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Abstract—Affine registration has a long and venerable history in computer vision literature, and in particular, extensive work has been

done for affine registration in IR2 and IR3. This paper studies affine registration in IRm with m typically ranging from 4 to 12. To justify

breaking of this dimension barrier, the first part of the paper describes three novel matching problems that can be formulated and

solved as affine point-set registration problems in dimensions greater than three: stereo correspondence under motion, image set

matching, and covariant point-set matching, problems that are not only interesting in their own right but also have potential for

important vision applications. Unfortunately, most of the existing affine registration algorithms do not generalize easily to higher

dimensions due to their inefficiency. Therefore, the second part of this paper develops a novel algorithm for estimating the affine

transform between two point sets in IRm. Specifically, the algorithm follows the common approach of iteratively solving the

correspondences and transform. The initial correspondences are determined using the novel notion of local spectral features, features

constructed from local distance matrices. Unlike many correspondence-based methods, the proposed algorithm is capable of

registering point sets of different size, and the use of local features provides some degree of robustness against noise and outliers. The

proposed algorithm is validated on a variety of synthetic point sets in different dimensions with varying degrees of deformation and

noise, and the paper also shows experimentally that several instances of the aforementioned three matching problems can indeed be

solved satisfactorily using the proposed affine registration algorithm.

Index Terms—Affine registration, point matching, stereo correspondence.

Ç

1 INTRODUCTION

MATCHING points, particularly in low-dimensional set-
tings such as 2D and 3D, have been a classical

problem in computer vision. The problem can be formu-
lated in a variety of ways, depending on the allowable and
desired deformations. For instance, the orthogonal and
affine cases have been studied quite intensively in
the literature, e.g., [23], [41], and recent research activities
have been focused on nonrigid deformations, particularly
those that can be locally modeled by a family of well-known
analytic functions such as splines, e.g., [9]. In this paper,1

we study the more classical problem of matching point sets
related by affine transforms. The novel viewpoint taken
here is the emphasis on affine registrations in IRm for
4 � m � 12, and this differs substantially from the past
literature on this subject, which has been overwhelmingly
devoted to registration problems in IR2 and IR3, e.g., [28],
[42], [43], [47], [50].

To justify breaking this dimension barrier, the first part
of the paper will describe three broad and interesting
classes of applications in computer vision that can be
formulated and solved as affine registration problems in
IRm with m > 3: stereo correspondences, image set match-
ing, and covariant point-set matching (see Fig. 1). In stereo
correspondence under motion, two video cameras are
observing an object undergoing some motion (rigid or
nonrigid), and a set of k points on the object is tracked
consistently in each view. The problem is to match the
tracked feature points across two views so that we can
identify and locate the k feature points correctly and
consistently across all frames. For image set matching,
two sets of images are given such that the images are
related through a linear transform F : IRm1 ! IRm2 between
two high-dimensional image spaces. Interesting examples
of such transform F include standard image operations
such as image rotation, smoothing, downsizing, and pixel
permutation, all of which can be modeled as linear
transforms between image spaces. The task here is to
compute the correspondences between images directly from
the sets of images: The correspondences are determined in a
global and systematic way by exploiting the geometric
relations between images without using local image
features (e.g., SIFT). Finally, in many vision applications,
features associated to points are often vectorial quantities
such that a spatial (affine) transform of the points also
induces a linear transform of their feature vectors. Familiar
examples include image gradients, structure tensors, high-
order jets, and image moments. In particular, the presence
of associated feature vectors means that the qualitative
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measure of a registration result should depend on both the
spatial and feature matchings, an important point that
seems to has been overlooked in the literature. In covariant
point-set registration, we develop a new and more general
type of matching problems that incorporate both the spatial
and feature components.

While the three problems superficially look disparate, we
will show that a principled and unified approach to solve
them is indeed possible provided that their underlying
geometric contexts are understood. Specifically, we will
show that the data transforms underlying the three
matching (registration) problems can be modeled by affine
transforms in some appropriate dimensions. Instead of
computing the correspondences directly, we will focus on
determining the affine transform from the input data
points, with the correspondences recovered from the affine
transform using nearest neighbors. In particular, an im-
portant idea of this paper is to reformulate the matching
problem in a correct dimension that is often different from
the one containing the input data. The choice of the new
dimension, which can be higher or lower than the original
feature space dimension, will depend on the problem. This
dimensionality modification is supported by the following
two paradigms that underlie the three matching problems:

1. Dimensionality Reduction: Matching problems in
high-dimensional image space can be approximated
by matching problems in its low-dimensional ap-
proximating subspace.

2. Feature Augmentation: Points in nonrigid motion in
IR3 can be considered as projections of some higher-
dimensional feature points. Therefore, the matching
problem can be reformulated as a matching problem
in the higher-dimensional feature space.

Geometrically, the situation is best illustrated by the
following commutative diagram between two pairs of
feature spaces IRm and IRk:

IRm g
����! IRm

�1

??y ??y�2

IRk f
����! IRk;

ð1Þ

where m > k. The problem-dependent projection maps
�1; �2 relate each pair of feature spaces IRm; IRk, and their
respective maps f; g. For each problem, the input point sets

reside in IRm (or IRk), and the problem ostensibly requires the

determination of g (or f) that registers the point sets.

However, the reformulated problem takes place in the other

feature space IRk (IRm), and the resulting matching problem

then requires the determination of f (or g). In particular, in

this general context, the registration problem mostly occurs

in dimensions greater than three, and in our applications, the

dimension typically ranges from 4 to 12, dimensions that

are higher than the usual dimension of three but cannot be

considered as high-dimensional. Therefore, we term the type

of affine registration problems studied in this paper as

higher-dimensional affine registration.
Unfortunately, most of the existing affine registration

algorithms are tailored for applications in IR2, and they are

not suitable for registering higher-dimensional point sets.

Therefore, in the second part of the paper, we will develop a

novel affine registration algorithm. The iterative closest

point (ICP) algorithm [3], [57] can be easily generalized to

handle higher-dimensional point sets. The resulting affine-

ICP algorithm iteratively solves for the correspondences

and affine transform. However, the main challenge is to

produce good initial correspondences and affine transfor-

mation that can be used to start the affine-ICP algorithm.

For dimensions two and three, this is already a major

problem and the difficulty increases significantly with

dimension. We propose a simple algorithm that can

estimate the affine transformation (and hence, the corre-

spondences) directly from the point sets. The algorithm first

reduces the affine registration to an orthogonal case in

which only orthogonal transforms are involved [45]. The

orthogonal registration problem is then solved using local

spectral features (LSFs), features formed by the eigenvalues

of a symmetric matrix constructed from local distance

matrix. We show that with noiseless data and generic point

sets, the algorithm will recover the exact affine transform.

With the noisy data, it will provide a good initialization for

the affine-ICP algorithm. The algorithm is validated using a

variety of synthetic point sets in different dimensions with

varying degrees of deformation and noise, and we provide

experimental results demonstrating that the algorithm can

indeed provide efficient and accurate solutions to the three

aforementioned matching problems.
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Fig. 1. Left: Stereo correspondence under motion. A talking head is observed by two (affine) cameras. Feature points are tracked separately on each
camera and the problem is to compute the correspondences between observed feature points across views. Center left: A collection of 432 images
from COIL image database showing six objects. Center right: Images obtained by rotating and downsizing the images on the left. Right: Images
obtained by permuting pixels of the images on the left. All images use the same pixel permutation. Without computing local image features, image
set matching aims to discover the correspondences (circles) from the sets directly by exploiting the geometry of the images considered as points in
some IRm. Local image features may be useful for solving the matching problem between the first two image sets; however, it is completely
inappropriate for the third set.



2 AFFINE REGISTRATION AND VISION

APPLICATIONS

This section presents the formulations of the three aforemen-

tioned matching problems as affine registration problems in
appropriate dimensions. An important contribution of this
paper is to show that these matching problems can indeed be
solved in a systematic and principled way using the proposed
affine registration algorithm described later in the paper.

2.1 Stereo Correspondences under Motion

A scene (or an object) undergoing some motion is observed

by two stationary video cameras C1; C2. On each camera, a

tracking algorithm is applied to consistently track k scene

points over t frames. Let ðxfij; y
f
ijÞ, i ¼ 1; 2, j ¼ 1; . . . ; k,

denote the image coordinates of the jth scene point taken

with camera i in frame f . The problem of stereo

correspondences under motion is to compute correspon-

dences across two cameras (views) between the two sets of

image points ðxf1j; y
f
1jÞ; ðx

f
2j; y

f
2jÞ, and the correspondence is

defined such that ðxf1j; y
f
1jÞ $ ðx

f
2l; y

f
2lÞ if they are two

image projections of the same scene point.
The problem context is quite general and many vision

applications, particularly those related to surveillance,
require computing correspondences from image sequences.
One possible solution is to apply stereopsis and use local
intensity patterns to estimate the correspondences from an
image pair as is common in many stereo-based algorithm.
However, there are three reasons for not favoring this type

of solution. First, for a dynamic scene, motions of the scene
points affect their appearance and external illumination can
complicate matching using brightness constancy assump-
tion. Second, since the stereo algorithm works only with
image pairs, it requires the selection of the correct frames

from the two cameras. If the two sequences are not
temporally aligned or come with some synchronization
information, such as time stamps, it is difficult to pick out
the correct pair of frames. Furthermore, it is also difficult to
determine which pair would be the optimal frame pair to

use. Third, using only a pair of frames to compute the
correspondences does not utilize all of the input data. In
particular, a principled solution should consider all of the
input data simultaneously and compute the correspon-
dences without bias to any particular frame pair.

Assuming the cameras are affine [23], we show that it is

possible to solve the problem in a principled and unified
manner. The basic idea is straightforward: For each camera,
we can apply the factorization algorithm (e.g., [48]) to
reconstruct the observed 3D points, and the two reconstruc-
tion results differ by an unknown linear transform. For

clarity of presentation, we will first discuss the rigid motion.
Recall that for an affine camera model, the relation between
a 3D point Xj and its 2D image point xj is given by

xj ¼ CXj þ t;

where C is a general 2� 3 matrix with linearly independent

rows and t is the translation. As it can be dealt with by
centering the image points, we will ignore the translation t

in the following discussion. For the observed k scene points,

the position matrix X is

X ¼ ½X1 . . . Xk�; ð2Þ

with columns the 3D coordinates of the scene points. For

each camera i ¼ 1; 2, we can stack the image coordinates of

one tracked scene point Xj over T frames vertically into a

2T -dimensional vector:

pj ¼
�
x1

1j y
1
1j . . .xT1j y

T
1j

�>
qj ¼

�
x1

2j y
1
2j . . .xT2j y

T
2j

�>
:

These vectors can be stacked horizontally to form the data

matrices M1;M2:

M1 ¼ ½pi . . . ;pk�; M2 ¼ ½qi . . . ;qk�:

Similarly, the camera matrices Cf
1 ;C

f
2 over T frames can be

put together to form2

C1 ¼
�
C1

1 ; . . . ;CT
1

�
; C2 ¼

�
C1

2 ; . . . ;CT
2

�
:

Equation (2) then implies that

M1 ¼ C1X; M2 ¼ C2X: ð3Þ

Therefore, the 3D points Xj can be computed by factorizing

the data matrices M1;M2 [48]. Evidently the (least-squares)

solution for X is unique only up to a nonsingular linear

transform. Therefore, when comparing the reconstruction

results X1;X2 from the two cameras, there is a nonsingular

matrix A such that

X2 ¼ A X1:

That is, the correspondences can be solved as an affine

registration problem between the point sets X1;X2.
The above discussion generalizes immediately to nonrigid

motions that can be modeled (or approximated) using linear

shape basis [23], [5], [4] since the underlying linear algebra

for both rigid and nonrigid motions is the same, except

nonrigid motions require points in IRm withm > 3. Choosing

a world frame since the target is undergoing a nonrigid

motion, the 3D coordinates of the scene points are no longer

constant in time and, accordingly, the 3D position matrix

X> ¼ ½X>1 . . . X>k �

now depends on frame (time) t. For k feature points, a shape

basis element Bl is a 3� k matrix, and for a motion model

that employs m linear shape basis elements, the position

matrix X> at frame t is assumed to be a linear combination

of these shape basis elements:

X> ¼ X>1 . . .X>k
� �

¼
Xm
l¼1

a>l Bl; ð4Þ

with coefficients a>l . The crucial result in the above discus-

sion is (3) that relates the frame-dependent data and camera

matrices to the frame-independent 3D position matrix. For

the nonrigid case, an analogous equation can be obtained by

cleverly arranging Bl, a
>
l , and the camera matrices C>i [5].

The idea is to move the time-dependent coefficients a>l in (4)
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to the time-dependent camera matrix C>i . Specifically, we
define the new 3m-D position matrix X as

X ¼ ½B1; . . . Bm�;

which is a 3m� k matrix. The camera matrix is then
augmented to have 3m columns,

Ci ¼
�
a1

1C
1
i . . . a1

mC
1
i ; . . . a>1 C

>
i . . . a>mC

>
i

�
;

to incorporate all of the frame-dependent coefficients a>l .
Using the new camera and position matrices and (4), we
again arrive at (3) with the same data matrices M1;M2. In
particular, this shows that once the position matrix X is
recovered from each camera, the two results differ by a
nonsingular linear transformation in IR3m, and the corre-
spondences can again be solved as an affine registration
problem, albeit in dimension higher than three.

2.2 Image Set Matching

In image set matching, two sets of images IP ¼
fI1; . . . ; Ikg � IRm, QQ ¼ fI 01; . . . ; I 0kg � IRm0 are given, where
IRm; IRm0 are the image spaces. The relation between the
images is given by a linear transformation F : IRm ! IRm0

between the two high-dimensional image spaces such that

I 0k ¼ FðIkÞ:

Interesting examples of the linear transformation F are easy
to come by. Standard image processing operations, such as
image rotation, downsampling, image smoothing, and pixel
permutation, all can be modeled as (or approximated by) a
linear transform F between two image spaces. We have
already seen several such image sets in Fig. 1, and Fig. 2
displays four close-up examples.

Given the image sets IP;QQ, the problem is to recover the
correspondences Ik $ I 0k. Local image features such as SIFT
could be useful for discovering the correspondences from
the rotated or smoothed images. However, computing local
image features can be expensive, and for a large number of
images, this approach may not be efficient. Furthermore, for
images obtained by randomly permuting the pixels, this
method is completely ineffective as there is no meaningful
feature that can be extracted from these images. On
the other hand, the problem cannot be solved by estimating
the linear transform F from the images in IP;QQ as the
dimension of the image space m is typically greater than
the number of images. Therefore, without regularization,
the problem is ill-posed.

Fortunately, many interesting image sets can be approxi-
mated well by low-dimensional linear subspaces in the
image space, and these low-dimensional subspaces can be
readily computed from the images using Principal Compo-
nent Analysis (PCA). Let LIP; LQQ denote two such low-
dimensional linear subspaces approximating IP;QQ, respec-
tively, and we will use the same notations IP;QQ to denote
their projections onto the subspace LIP; LQQ. A natural
question to ask is how are the (projected) point sets IP;QQ

related? Suppose F is orthogonal and LIP; LQQ are the
principle subspaces of the same dimension. If the data is
“noiseless”, i.e., I 0k ¼ FðIkÞ, it is easy to show that IP;QQ are
then related by an orthogonal transformation. In general, F
may not be orthogonal and data points are noisy. The point
sets IP;QQ are related by a transformation of the form
T ¼ Aþ r, which is a sum of an affine transformation A and
a nonrigid deformation r. If the nonrigid part is small, we can
recover the correspondences by affine registering the two
(projected) point sets IP;QQ. For the image operations listed
above, pixel permutation can be modeled by an orthogonal
transform (permutation matrix) in the image space. Due to
discretization which requires intensity interpolation, image
rotation and downsampling cannot be modeled exactly
using orthogonal transforms; nevertheless, they can be
approximated well by similarity transforms (orthogonal
plus uniform scaling). Smoothing, in general, can only be
modeled by a general linear transform in the image space.

Therefore, while estimating the correspondences from
the original image spaces is intractable, registering points
on the subspaces LIP; LQQ, which have smaller dimensions,
are tractable. This gives an algorithm for computing the
correspondences without explicitly using the image con-
tents, i.e., there is no feature extraction. Instead, it computes
the affine transform directly from the image sets considered
as point sets in the subspaces LIP and LQQ.

2.3 Covariant Point-Set Matching

In many vision applications, points extracted from images
(or other data) often can be associated with feature vectors
that also transform linearly under the application of a
planar affine transform. For example, the 2� 2 structure
tensor T p of an image I at an image point p,

T p ¼ I2
x IxIy

IyIx I2
x

� �
; ð5Þ

transforms as a rank-two symmetric tensor under an affine
transform A of the image

T p �! A>T pA:

In other words, the affine transform A in the spatial
domain IR2 induces a linear transform A� of the structure
tensors. Therefore, if structure tensors are used in image
registration, the registration algorithm not only has to
match the points on the images but also their associated
feature vectors. In particular, the 2D registration problem
becomes a 5D registration problem as the points now
acquire the dimension of their feature vectors, p̂ ¼ ðp; T pÞ in
IR2þ3¼5 (the space of 2� 2 symmetric matrices has dimen-
sion three).
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Fig. 2. Image set matching. Left: Images of four objects from the COIL
database. The images have been downsized from the original to
32� 32. Center: Images obtained by rotating and smoothing the images
on the left. The rotation is 45 degrees and the smoothing kernel is the
uniform 3� 3 kernel. Right: Images obtained by randomly permuting the
pixels in the images on the left. The four images are subject to the same
pixel permutation scheme.



The above example is a special case of a broad class of
point-set registration problems that we call Covariant Point-
Set Matching: Each point p in the spatial domain IRk has an
associated feature vector vp in the feature space IRd that also
transforms linearly under an affine transform A 2 GLðkÞ in
IRk. That is, the feature vectors are not invariant under the
action of A but are covariant with respect to it. This means
that there is a representation of GLðkÞvia a homomorphism�:

� : GLðkÞ �! GLðdÞ

such that the induced action of an affine transform A 2
GLðkÞ in IRd is given by A� ¼ �ðAÞ. If we consider each pair
ðp;vpÞ as a point p̂ 2 IRk � IRd, then the transforms A;A�

can be combined to yield an affine transform A�A� in
IRkþd with matrix representation given as

A�A� ¼ A 0
0 �ðAÞ

� �
: ð6Þ

Since the spatial and feature components use different
units, we use the weighted L2-norm (� > 0)

kp̂� q̂k2
� ¼ kp� qk

2

IRk þ �kvp � vqk2

IRd ð7Þ

to define the distance between two points p̂ ¼ ðp;vpÞ, q̂ ¼
ðq;vqÞ in IRkþd. This distance measure will be used to define
the matching cost function EðAÞ for registering point sets in
IRkþd. We remark that the usual point-set matching problem
can naturally be considered as a special case of the
covariant point-set matching if each point is assigned a
trivial feature vector 0 2 IRd, and the map � is the identity
map, �ðAÞ ¼ Id�d: The linear transform A has no effect on
the feature vectors. In this case, the distance kp̂� q̂k�
reduces to the usual L2-distance of the points p; q in IRk.

The affine registration problem formulated above in
IRkþd is for the transforms in GLðkþ dÞ with matrix
representations given in (6). However, we can relax the
problem and consider the affine registration using all
transforms in GLðkþ dÞ. The relaxation can be justified
because if the registration using transforms in (6) has a good
solution A (i.e., one with small registration error), it should
be close to the solution ~A for the GLðkþ dÞ-registration
problem, and the solution ~A can be used in two different
ways to solve the original registration problem in IRk. First,
we can transfer the correspondences p̂i $ q̂j determined by
~A in IRkþd to the correspondences pi $ qj in IRk. Second, we
can define a new transform T using ~A:

TðpÞ ¼ Pk
~Aðp̂Þ; ð8Þ

where Pk : IRkþd ! IRk is the orthogonal projection. The
transform T so defined is, in general, not just an affine
transform A in IRk, but coupled with a nonrigid deforma-
tion rp,

TðpÞ ¼ AðpÞ þ rp;

that depends on the feature vector vp. This is clear because
the matrix representation for ~A has the block form

~A ¼ Ak�k Bk�d
Cd�k Dd�d

� �
; ð9Þ

and the deformation vector rp ¼ Bvp. Because of this added
nonrigidity, the matching provided by T typically produces
smaller registration error than using only affine transform A.

2.3.1 Registration of Massive Point Sets

One interesting application of the covariant matching is the
registration of point sets containing large numbers of points
(say in the tens or hundreds of thousands). The problem can
be difficult if the registration algorithm does not scale well
with respect to the size of the input. A typical remedy for
this is to downsize the point sets, and then register
the resulting smaller sets of points that are supposed to
have captured a good portion of the original geometries.
The simplification procedure can be both subtle and
elaborate, and there is a large body of work in computer
graphics devoted to mesh and point-set simplifications (e.g.,
[17], [34]). The downsized points are usually determined as
the weighted means of their associated points in the original
point sets, and in our viewpoint, working solely with these
mean points may have discarded some useful geometric
information that could be useful for matching. However, if
we can associate certain feature vector to each downsized
point that captures the local geometry of the point set,
covariant point-set matching will readily provide the
solution. In essence, covariant matching allows us to trade
complexity for dimension as it transforms a larger problem
in low dimension into a smaller one in a higher dimension.
The trade is beneficial because the smaller problem can be
solved more efficiently and accurately as the reduction in
problem complexity usually more than compensates for the
moderate increase in dimension.

Discrete polynomial moments provide a natural family
of such local features. Recall that the moments are the
expected values of monomials with respect to a probability
density function. Working in IR3, let P ðx; y; zÞ denote a
monomial in three variables. Using uniform discrete
density, the discrete polynomial P -moment [27] for a
collection of points p1; . . . ; ps with respect to the origin is
the sum

mP ¼
1

s

Xs
i¼1

P ðxi; yi; ziÞ;

where pi ¼ ðxi; yi; ziÞ. For a given degree n, let P1; . . . ; PdðnÞ
denote the dðnÞ basis monomials with dðnÞ ¼ ðnþ2Þðnþ1Þ

2 . The

moment feature vector for p1; . . . ; ps is defined as

vn ¼ ½mP1
; . . . mPdðnÞ�

>:

For example, for n ¼ 2, the quadratic moment vector is
given as

v2 ¼
1

s

X
x2
i ;
X

y2
i ;
X

z2
i ;
X

xiyi;
X

xizi;
X

yizi

h i>
;

ð10Þ

and with n ¼ 1, the linear moment vector simply gives the
mean point

v1 ¼
1

s

X
i

xi;
X
i

yi;
X
i

zi

" #>
:
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In all of the applications shown in the experiment section,
we will only work with quadratic moment (n ¼ 2) and no
other higher degree moments will be used.

3 PREVIOUS WORK

Affine registration for point sets in IR2 has been investigated
quite extensively in the literature, with important applica-
tions in image registration, object recognition, and shape
analysis. There is a substantial body of literature devoted to
this subject, and the overwhelming majority of them deal
with registration problems in IR2. Therefore, in this
necessarily incomplete and brief survey of existing litera-
ture, we will focus on a few major approaches and discuss
their possible extensions to handle higher-dimensional
registration problems.

Correspondence-based algorithms solve the registration
problem by computing the correspondences. In particular,
the invariant-based approach uses moment invariants that
are invariant under affine transforms [27]. For example,
affine moment invariants for images have been proposed in
[35], [16], and in [55], cross-weighted moment invariants are
used for alignment and recognition. Seusse et al. [47], [50]
introduce the idea of discrete affine moments, and the
normalization technique used in these papers, although in a
different context, is the same as our orthogonal reduction
step. Recently, [25] proposed a set of affine moment
descriptors that use complex moments in the definition,
and the resulting descriptors can be converted to affine
moment invariants. As moments are the expected values of
monomials and the number of monomials of a fixed degree
grows exponentially with dimension, the main difficulty of
generalizing moment-based approach to higher dimension
is the complexity of the algebra involved. In particular, each
dimension requires a different formula to compute invar-
iants, and the large number of moments makes the process
extremely inefficient.

Inefficiency is also a major problem for generalizing
other methods to higher dimensions. For example, [39]
contains perhaps the most straightforward method that
computes the correspondence between the two point sets
using all possible sets of four points. This method is similar
to an earlier method [32] that uses affine invariant
representation of points based on a triplet of basis points.
All possible triplets are considered and the affine invariants
of the remaining points are computed and stored in a hash
table, which is then used in the matching stage. In [51], a
global correlation for affine transforms is used to align
affine transformed gray-level images. For similarity trans-
forms, [46] introduces an algorithm that determines both
the transformation and correspondences between two
images. In this method, transformation parameters for all
possible point pairings are calculated and then clustered in
a parameter space, and the transformation is determined by
the largest cluster. This approach is related to the concept of
geometric hashing used in [53]. Unfortunately, these
methods do not generalize well to higher dimensions
because the size of their data structures (e.g., hash table)
grow exponentially with dimension.

Hausdorff distances for image and point-set registrations
were first introduced for similarity transforms in [29], and it

was later extended by [36] to the more general affine
transforms for locating objects in a scene. In this method, a
grid is introduced on the parameter space of allowable
affine transforms, and the algorithm’s complexity depends
on the size of the grid (required precision). In [22], a
hierarchical top-down approach is used to estimate the best
affine transform among all possible transforms. As the
dimension of GLðnÞ depends quadratically on n, direct
generalizations of these methods to higher dimensions
would require too much memory to be practical. In another
direction, the edges of the point set’s convex hull can serve
as important features for point matching, as was first noted
in [20] for similarity transforms, and the vertices of the
convex hull were later used for affine point-set matching in
[56], [19]. In [28], affine invariant representations of point
sets are obtained by using distance ratios defined by
quadruples of feature points, and the convex hull of each
point-set is utilized to select some reference points. Again,
these techniques are difficult to generalize because convex
hull in higher dimensions cannot be determined or
represented as easily and efficiently as in IR2.

Finally, spectral methods [7], [42], [43] form another
important category of registration algorithms. The well-
known algorithm of [42] solves the registration problem by
aligning the (unit) eigenvectors of the covariance matrices
of the two point sets. It has been extended and generalized
in several different ways for matching points and shapes in
IR2 [7], [11], [40]. These methods are easier to generalize as
their complexity typically does not depend on the dimen-
sion but on the number of input points. Our approach can
be considered as an extension of these methods, with the
novel features of using only local spectral information to
establish correspondences. Other types of local features
used in matching include shape context [2], spin images
[30], and shape descriptors [18]. These features are usually
in the form of a histogram encoding the local geometry of a
point using orientations, heights, and other geometric
quantities. While these features work well in 2D and 3D,
it is not immediately clear how they can be extended to
higher dimensions. For example, computing the histograms
in shape context is reasonably straightforward in IR2

because directions in IR2 can be parameterized by a circle
and the bins in the histogram can be defined relatively
easily. Moving into higher dimensions such as IR6 or IR10,
the directions in these spaces are parameterized by higher-
dimensional spheres, and the definition of the histogram is
no longer as straightforward as in IR2. Very recently, [52]
proposed an elegant algorithm based entirely on linear
algebra for computing correspondences that can be applied
to any dimension. Unfortunately, the algorithm requires an
equal number of points for the input point sets, and at this
moment, it is not clear how the presence of noise would
affect the algorithm’s performance.

4 HIGHER-DIMENSIONAL AFFINE REGISTRATION

The above discussion provides the motivation and justifica-
tion for studying affine registration in IRm for m > 3. An
affine transform A in IRm is represented by a pair ðA; tÞ, its
linear and translational components such that for x 2 IRm,

AðxÞ ¼ Axþ t;
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where A 2 GLðmÞ and t 2 IRm. In the following discussion,
we will often use the same notation (as above) A to denote
an affine transform and its linear component as the
translational component is usually not the main focus. Let
IP ¼ fp1; . . . ; pkg and QQ ¼ fq1; . . . ; qlg denote two point sets
in IRm. We formulate the affine registration problem for
IP;QQ as an optimization problem using the matching cost
function E,

EðAÞ ¼ �HðAðIPÞ;QQÞ; ð11Þ

that uses Hausdorff distance to measure the quality of the
registration given by A. Recall that the (averaged) Hausdorff
distance [29] between two point sets IP;QQ is defined as

�HðIP;QQÞ ¼
1

k

X
p2IP

min
q2QQ
jp� qj þ 1

l

X
q2QQ

min
p2IP
jq � pj; ð12Þ

and in (11), we have used AðIPÞ to denote the transformed
point set of P. Unfortunately, direct minimization of E is
difficult, and our strategy is to use an affine variant of the
ICP algorithm to obtain an affine transformation with small
EðAÞ. While the global minimum of E cannot be guaran-
teed in general, the value EðAÞ serves as a good qualitative
measure on the matching provided by the solution.

4.1 Affine ICP

The ICP algorithm is a very general point registration
algorithm that has become popular in vision applications,
e.g., [1], [12], [15], [21], [37], [44], [57]. While these works are
concerned exclusively with rigid transformations in IR2; IR3,
it is not difficult to extend the ICP algorithm to incorporate
affine transformations. The affine-ICP algorithm iteratively
solves for the correspondences and affine transformation as
in the usual ICP, and the two steps are easily adopted for
higher-dimensional point sets. Specifically, given an assign-
ment (correspondences), � : f1; . . . ; kg ! f1; . . . ; lg, the op-
timal affine transformation A in the least-squares sense can
be solved by minimizing

EðA; t; �Þ ¼
Xk
i¼1

jApi þ t� q�ðiÞj2: ð13Þ

Solving A; t separately, this cost function gives a quadratic
programming problem in the entries of A, and the optimal
solution can be computed readily by solving a linear
system. With a fixed A, t can be solved immediately. On
the hand, given an affine transformation A, a new assign-
ment � can be defined using nearest neighbors

�ðiÞ ¼ arg min
1�j�l

jApi þ t� qjj2:

The iterative process requires an initialization that is typically
provided as an initial affine transform A. While the affine ICP
is easy to implement and very efficient, it suffers from two
major shortcomings. First, to the best of our knowledge, there
is no proof of convergence for any ICP-like algorithm,
although ample empirical results have suggested that if a
good initialization is given, the algorithm usually does
converge to a reasonable solution, e.g., [15], [57]. Second,
the algorithm’s performance depends significantly on the
initial affine transform, and with a poor choice, it almost
always converges to an undesirable solution. Therefore,

determining a good initialization is crucial for the algorithm’s
success. A direct way to generate an initial affine transforma-
tion (disregarding t) is to randomly pick m pairs of points
from IP;QQ, fðx1; y1Þ; . . . ; ðxm; ymÞg, xi 2 IP, yi 2 QQ, and
define A as yi ¼ AðxiÞ. It is easy to see that the probability
of picking a good set of m pairs that will yield good
initialization is roughly in the order of 1=Cðk;mÞ. For small
dimensions m ¼ 2; 3 and medium-size point sets (k in the
order of hundreds), it is possible to exhaustively sample all
collections of such m pairs and evaluate their corresponding
affine transforms. However, as Cðk;mÞ depends exponen-
tially on the dimensionm, this approach becomes impractical
once m > 3.

Our approach to generate a good initial affine transform

is to first reduce the problem to an orthogonal matching

problem. The latter problem is solved by computing

correspondences using local spectral features, and the

resulting orthogonal transform is used to obtain an affine

transform. For generic point sets without noise, it is

straightforward to show that the affine transform so

determined is the exact affine transform, and this suggests

that (with experimental support) for noisy point sets, it

should be a good candidate for the affine ICP initialization.

4.2 Orthogonal Reduction

Given the point sets IP;QQ, their respective normalized

discrete linear moments mp;mq are given as [50], [27]

mIP ¼
1

k

Xk
i¼1

pi; mQQ ¼
1

l

Xl
i¼1

qi:

Similarly, their normalized quadratic moments (covariance

matrices) are given as

SIP ¼
1

k

Xk
i¼1

ðpi �mpÞðpi �mpÞ>; ð14Þ

SQQ ¼
1

l

Xl
i¼1

ðqi �mqÞðqi �mqÞ>: ð15Þ

For the moment, we will work with noiseless assumption:

IP;QQ have the same number of points and the affine

transform A is exact, i.e.,3

qi ¼ A pi þ t; ð16Þ

for 1 � i � k. Furthermore, we will assume that the point

sets IP;QQ are nondegenerated so that they are not properly

contained in a linear subspace of IRm. It then follows that

SIP;SQQ have full rank and their inverses exist. Equation (16)

implies that A has to satisfy the following two equations:

SQQ ¼ ASIPA>; t ¼mQQ �AmIP:

Therefore, t can be determined once the linear component

A is known, and the first constraint on A implies that

A ¼ S
1
2

QQRS
�1

2

IP ð17Þ
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for some orthogonal transform R 2 OðmÞ. This essentially
reduces the problem of determining A from GLðmÞ to
OðmÞ because R has to match the transformed point sets
exactly, with the transformations given by

pi ! S
�1

2

IP ðpi �mIPÞ; qi ! S
�1

2

QQ ðqi �mQQÞ: ð18Þ

In other words, after centering each point set ðpi ! pi �
mIP; qi ! qi �mQQÞ, we have the following commutative
diagram:

IRm A
����! IRm

S
�1

2

IP

??y ??yS
�1

2

QQ

IRm R
����! IRm;

and the original affine registration in the upper part of the

diagram can be transferred to the orthogonal registration in

the lower part of the diagram using S
�1

2

IP ;S
�1

2

QQ . Commutativity

of the diagram implies that A can be reconstituted as in (17)

once R is determined. We remark that the same reduction,

although presented in a different way but with essentially

the same mathematical content, appeared in [45].

4.3 Determine R

We will use the same notation IP;QQ to denote the
transformed point sets of IP;QQ using (18). Since the
transformed point sets IP;QQ have unit covariance matrices,
the invariant approach in [41], which can be easily
generalized to higher dimensions, cannot be applied to
determine the orthogonal transform R. Nevertheless, there
is a very general way to produce a large number of useful
local invariants that can be used to estimate the correspon-
dences. Specifically, we aim to define invariant feature
vectors ui;vi for pi; qi, respectively, such that qi ¼ Rpi
implies jui � vij ¼ 0. These feature vectors will provide a
way to determine possible correspondences between points
in IP and QQ, and if sufficiently many correspondences
(	 m) are known, R can be recovered immediately.

The feature vectors will be defined using the spectral
information of local neighborhoods: for each point x, we
will use its K nearest neighbors to construct a symmetric
matrix Lx, and its eigenvalues give the associated feature
vector u. More specifically, let x1; . . . ; xK denote the
K nearest neighbors of x and Dx the ðK þ 1Þ � ðK þ 1Þ
distance matrix for these K þ 1 points:

Dp ¼
jp� pj 
 
 
 jp� pkj

..

.

 
 
 ..

.

jpk � pj 
 
 
 jpk � pkj

0
B@

1
CA:

If K > mþ 2, it is known that generically the symmetric
distance matrix Dx has rank mþ 2. Therefore, it has at most
mþ 2 nonzero eigenvalues. To get more eigenvalues, we
can define the following ðK þ 1Þ � ðK þ 1Þ symmetric
matrix:

Lx ¼ Ik � �
fðjp� pjÞ 
 
 
 fðjp� pkjÞ

..

.

 
 
 ..

.

fðjpk � pjÞ 
 
 
 fðjpk � pkjÞ

0
B@

1
CA; ð19Þ

where � is a constant, Ik is the identity matrix, and the
function fðtÞ ¼ expð�t2=�2Þ is the Gaussian exponential. For
most choices of�,Lx has full rank, and it is related to the well-
known (unnormalized) discrete Laplacian associated with
the point set fx; x1; . . . ; xKg [10]. As Lx is symmetric, its
eigenvalues are all real, and we define the feature vector u
associated to x as the vector of eigenvalues ofLx, arranged in
decreasing order. For a given point x, itsK nearest neighbors
form a local discrete neighborhood U of x, whose geometry is
encoded by the distance matrix Dx as well asLx. In particular,
similarly to the discrete Laplacian, the eigenvalues and
eigenvectors ofLx are determined by the geometry ofU that is
invariant under orthogonal transforms [10]. Therefore, we
call u the LSF associated tox as it is completely determined by
the spectral content ofLx that encodes the geometry of a local
discrete neighborhood U .

It follows easily from the discussion that u has the
desired invariance: q ¼ Rp implies up ¼ vq. This can be
easily seen by noting that the two distance matrices Dp;Dq

differ only by a permutation matrix P :

Dq ¼ PDpP
T :

Likewise, Lp;Lq also differ by the same permutation matrix.
In particular, Lp;Lq have the same set of eigenvalues, and
thus, up ¼ vq as both are arranged in decreasing order. We
note that for a generic point set IP, up 6¼ u~p for two distinct
points p; ~p 2 IP. Otherwise, we can always add a small
perturbation to the point set to ensure this. In particular,
this implies that for each p 2 IP, there is one and only one
point q 2 QQ such that jvq � upj ¼ 0, and the right corre-
spondences p! q can be discovered by comparing the local
spectral features. Thus, we have the following proposition:

Proposition 4.1. Assume no noise. R and hence A can be
determined exactly from a (generic) pair of point sets IP;QQ
using local spectral features.

4.4 Dealing with Noise

So far, we have assumed noiseless condition with equal
number of points in IP;QQ and exact matching under A and
R. Unfortunately, the invariance of local spectral features
can be established only under this assumption. With the
presence of noise, up is generally not equal to vp. In
particular, Lq differs from Lp by the permutation matrix P
and an error matrix E:

Lq ¼ PLpPT þ E:

Under this perturbation, each eigenvalue �̂i of Lq can be
considered as a shift of its corresponding eigenvalue �i ofLp,

�̂i ¼ �i þ��i:

The standard result from numerical analysis ([24, p. 171])
shows that the change in the eigenvalue for a symmetric
matrix under the above perturbation is conveniently
bounded by the 2-norm of E for all i,

j��ij � jEj2;

Thus, provided that the noise is not too great, the difference
jup � vqj can still serve as a good indicator of plausible (or
tentative) correspondence p$ q between points in IP and QQ.
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Using local spectral features, the remaining steps of the
algorithm that determines R are well known [23]. The LSFs
will be used to established tentative correspondences: For
each p 2 IP, its plausible correspondence q 2 QQ is the one
with smallest jvp � vqj. While some of these plausible
correspondences thus established are wrong, a good
portion of them are expected to be correct. These corre-
spondences p$ q are ranked using their similarity value
jvp � vqj, and only the top 10 percent of them is retained as
the tentative correspondences. RANSAC [14] is then
applied to this collection of tentative correspondences to
determine R by randomly generating a number of
hypotheses, orthogonal matrices obtained from sets of
randomly generated m correspondences. Each orthogonal
matrix is evaluated using the matching error function E,
and R is given as the one with smallest matching error.

We conclude this section with a short summary of the
three important features of the proposed algorithm. First,
using local spectral features allows the algorithm to register
point sets IP;QQ containing different number of points, a
feature that is often not applicable to many correspondence-
based methods, e.g., [52]. Second, the algorithm uses spectral
invariants constructed from local distance matrices. Their
definition and underlying geometric motivation are easier to
understand than the more traditional methods of using
algebraic invariants [27]. Finally, the affine ICP is initialized
with an affine transform provided by an algorithm that is
guaranteed to produce the exact affine transform in noiseless
case. This imparts a certain assurance on the quality of the
initialization, and consequently, the final result as well. For
clarity, the full algorithm is summarized in Fig. 3.

4.4.1 Managing Outliers

The proposed affine registration algorithm has two main
steps: a normalization step followed by a step that uses
RANSAC to determine the affine transform. The effect of
outliers on the RANSAC step is generally minor compared
with the effect on the normalization step since the
covariance matrices as computed by (14) and (15) can be
significantly affected by the outliers. Therefore, our
approach to managing outliers will primarily focus on
estimating the covariances matrices (and means) robustly
in the presence of outliers. This is clearly related to the
robust principal component analysis, and [49], [54] provide
two of the first several robust PCA algorithms published in
computer vision literature based partially on the earlier
work in statistics [6], [31], [38]. While [49] is mostly
concerned with PCA in high-dimensional image spaces,
the method presented in [54] is ideally suited for the range
of dimensions that we are working with. However,
minimization of the objective function in [54] is not
straightforward as it requires a combination of discrete
and continuous optimization that attempts to avoid local
minima by using simulated annealing. Therefore, in the
experiments reported below, we choose to use an easier
method to deal with the outliers.

The basic idea is to treat the points in IP and QQ as sample
points drawn from some unknown probability density
functions PIP;PQQ, respectively, and the covariance matrices
(and the means) are determined using the PDFs instead of
computing directly as in (14) and (15). Specifically, we fit the

point set IP (and QQ) with a Gaussian Mixture Model (GMM)

of K components, where K is an integer that can be either

user specified or determined by the required precision for

the fitting [13]. The density function P is given in the form

Pðxj�Þ ¼
XK
i¼1

!i Nðx;�i;�iÞ;
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where

Nðx;�i;�iÞ ¼
1

ð2�Þm=2j�ij
1
2

exp � 1

2
ðx� �iÞ>��1

i ðx� �iÞ
� �

is the normal distribution in IRm with mean �i and
covariance matrix �i, and !i are nonnegative weights that
sum to 1. Let � ¼ f�1; . . . ; �K;�1; . . . ;�K !1; . . . ; !Kg de-
note the parameters of the Gaussian Mixture Model, and it
is standard to estimate these parameters by maximizing the
(log)likelihood

Lð�Þ ¼ �k
i¼1 Pðxij�Þ

given the data points x1; . . . ; xk. This can be solved using the
EM algorithm, and the details are available in many
textbooks (e.g., [13]). Once the density function P has been
estimated, the mean and covariance matrix of the PDF can
be computed using the formulas

� ¼
XK
i¼1

!i�i; ð20Þ

� ¼
XK
i¼1

!i�i þ
XK
i¼1

ð�i � �Þð�i � �Þ>: ð21Þ

Compared with (14) and (15), the effect of outliers has been
considerably curtailed in the above equations as the mean
and the covariance matrix are no longer computed from the
points directly. In addition, we will use the density
functions PIP;PQQ to modify the Hausdorff distance (see
(12)) that is used to define the matching cost function EðAÞ

�HðIP;QQÞ ¼
X
p2IP

�p min
q2QQ
jp� qj þ

X
q2QQ

�q min
p2IP
jq � pj; ð22Þ

with the weights �p; �q given by

�p ¼
PIPðpÞP
p2IP PIPðpÞ

; �q ¼
PQQðqÞP
q2QQ PQQðqÞ

:

5 EXPERIMENTS

In this section, we report four sets of experimental results.
First, with synthetic point sets, we show that the proposed
affine registration algorithm does indeed recover exact
affine transformations and correspondences for noiseless
data. Second, we provide two sequences of nonrigid
motions and show that the stereo correspondence under
motion can be satisfactorily solved using affine registration

in IR9. Third, we use images from COIL database to show
that the image set matching problem can also be solved
using affine registration in IR8. And finally, we show two
examples of covariant point-set matching. We have im-
plemented the algorithm using MATLAB without any
optimization. The sizes of the point sets range from 20 to
600, and on a DELL desktop with single 2.1 GHz processor,4

each registration takes only a few minutes to complete.

5.1 Affine Registration in IRm

In this set of experiments, our aim is to give a qualitative as

well as quantitative analysis on the accuracy and robustness

of the proposed method. Tables 1 and 2 summarize the

experimental results. In Table 1, the algorithm is tested in

three dimensions, 3, 5, and 10, and five different noise

settings, 0, 1, 2, 5, and 10 percent. For each pair of dimension

and noise setting, we ran 100 trials, each with a randomly

generated nonsingular matrix A and a point set contain-

ing 250 points. In trials with x percent noise setting, we

add a uniform random noise (�x%) to each coordinate of

every point independently. Let A0 denote the estimated

matrix. A point p 2 IP is matched to the point q 2 QQ if

q ¼ minqi2QQdistðA0p; qiÞ. For each trial, we report the

percentage of mismatched points and the relative error of

the estimated matrix A0: kA
0�Ak
kAk , using the Frobenius norm

for matrices.
The number of RANSAC samples drawn in each trial has

been fixed at 800 for the results reported in Table 1. This is
the number of samples needed to produce zero mismatch
for dimension five with 5 percent noise setting. In general,
for lower dimensions, a much smaller number of samples
(around 200) would also have produced similar results. In
Table 2, we vary the sizes of the point sets and work in IR10.
The setting is similar to that of Table 1 except with fixed
5 percent noise setting for all trials. Note also that, for
noiseless point sets, the exact affine transformations are
always recovered.

5.2 Stereo Correspondences under Nonrigid
Motions

In this experiment, we apply the affine registration algorithm
to compute correspondences between tracked feature points
in two image sequences. We gathered four video sequences
from two cameras observing two objects undergoing non-
rigid motions (Fig. 4). One is a talking head and the other is a
patterned tattoo on a man’s belly. A simple correlation-based
feature point tracker is used to track 20-60 points for these
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For each dimension and each noisy setting, 100 trials, each with different point sets and matrix A, were performed. The averaged relative error and
percentage of mismatched points as well as standard deviations (in parenthesis) are shown.

4. All running times reported below use this hardware configuration.



two sequences, respectively. Seventy frames were tracked in

both sequences and manual intervention was required in

both sequences to correct and adjust tracking results. We use

three shape basis for both sequences [5], and to compute the

correspondences, we affine register two point sets in IR9 as

discussed before. For the two point sets IP;QQ � IR9, we

applied the proposed algorithm to obtain initial correspon-

dences and affine transformation. This is followed by

running an affine-ICP algorithm with 50 iterations. For

comparison, the affine-ICP algorithm initialized using closest

points5 is run for 100 iterations. For the talking head

sequence, the proposed algorithm recovers all correspon-

dences correctly, while for the tattoo sequence, among the

60 recovered feature point correspondences, nine are

incorrect. This may be explained by the fact that in several

frames, some of the tracked feature points are occluded and

missing and the subsequent factorizations produce relatively

noisy point sets in IR9. On the other hand, affine ICP with

closest point initialization fails poorly for both sequences. In

particular, more than 80 percent of the estimated correspon-

dences are incorrect.

5.3 Image Set Matching

In this experiment, images from the first six objects in the
COIL database are used. They define the source image set A
with 432 images. Two new sets B;C of images are generated
from A: images in B are 85 percent downsampled images of
A followed by 45 degree rotation. Images in C are smoothed
images in B (using a uniform 7� 7 kernel) followed by a
random pixel permutation. Same pixel permutation scheme
is applied to all images. The two experiments shown in Fig. 5
match point sets A;B and A;C. The original images have
size 128� 128 and the images in the two new sets have size
110� 110. An 8D PCA subspace is used to fit each set of
images with relative residue smaller than 1 percent.
Images in each set are projected down to their respective
PCA subspaces, and the correspondences are automati-
cally computed by affine registering the projected point
sets. Specifically, a basis is chosen for each PCA subspace,
and each projected image is represented as a vector using
the basis. The data are nontrivial in the sense that
correspondences established using nearest neighbors in
the PCA subspaces for both image sets are almost always
incorrect (less than 5 percent correct). We apply the
proposed affine registration algorithm to obtain an initial
estimate on correspondences and affine registration. Since
the data are noisy, we follow this with the affine-ICP
algorithm running 50 iterations as above. For comparison,
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Fig. 4. Top: Sample frames from two video sequences of two objects undergoing nonrigid motions. Bottom: Sample frames from another camera
observing the same motions.

Fig. 5. Image set matching. The original image set A is shown in Fig. 1. Image sets B;C are shown above. The plots on the right show the
L2 registration error for each of the 50 iterations of running the affine-ICP algorithm. Using the output of the proposed affine registration as the initial
guess, the affine-ICP algorithm converges quickly to the desired transformation (dashed curves) and yields correct correspondences. Using closest
points for initial correspondences, the affine-ICP algorithm converges (solid curves) to incorrect solutions in both experiments.

5. Given two point sets in IR9, the initial correspondence pi $ qj is
computed by taking qj to be the point in QQ closest to pi.

TABLE 2
Experimental Results II

Point sets of different sizes with 5 percent noise added. All trials match point sets in IR10 with settings similar to Table 1. Average errors for 100 trials
are reported with standard deviations in parenthesis.



we apply the affine-ICP algorithm using closest points as
initialization. In both experiments, the affine-ICP algorithm,
not surprisingly, performs poorly, with substantial registra-
tion errors (see (11)) and a large number of incorrect
correspondences. The proposed algorithm recovers all
correspondences correctly and it yields small registration
errors. We remark that images in C are obtained from
images in B by smoothing with a uniform kernel and a
pixel permutation. Superficially, it would appear that pixel
permutation is the main source of difficulty as it gives the
appearance of impossibility. However, it is the smoothing
that causes the difficulty since its associated image trans-
form F is not an orthogonal transform in the image space.
In fact, for this example, using smoothing kernels larger
than 7� 7, the matching problem cannot be solved
satisfactorily using affine registration. Pixel permutation,
on the other hand, can be represented by a permutation
(orthogonal) matrix in the image space; therefore, as an
orthogonal transform, it will preserve the PCA subspaces
and the correspondences can be recovered exactly by affine
registering the points in the PCA subspaces.

Fig. 6 contains the plots from three experiments that
evaluate the effects of image resolutions and outliers on the
image set matching. In the first plot, we test the algorithm
using three different image resolutions, 48� 48, 72� 72,
and 128� 128. For the three resolutions, the image sizes of
the target sets B;C are 42� 42, 62� 62, and 110� 110,
respectively, and the sizes of the smoothing kernels are
3� 3, 5� 5, and 7� 7, respectively. The error rates of the
matching results show that they do not depend significantly
on the image resolution with the chosen smoothing kernels.
In the second plot, we show the effect of varying the size of
the smoothing kernel in matching A to C. In this
experiment, the image resolution is 128� 128, and we
evaluate the algorithm using five different kernel sizes,
3� 3, 5� 5, 7� 7, 9� 9, and 11� 11. Matching error
emerges when 9� 9 kernel is used to smooth the images,
and the result degrades precipitously with larger kernels. In
the third plot, we evaluate the matching algorithm using
image sets containing outliers. In this experiment, image
resolution for the source image set A is 128� 128, with
85 percent reduction for images in B;C and 7� 7
smoothing kernel as above. The number of images in A is
kept fixed in this experiment while we steadily increase the
number of images in B;C by adding outliers as follows:
Images from the remaining COIL database are randomly

selected as outliers, and they are rotated and permuted/
smoothed as the images in B and C before projecting onto
their respective 8D subspaces. The matching result is
evaluated using a different number of outliers, up to
15 percent of the number of images in A. For each number
of outliers, we run the matching algorithm 20 times using
20 different collections of outliers, and the averaged
matching error from these 20 independent matching result
is plotted in Fig. 6. The result shows that the algorithm is
capable of producing satisfactory results if the number of
outliers is less than 8 percent of the number of images.
Beyond this point, the result degrades quickly. In this
experiment, the number of Gaussian mixture components
used is set at K ¼ 18 (see (20) and (21)).

5.4 Covariant Point-Set Matching

For covariant point-set matching, we report two experiments.

5.4.1 Image Registration

In the first experiment, we register 2D images using
covariant point-set matching. It is known that the effect of
a small view change on an image can be approximated by a
2D affine transformation of the image [23]. Using images
from the COIL database, we manually click feature points
on pairs of images with a 15 to 30 degree difference in
viewpoint. The feature vector associated to each point is the
averaged structure tensor (see (5)) over a 3� 3 neighbor-
hood, and the image registration is solved as an affine
registration in IR5. The results for four pairs of images are
shown in Fig. 7, and the RMS registration errors (in pixels)
for these four examples are 2.4500, 2.502, 1.9834, and 0.6345,
respectively. Compared with the 2D affine registration of
these points with RMS registration errors of 2.6646, 3.0260,
2.0632, 0.7060, the covariant point-set matching provides
about 15 percent improvement in registration error. This is
not particularly surprising since, as discussed before, the
induced transform in IR2 of the affine transform in IR5 has a
nonrigid component, which, in this case, accounts for the
slight improvement in accuracy.

5.4.2 3D Registrations

In this experiment, we use covariant point-set matching to
register point sets in IR3 containing thousands of points. We
use the 33,456 points from the Stanford Bunny (Fig. 8) as the
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Fig. 6. Left: Image resolution versus registration error (in percent). Three
image resolutions are used: 48� 48; 72� 72, and 128� 128. Errors from
matching A to B and A to C are plotted in solid and dashed lines,
respectively. Center: Smoothing kernel size versus registration error (in
percent). Five different kernel sizes are used in this experiment:
3� 3; 5� 5; 7� 7; 9� 9, and 11� 11. Right: Number of outliers versus
average registration errors (in percent). The source image set A has
432 images, and up to a maximum number of 60 outliers are added to B
and C in this experiment. Errors from matching A to B and A to B are
plotted in solid and dashed lines, respectively.

Fig. 7. 2D image registration. First column: Source images (taken from
COIL database) with feature points marked in red. Second and fourth
column: Target images with feature points marked in blue. Third and fifth
column: Target images with corresponding feature points marked in
blue. The affine transformed points from the source images are marked
in red. Images are taken with 15 and 30 degrees differences in
viewpoint. The RMS errors for these four experiments (from left to right)
2.4500, 2.502, 1.9834, and 0.6345, respectively.



point set IP, and IP is normalized so that it has zero mean
and unit variance. The target point set QQ is obtained by
applying a randomly generated rotation R to IP. Since both
IP;QQ have unit variance, efficient spectral methods [42],
[43] that match principal directions cannot be applied here.
Furthermore, direct methods such as [33] become inefficient
because of the large number of points.6 We register IP;QQ by
simplifying the point sets first: 500 points are randomly
selected from IP;QQ independently to form the reduced
point sets IP;QQ that are registered using covariant match-
ing. The feature vector associated to each point in IP;QQ is
the 6D feature vector formed by the local quadratic
moments shown in (10). Specifically, a radius r is specified
for all points in IP;QQ such that for each p 2 IP (q 2 QQ),
points p1; . . . ; pl (q1; . . . ; ql) in IP (QQ) that are within
r-distance from p (q) are determined. These points are used
to compute the feature vector vp (vq) as in (10), where

ðxi; yi; ziÞ ¼ pi � p:

The covariant matching result is used to determine the
correspondences, and given the correspondences, the
optimal rotation R is computed using SVD [26]. We
compare R with the ground truth R using the angle
between their rotation axes and the difference between
their rotation angles. We randomly sample 100 rotation
matrices R as the ground truths and the average errors
(rotation axis and angle) are shown in Table 3 (and an
example shown in Fig. 8). The result shows that, not
surprisingly, using fewer points, the estimated rotation
deviated significantly from the ground truth. However,
using 500 points, which are about 1.5 percent of the original
points, the registration result is quite reasonable with
average error in rotation axis less than 5 degrees. Each
registration takes less than 4 minutes to complete, and it
shows the benefit of trading problem complexity (number
of points) with feature dimension.

In this experiment, an important issue is the determina-
tion of appropriate � (see (7)) to use. Currently, we do not
have a principled method for determining �, and we have
simply scanned for the best value over a viable range for �.
This experiment shows that for the right values of �,
covariant point-set matching is a viable method for
registering point sets containing large number of points.
The issue of � selection will be addressed in the future.

6 CONCLUSION

This paper has described three interesting types of point-set
matching problems that can be formulated and solved as
affine registration problems in IRm with m > 3: stereo
correspondences under motion, image set matching, and
covariant point-set matching. To efficiently solve these
problems, the paper has proposed a novel affine registra-
tion algorithm. The algorithm first computes the correspon-
dences using local spectral features, which are the
eigenvalues of certain symmetric matrices determined by
local distance matrices. The correspondences then form the
initialization for the affine-ICP algorithm that iteratively
solves for the correspondences and affine transform.
Experimental results using synthetic data points have
shown that the proposed algorithm is efficient and accurate
for data containing moderate amount of noise. Furthermore,
the paper has presented a variety of the aforementioned
matching problems that can indeed be solved satisfactorily
using affine registration.
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