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Abstract. Environmental monitoring applications present a challenge to current
background subtraction algorithms that analyze the temporal variability of pixel
intensities, due to the complex texture and motion of the scene. They also present
a challenge to segmentation algorithms that compare intensity or color distribu-
tions between the foreground and the background in each image independently,
because objects of interest such as animals have adapted to blend in. Therefore,
we have developed a background modeling and subtraction scheme that analyzes
the temporal variation of intensity or color distributions, instead of either looking
at temporal variation of point statistics, or the spatial variation of region statistics
in isolation. Distributional signatures are less sensitive to movements of the tex-
tured background, and at the same time they are more robust than individual pixel
statistics in detecting foreground objects. They also enable slow background up-
date, which is crucial in monitoring applications where processing power comes
at a premium, and where foreground objects, when present, may move less than
the background and therefore disappear into it when a fast update scheme is used.
Our approach compares favorably with the state of the art both in generic low-
level detection metrics, as well as in application-dependent criteria.

1 Introduction

Background subtraction is a popular pre-processing step in many visual monitoring ap-
plications, as it facilitates the detection of objects of interest (“foreground”). Even when
the cameras are fixed in the infrastructure, however, naive background modeling and
subtraction results in large numbers of false detections because of changes in illumina-
tion and fine-scale motion in the scene. Natural environments such as the forest canopy
present an extreme challenge because the foreground objects, by necessity, blend with
the background, and the background itself changes due to the motion of the foliage and
the rapid transition between light and shadow. For instance, images of birds at a feeder
station exhibit a larger per-pixel variance due to changes in the background than due to
the presence of a bird. Rapid background adaptation fails because birds, when present,
are often moving less than the background and often end up being incorporated into it.

Even a summary inspection of a short video will easily convince the reader that nei-
ther analysis of the temporal variation of a single pixel, common to many background
subtraction methods, nor analysis of the spatial statistics of each image in isolation,
common to many image segmentation algorithms, is sufficient to detect the presence
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Fig. 1. Birds are difficult to detect due to their similarity with the background and the large tem-
poral variability of the background. Examination of the intensity value of a pixel over time reveals
minimal variability in the presence of birds (gray regions). This motivates the use of distributional
signatures.

of birds. This is illustrated in Fig. 1. Therefore, we advocate background processing
algorithms that analyze not individual images but video, by comparing not single-pixel
statistics, but spatial distributions of pixel intensities or color. An additional peculiarity
of environmental monitoring sequences is the coarse temporal sampling, dictated by
energy considerations since the cameras deployed in natural environments are battery-
operated. This makes learning the temporal dynamics of the background motion, as
done in Dynamic Textures [1], impossible. On the other hand, only coarse localiza-
tion of foreground objects is required, as input to subsequent stages where scientists
can measure biodiversity by counting the number of birds visiting the feeder station, or
placing a bounding box for subsequent processing such as species classification. The
benefit of an automated approach to background modeling and foreground detection is
readily measured in the amount of person-time saved by scientists in analyzing these
long and tedious sequences.

The resulting approach, consisting of analyzing the temporal variation of intensity
distributions, rather than pixel values, is a departure from traditional background sub-
traction schemes. We represent the signature of each pixel using a distribution of pixel
intensities in a neighborhood, and use the Bhattacharyya distance to compare such dis-
tributions over time. This distribution signature is relatively insensitive to small move-
ments of the highly textured background, and at the same time is not tied to individual
pixel values for detecting foreground objects. This enables slower background updates,
and therefore minimizes the probability that the foreground object be incorporated into
the background. Indeed, the background update rate can be chosen depending on the
application within a broad range.

We use bird monitoring in natural scenes as a motivating application to bring atten-
tion to a far larger class of significant scenes not previously addressed in the literature.
A number of pertinent questions about the impact of climate change on our ecosys-
tem are most readily answered by monitoring fine-scale interactions between animals
and plants and their environment. Such fine scale measurements of species distribution,
feeding habits, and timing of plant blooming events require continuous monitoring in



278 T. Ko, S. Soatto, and D. Estrin

the natural environment, and are plagued by the same challenges as the feeder station
monitoring described in this paper. There is inherent pressure to increase spatial cover-
age at the cost of reducing the size of the objects of interest in the image, thereby cre-
ating a more challenging detection and recognition task. Similarly, increasing temporal
coverage (lifetime) pushes for lower sampling rates limiting the applicable methods.

The field of computer vision has made great strides in addressing challenging prob-
lems by simplifying the problem with key assumptions. When trying to use techniques
developed previously for other use cases, we found that these assumptions did not hold
under a large class of our use case scenes. In this paper, we demonstrate an approach
that is more generally applicable to a larger set of natural scenes than previous work.

2 Related Work

The most straightforward approach to segment foreground from background, frame dif-
ferencing [2], thresholds the difference between two frames. Large changes are consid-
ered foreground. To resolve ambiguity due to slow moving objects, Kameda and Minoh
[3] use a “double difference” that classifies foreground as a logical “add” of the pair-
wise difference between three consecutive frames.

Another approach is to build a representation of the background that is used to com-
pare against new images. One such approach captures a background image when no
foreground objects are present, assuming some user control over the environment. A
compromise between differencing neighboring frames and differencing against a known
background image is to adapt the background over time by incrementally incorporating
the current image into the background. Migliore et al. [4] integrate frame differencing
and background modeling to improve overall performance.

As needed, added complexity in the model would allow for added complexity in the
background scene. W 4 [5] was one of the first to incorporate more powerful statis-
tics by modeling the variance found in a set of background images with the maximum
and minimum intensity value and the maximum difference between consecutive frames.
Pfinder [6] uses the mean and the variance of pixel value. If all that is known about a dis-
tribution is the mean and variance, the most reasonable assumption based on maximal
entropy is the Gaussian distribution. The assumption then is that the pixel value follows
a Gaussian distribution, and a likelihood model is used to compare the likelihood of
background and foreground for a particular pixel. When this assumption does not ad-
equately account for the variance, a Mixture of Gaussians (MoG) can be used [7,8] to
further improve the accuracy of the estimate. A MoG model is capable of handling a
range of realistic scenarios, and is widely used [9,10].

Rather than extending the MoG model, Elgammal et al. [11] show it is possible to
achieve greater accuracy under the same computational constraints as the MoG when
using a non-parametric model of the background. Another significant contribution of
this work was the incorporation of spatial constraints into the formulation of foreground
classification. In the second phase of their approach, pixel values that could be explained
away by distributions of neighboring pixels were reclassified as background, allowing
for greater resilience against dynamic backgrounds. Sheikh and Shah unify the tem-
poral and spatial consistencies into a single model [12]. The result is highly accurate
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segmentations of objects even when occluding a dynamic background. Similar models
include [13,14,15].

A different approach, taken by Oliver et al. [16], looks at global statistics rather than
the local constraints used in the previously described work. Similar to eigenfaces, a
small number of “eigenbackgrounds” are created to capture the dominant variability of
the background. The assumption is that the remaining is due to foreground objects. A
threshold on the difference between the original image and the part of the image that
can be generated by the eigenbackgrounds differentiates the foreground objects from
the background.

Rather than implicitly modeling the background dynamics, many approaches have
explicitly modeled the background as composed of dynamic textures [17]. Wallflower
[18] uses a Wiener filter to predict the expected pixel value based on the past K samples
whose α’s are learned. Monnett et al. [1] model the background as a dynamic texture,
where the first few principal components of the variance of a set of background im-
ages (similar to [16]) comprise an autoregressive model in the same vein as [18]. For
computational efficiency, Kahl et. al. [19] illustrates that using “eigenbackgrounds” on
shiftable patches in an image is sufficient to capture the variance in dynamic scenes.

The inspiration for this work came from Rathi’s success in single image segmentation
using the Bhattacharyya distance [20]. Similarly, the consistency of the Bhattacharyya
distance under motion is used for tracking in [21]. While many distances between
distributions exist (e.g., Kullback-Leibler divergence [22], χ2 [23], Earth Mover’s
Distance [24], etc.), the Bhattacharyya distance is considered here due to its low com-
putational cost.

3 Background Model

In our approach, a background model is constructed for each pixel location, includ-
ing pixel values with temporal and spatial proximity. A distribution is constructed for
each pixel location on the current image and compared to the background model for
classification.

3.1 Modeling the Background

The background model for the pixel located at the ith row and jth column is in general a
non-parametric density estimate, denoted by pij(x). The feature vector, x ∈ R

3, is some
color-space representation of the pixel value. For computational reasons, we consider
the simplest estimate, given by the histogram

pij(x) =
1
|S|

∑

s∈S

δ(s − x), (1)

where S, the set of pixel values contributing to the estimate is defined as

S = {xt(a, b) | |a − i| < c, |b − j| < c, 0 ≤ t < T }, (2)

where xt(a, b) is the colorspace representation of the pixel at the ath row and bth col-
umn of the image taken at time t. The feature vector, x, is quantized to better approxi-
mate the true density.
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Elgammal et al. and Sheikh and Shah similarly model the background as a non-
parametric density estimate. A generalized form of Eq. (1),

pij(x) =
1
|S|

∑

s∈S

K(s − x), (3)

where K is a kernel function that satisfies
∫

K(x)dx = 1, K(x) = K(−x),
∫

xK(x)dx
= 0, and

∫
xxT K(x)dx = I|x|, can better approximate the true distribution when the

size of S is small. Elgammal et al. construct a model using an independent Gaussian
kernel for each pixel using only sample points of close temporal proximity,

S = {xt(i, j) | 0 ≤ t < T }. (4)

While Sheikh and Shah also use the independent Gaussian kernel, they model the entire
background with a single density estimate of the same form as Eq. (1) except the feature
vector, x, is appended with the pixel location, (i, j). The set of pixels used to construct
the estimate is

S = {xt(a, b) | 0 ≤ a < h, 0 ≤ b < w, 0 ≤ t < T } (5)

for a w×h image. Also, Sheikh and Shah adopt the simpler δ kernel function when the
algorithm is optimized for speed.

3.2 Temporal Consistency

To detect foreground at time τ , a distribution, qij,τ (x), is similarly computed for the
pixel located in the ith row and jth column using only the image at time τ according to

qij,τ (x) =
1

|Sτ |
∑

s∈Sτ

δ(s − x), (6)

where Sτ , the set of pixel values contributing to the estimate is defined as

Sτ = {xτ (a, b) | |a − i| < c, |b − j| < c}, (7)

The Bhattacharyya distance between qij,τ (x) and the corresponding background
model distribution for that location, pij,τ−1(x), calculated from the previous frames,
is computed to determine the foreground/background labeling. The Bhattacharyya dis-
tance between two distributions is given by

d =
∫

X

√
pij,τ−1(x)qij,τ (x)dx, (8)

where X is the range of valid x’s. d ranges from 0 to 1. Larger values imply greater sim-
ilarity in the distribution. A threshold on the computed distance, d, is used to distinguish
between foreground and background.
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While subtle, enforcing spatial consistency in the current image results in dramatic
improvements in the performance of our scheme compared to previous work, as will be
demonstrated in the following sections. This approach can be viewed as a hybrid be-
tween pixel- and texture-level comparisons. The distribution computed on the image at
time τ , qij,τ (x) could be viewed as a feature vector describing the texture at that loca-
tion. But, rather than building a density estimate in this feature space as the background
model, we treat each pixel independently in our distribution. While previous approaches
have mentioned the use of generic image statistics as a pixel-level representation which
could take into account neighboring statistics, a direct application of their approach
would have been prohibitively expensive in terms of memory and computation. Our ap-
proach is one that compromises model precision so as to feasibly fit on commonplace
devices and, as we shall show later on, still works well for our application domain. We
expect that this approach will work well for large but consistent background changes
and foreground objects that are similar in appearance to the background, exhibit sudden
motion and periods of stationarity, and do not necessarily dominate the scene.

3.3 Updating the Background

The background is adapted over time so that the probability at time τ is

pij,t(x) = (1 − α)pij,τ−1(x) + αqij,τ (x), (9)

where α is the adaptation rate of the background model.

4 Experimentation

We compare our approach against a set of background subtraction methods that handle
large variances in the background as well as frame differencing for a baseline.

In our experiments with Elgammal’s Non-Parametric Background model, we vary
the decision threshold on the difference image and α, which determines the relative
pixel values considered as shadowed. A difference image was constructed from the
probability of a pixel value coming from the background model. The implementation
was kindly provided by the author of the paper. We implemented the speed-optimized
version of Sheikh’s Bayesian model due to the computational constraints of the applica-
tion domain, and varied the number of bins used to approximate the background model.
We also tested our implementation of Oliver’s Eigenbackground model with a varying
number of eigenbackgrounds used to model the background. The results presented are
the best precision-recall pairs found across these parameters.

The subsequent parts of the algorithm suggested by Elgammal et al. and Sheikh and
Shah used to provide clean segmentations (i.e., morphological operations and minimum
cuts on Markov Random Field, respectively) could arguably be used by any of the
algorithms tested, so the informativeness of the results could be obscured by the varying
abilities of these operations. Therefore, when comparing these algorithms, we look only
at the construction of the background model and the subsequent comparison against the
current frame.
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4.1 Data Sets

We collected video sequences from two independent cameras pointed at a feeder sta-
tion. This feeder station had been previously set up to aid biologists in observing avian
behavior. The characteristics of data sets evaluated in this paper are:

– Feeder Station Webcam: Images are captured by webcam at 1 frame per second.
The size of these images are 480 × 704.

– Feeder Station Camcorder: Images are captured at full NTSC speed. The size of the
resulting images is 480 × 640.

– Sheikh’s: This dataset consists of � 70 frames of only background, followed by a
person and a car traversing the scene in the opposite direction.

Examples of these data sets are shown in Figs. 2, 4, and 5. Each data set was hand
labeled by defining the outline of the foreground objects.

4.2 Metrics

We use several metrics in our evaluation to try to best characterize the performance.
The most direct measure we use is the precision and recall of each pixel, following the
methodology of Sheikh’s work [12]. They are defined as follows:

Precision =
#TruePositives

#TruePositives + #FalsePositives
(10)

Recall =
#TruePositives

#TruePositives + #FalseNegatives
. (11)

This measures the accuracy of the approach at the pixel level, but does not capture
precisely its ability to give reasonable detections of birds for higher level classification.
In some cases, performance may easily be improved by morphological operations or the
use of Markov Random Fields, evidenced in [11,12]. On the other hand, if the predicted
foreground pixels that do correspond to birds are not connected (or cannot reasonably
be connected through some morphological operation), each disjoint set of foreground
pixels could be interpreted as a bird on its own, resulting in partial birds being fed to
a classifier or, worse, discarded because the region is too small. To better quantify the
performance of our approach, we also look at the precision and recall of birds. If 10%
of the bird is detected as a single blob, a then it is counted as a true positive. Otherwise,
the bird is considered a miss, and counted as a false negative. The smaller blobs are
discarded, and those remaining blobs are counted as false positives. These values are
used to compute the final precision and recall of birds.

More important is the end goal of understanding the nature of a bird’s visit. At the
application level, we would like an algorithm that successfully detects a wide range of
objects, rather than the one that may happen to dominate our test sequence. To that end,
we treat a visit to the feeder station as one event. Visit accuracy is the percent of visits
where the bird is detected at least once.
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4.3 Results

A challenge of the data sets considered is the absence of long periods of only back-
ground. For the Feeder Station data sets, we tested with 20 background images. For
Sheikh’s data set which had more background images, we used 100 background im-
ages. As shown in Figure 3, our approach significantly outperforms the others on the
Feeder Station data sets, and performs comparably on Sheikh’s data set. Representative
frames of the Feeder Station Webcam are shown in Figure 2 and of the Feeder Station
Camcorder in Figure 4.

While most birds are detected correctly, our approach has trouble when the bird is
similar to parts of the background, such as in image A in Figure 2, where the bird is

Original Manual Frame Diff Elgammal Sheikh Ours

A

B

C

D
Original Manual Oliver Kahl Monnet Ours

A

B

C

D

Fig. 2. Results on the Feeder Station Webcam Dataset. Parameters were varied to find the max-
imum precision subject to pixel recall > 50%. 20 background images were used to train the
background models. Our approach works well under most situations, but is unable to deal well
with narrow regions. This is shown in row A, where the tail is lost on the bottom bird. Also,
another weakness is when the background is of similar color. The bird is broken up into many
segments, as shown in row B.
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Fig. 3. Comparison of Elgammal et al., Sheikh and Shah, Oliver et al., Kahl et al., Monnet et al.
and our approach using Precision-Recall curves on selected data sets. Our approach outperforms
other approaches on the Feeder Station data sets and is comparable to others (as shown with
Sheikh’s data set).

Original Manual Frame Diff Elgammal Sheikh Ours

A

B

C
Original Manual Oliver Kahl Monnet Ours

A

B

C

Fig. 4. Results on the Feeder Station Camcorder Dataset. Parameters were varied to find the max-
imum precision subject to pixel recall > 50%. 20 background images were used to train the
background models. Most of the previous approaches a challenged by the slight movement of
the camera during the sequence run and the strongest response is to the movement of the leaves
in the background. Our approach better filters out this movement. In some cases, the automatic
approaches actually outperformed the manual labeling. In row A, the detected region in our ap-
proach corresponds to birds, verified after the fact.

separated into multiple segments. Surprisingly, though, in the Feeder Station Camcorder
data set, our approach detected birds that were missed by the manual labeling, as in the
upper left of image A in Figure 4.
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Original Manual Frame Diff Elgammal Sheikh Ours
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B
Original Manual Oliver Kahl Monnet Ours
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B

Fig. 5. Results on the Sheikh’s dataset. Parameters were varied to find the maximum pixel pre-
cision subject to pixel recall > 80%. 100 background images were used to train the background
model. Incorporating neighboring pixels in the current image for classification, our approach re-
sults in some inherent blurring of decision boundaries, resulting in blob-like classifications rather
than the more detailed boundaries of other schemes. In our application domain, this is not a
significant drawback.

The suggested methodology for Oliver et al., Kahl et al., and Monnet et al. is to
include all images in the eigenbackground computation with the assumption that fore-
ground objects do not persist in the same location for long periods of time. If they are
infrequent, they will not constitute the principal dimensions of variance. Adopting this
assumption, we tested all the algorithms against a background model with 100 frames
(where birds are at times present) and see in most cases a degradation in performance
as compared to when only 20 frames are used for the background, shown in Figure 3.

One drawback of our approach (though, not particularly relevant for our application)
is that accurate boundaries are lost. A comparison is made against the data set used in
[12] to illustrate this drawback. We see in this case, as shown in Figure 5, the algorithm
suffers from its inherent blurring, missing the full contour of the person in image A.
This is quantified in Figure 3. Interestingly enough, frame differencing works relatively
well on this data set, especially if coupled with some morphological filtering.

Due to the nature of the monitoring application, background adaptation is particu-
larly difficult, yet obviously necessary. Scientists are interested in monitoring the out-
doors for prolonged periods of time and do not necessarily have control over the envi-
ronment to gather background images whenever desired.

Blind adaptation is very sensitive to the rate of adaptation, as shown in Figure 6. If too
slow, the background model does not adequately account for the changes. If too fast, the
stationary birds go undetected due to integration into the foreground. Updating only the
background model of pixel locations that are clearly background (far from the decision
boundary of foreground/background) results in less sensitivity in the choice of α. Since
we account for most of the pixel value variance as movement, the remaining changes
are slow and due mostly to the lighting changes during the day. When sampling one
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Fig. 6. When blindly updating the background, only a limited range of α’s (the adaptation rate of
the background) maintain high precision at a fixed recall rate. By selectively updating a pixel’s
background model when no bird is present at that location, the accuracy is less affected by the
selected α.

Original Manual Ours

A

B

C

Fig. 7. Results of our approach on sample images over an hour using a background update every
minute. Even with very infrequent updates, our approach is able to continually segment birds. Re-
maining unaddressed situations include specular highlights resulting in false positives, as shown
in the row C.

frame per minute, we still achieve 85.21% precision at 50% recall.This allows greater
flexibility in system design including situations where full video frame rate capture and
analysis is either infeasible or impractical.

Sample frames are shown in Figure 7 illustrating the background model’s ability to
continuously resolve images over the course of an hour.

Figure 8 shows the corresponding bird precision-recall curves for the Feeder Station
Webcam and Camcorder using 20 background images. Most missed birds occured at
the boundary of the image. At bird recall > 59.5% on the Feeder Station Webcam data
set, our approach detected 37 of out 39 birds during their visit. The two undetected
birds were captured only in one frame each and either suffered from interlacing effects
or were only partially shown. At bird recall > 48.2% on the Feeder Station, 4 out of
4 birds were detected. In Figure 9, we provide a subset of cropped images detected
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Fig. 8. Precision-Recall Curves for Feeder Station Webcam and Camcorder data sets. Perfor-
mance suffers in the Feeder Station Webcam when birds are cut off by the capture window. At
the point indicated by the purple dot, we detect 37 out of 39 and 4 out of 4 bird visits on the
respective data sets.

Fig. 9. Sample segmentations from our approach, including both true detections and false alarms

by our approach. We improved the selected area of the detected bird by lowering the
pixel difference threshold around our detection. A simple clustering algorithm could
separate these images into a reasonably sized set for a biologist to view and provide
domain-specific knowledge, such as the species of the bird.

5 Conclusion

In this paper, we call to attention several inherent characteristics of natural outdoor
environmental monitoring that pose a challenge to automated background modeling
and subtraction. Namely, foreground objects tend to, by necessity, blend into the back-
ground, and the background exhibits large variations due to non-stationary objects
(moving leaves) and rapid transitions from light to shadow. These conditions present
a challenge to the state of the art, which we have addressed with an algorithm that
exhibits comparable performance also on standard surveillance data sets.
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A side benefit of this approach is that it has relatively low memory requirements,
does not require floating point operations, and for the most part, can run in parallel.
This makes it a good candidate for embedded processing, where Single Instruction,
Multiple Data (SIMD) processors are available. Because the scheme does not depend
on a high sampling rate, needed for optical flow or dynamic texture approaches, it lends
itself to an adjustable sampling rate. This ability to provide an embedded processor
that can easily capture objects facilitates scientific observation of phenomena that are
consistently difficult to reach (e.g, environmental, space, underwater, and more general
surveillance monitoring).
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