspects of the UCA method are the following. The model is
iteratively improved by exploiting intermediate classification results, consistently
improving the performance. A novel geometric model is used, which can be
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efficiently learned from the entire dataset, and therefore improve the methods
ability to capture geometric consistencies, even when consistent configurations
are sparse. The model uses a part detection scheme, which is trained to detect
object parts with diverse appearances in their correct position. The resulting
detections are therefore more reliable, providing precise part localization and
improved overall performance.
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