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Abstract. For robust face recognition, the problem of lighting varia-
tion is considered as one of the greatest challenges. Since the nine points
of light (9PL) subspace is an appropriate low-dimensional approxima-
tion to the illumination cone, it yielded good face recognition results
under a wide range of difficult lighting conditions. However building the
9PL subspace for a subject requires 9 gallery images under specific light-
ing conditions, which are not always possible in practice. Instead, we
propose a statistical model for performing face recognition under vari-
able illumination. Through this model, the nine basis images of a face
can be recovered via maximum-a-posteriori (MAP) estimation with only
one gallery image of that face. Furthermore, the training procedure re-
quires only some real images and avoids tedious processing like SVD
decomposition or the use of geometric (3D) or albedo information of a
surface. With the recovered nine dimensional lighting subspace, recogni-
tion experiments were performed extensively on three publicly available
databases which include images under single and multiple distant point
light sources. Our approach yields better results than current ones. Even
under extreme lighting conditions, the estimated subspace can still rep-
resent lighting variation well. The recovered subspace retains the main
characteristics of 9PL subspace. Thus, the proposed algorithm can be
applied to recognition under variable lighting conditions.

1 Introduction

Face recognition is difficult due to variations caused by pose, expression, occlu-
sion and lighting (or illumination), which make the distribution of face object
highly nonlinear. Lighting is regarded as one of the most critical factors for robust
face recognition. Current attempt to handle lighting variation by either finding
the invariant features or modeling the variation. The edge based algorithm [1]
and the algorithm based on quotient image [2,3,4]belong to the first type. But
these methods cannot extract sufficient features for accurate recognition.

Early work on modeling lighting variation [5,6] showed that a 3D linear
subspace can represent the variation of a Lambertian object under a fixed
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pose when there is no shadow. With the same Lambertian assumption, Bel-
humeur and Kriegman [7] showed that images illuminated by an arbitrary num-
ber of point light sources formed a convex polyhedral cone, i.e. the illumination
cone. In theory, the dimensionality of the cone is finite. They also pointed out
that the illumination cone can be approximated by a few properly chosen im-
ages. Good recognition results of the illumination cone in [8] demonstrated its
representation for lighting variation. [9] indicated that lighting subspace of Lam-
bertian object can be approximated by a linear subspace with dimension be-
tween three and seven. Recent research is mainly focused on the application
of low-dimensional subspace to lighting variation modeling. With the assump-
tion of Lambertian surface and non-concavity, Ramamoorith and Hanrahan [10]
and Basri and Jacobs[11] independently introduced the spherical harmonic (SH)
subspace to approximate the illumination cone. However, the harmonic images
(basis images of SH subspace) are computed from the geometric and albedo in-
formation of the subject’s surface. In order to use the SH subspace theory, a
lot of algorithms applied the 3D model of faces to handling lighting variations
[12,13,14,15,16]. However, recovering the 3D shape from images is still an open
problem in computer vision.

Lee et al.[19] built up a subspace that is nearest to the SH subspace and has
the largest intersection with the illumination cone, called the nine points of light
(9PL) subspace. It has a universal configuration for different subjects, i.e. the
subspace is spanned by images under the same lighting conditions for different
subjects. In addition, the basis images of 9PL subspace can be duplicated in
real environments, while those of the SH subspace cannot because its the basis
images contain negative values. Therefore the 9PL subspace can overcome the
inherent limitation of SH subspace. Since the human face is neither completely
Lambertain nor entirely convex, SH subspace can hardly represent the specular-
ities or cast shadows (not to mention inter-reflection). The basis images of 9PL
subspace are taken from real environment, they already contain all the compli-
cated reflections of the objects. Therefore the 9PL subspace can give a more
detailed and accurate description of lighting variation.

In practice, the requirement of these nine real images cannot always be ful-
filled. Usually there are fewer gallery images (e.g. one gallery image) per subject,
which can be taken under arbitrary lighting conditions. In this paper, we pro-
pose a statistical model for recovering the 9 basis images of the 9PL subspace
from only one gallery image. Zhang and Samaras [12] presented a statistical
method for recovering the basis images of SH subspace instead. In their training
procedure, geometric and albedo information is still required for synthesizing
the harmonic images. In contrast, the proposed method requires only some real
images that can be easily obtained in real environment. Since the recovered ba-
sis images of the 9PL subspace contain all the reflections caused by the shape
of faces, such as cast shadows, specularities, and inter-reflections, better recog-
nition results are obtained, even under extreme lighting conditions. Compared
with other algorithms based on 3D model [12,15,16], the proposed algorithm is
entirely a 2D algorithm, which has much lower computational complexity. The



286 X. Jiang et al.

proposed algorithm also has comparable recognition results. Note that we do
not consider pose variation in this paper and assume that all subjects are in the
frontal pose.

This paper is organized as follows. In Section 2, we briefly summarize the
methods of low-dimensional linear approximation of the illumination cone, in-
cluding the SH subspace and the 9PL subspace. The training of our statistical
model and the application of the model for recovering basis images from only
one gallery image are described in Sections 3 and 4 respectively. Section 5 is
dedicated to the experimental results. The conclusion is given in Section 6.

2 Approximation of the Illumination Cone

Belhumeur and Kriegman [7] proved that the set of n-pixel images of a con-
vex object that had a Lambertian surface illuminated by an arbitrary number
of point light sources at infinity formed a convex polyhedral cone, called the
illumination cone C in Rn. Each point in the cone is an image of the object
under a particular lighting condition, and the entire cone is the set of images of
the object under all possible lighting conditions. Any images in the illumination
cone C (including the boundary) can be determined as a convex combination of
extreme rays (images) given by

Iij = max(B̃s̃ij , 0) (1)

where s̃ij = b̃i × b̃j and B̃ ∈ �n×3. Every row b̃i of B̃ is a three element row
vector determined by the product of the albedo with the inward pointing unit
normal vector of a point on the surface. There are at most q(q−1) extreme rays
for q ≤ n distinct surface normal vectors. Therefore the cone can be constructed
with finite extreme rays and the dimensionality of the lighting subspace is finite.
However, building the full illumination cone is tedious, and the low dimensional
approximation of the illumination cone is applied in practice.

From the view of signal processing, the reflection equation can be considered
as the rotational convolution of incident lighting with the albedo of the surface
[10]. The spherical harmonic functions Ylm(θ, φ) are a set of orthogonal basis
functions defined in the unit sphere, given as follows,

Ylm(θ, φ) = NlmPm
l (cos θ) expimφ (2)

where Nlm =
√

2l+1
4π

(l−m)!
(l+m)! , (θ, φ)is the spherical coordinate (θ is the elevation

angle, which is the angle between the polar axis and the z-axis with range 0 ≤
θ ≤ 180o, and φ is the azimuth angle with the range −180o ≤ φ ≤ 180o). Pm

l is
the associated Legendre function, and the two indices meet the conditions l ≥ 0
and l ≥ m ≥ −l. Then functions in the sphere, such as the reflection equation,
can be expanded by the spherical harmonic functions, which are basis functions
on the sphere. Images can be represented as a linear combination of spherical
harmonic functions. The first three order (l ≤ 3) basis can account for 99%
energy of the function. Therefore the first three order basis functions (altogether
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9) can span a subspace for representing the variability of lighting. This subspace
is called the spherical harmonic (SH) subspace .

Good recognition results reported in [11] indicates that the SH subspace H
is a good approximation to the illumination cone C. Given the geometric infor-
mation of a face, its spherical harmonic functions can be calculated with Eq.(2).
These spherical harmonic functions are synthesized images, also called harmonic
images. Except the first harmonic image, all the others have negative values,
which cannot be obtained in reality. To avoid the requirement of geometric in-
formation, Lee et al.[19] found a set of real images which can also serve as a low
dimensional approximation to illumination cone based on linear algebra theory.

Since the SH subspace H is good for face recognition, it is reasonable to
assume that a subspace R close to H would be likewise good for recognition. R
should also intersect with the illumination cone C as much as possible. Hence a
linear subspace R which is meant to provide a basis for good face recognition
will also be a low dimensional linear approximation to the illumination cone C.
Thus subspace should satisfy the following two conditions [19]:

1. The distance between R and H should be minimized.
2. The unit volume (vol(C ∩ R)) of C ∩ R should be maximized ( the unit

volume is defined as the volume of the intersection of C ∩R with the unit ball)

Note that C∩R is always a subcone of C; therefore maximizing its unit volume
is equivalent to maximize the solid angle subtended by the subcone C ∩ R. If
{Ĩ1, Ĩ2, · · · , Ĩk}are the basis images of R. The cone Rc ⊂ R is defined by Ĩk,

Rc = {I|I ∈ R, I =
M∑

k=1

αk Ĩk, αk ≥ 0} (3)

is always a subset of C ∩ R. In practice the subcone C ∩ R is taken as Rc and
the subtended angle of Rc is maximized. R is computed as a sequence of nested
linear subspace R0 ⊆ R1 ⊆ · · · ⊆ Ri ⊆ · · · ⊆ R9 = R, with Rk(k > 0) a linear
subspace of dimension i and R0 = ∅. First, EC denotes the set of (normalized)
extreme rays in the illumination cone C; and ECk denotes the set obtained by
deleting k extreme rays from EC, where EC0 = EC. With Rk−1 and ECk−1,
the sets ECk and Rk can be defined iteratively as follows:

Ĩk = arg max
I∈ECk−1

dist(I,Rk−1)
dist(I,H)

(4)

where Ĩk denotes the element in ECk−1. Rk is defined as the space spanned by
Rk−1 and Ĩk. ECk = ECk−1\Ĩk. The algorithm stops when R9 ≡ R is reached.
The result of Eq.(4) is a set of nine extreme rays that span R and there are
nine directions corresponding to these nine extreme rays. For different subjects,
the nine lighting directions are qualitatively very similar. By averaging Eq.(4)
of different subjects and maximizing this function as follows:

Ĩk = arg max
I∈ECk−1

N∑
p=1

dist(Ip,Rp
k−1)

dist(Ip,Hp)
(5)
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where Ip denotes the image of subject p taken under a single light source. Hp

is the SH subspace of subject p. Rp
k−1 denotes the linear subspace spanned by

images {Ĩp
1 , · · · , Ĩp

k}of subject p. The universal configuration of nine light source
direction is obtained. They are (0, 0), (68,−90), (74, 108), (80, 52), (85,−42),
(85,−137), (85, 146), (85,−4), (51, 67)[14]. The directions are expressed in spher-
ical coordinates as pairs of (φ, θ), Figure 1(a) illustrates the nine basis images
of a person from the Yale Face Database B [8].

Fig. 1. the basis images of 9PL subspace. (a) images taken under certain lighting
conditions can serve as the basis images of the object. (b) the mean images of the basis
images estimated from the bootstrap data set.

3 Statistical Model of Basis Images

According to the universal configuration of lighting directions, we can apply nine
images taken under controlled environment to spanning the 9PL linear subspace.
However, even these nine images may not be available in some situations. Thus,
we propose a statistical method for estimating the basis images from one gallery
image. To build the statistical model, we must find the probability density func-
tion (pdf) of basis images and the pdf of the error term. Due to the limited
amount of the training data, we use the bootstrap method to estimate the statis-
tics of basis images. The recovering step is to estimate the corresponding basis
images from one single image of a novel subject under arbitrary lighting condi-
tions. For a given image, we first estimate its lighting coefficient. Then according
to the maximum a posteriori (MAP) estimation, we obtain an estimation of the
basis images. Finally, we apply the recovered subspace to face recognition. The
probe image is identified as the face whose lighting subspace is closest in distance
to the image.

Given nine basis images, we can reconstruct images under arbitrary lighting
conditions as follows,

I = Bs + e(s) (6)

where I ⊂ �d×1 is the image vector. B ⊂ �d×9 is the matrix of nine basis images,
every column of which is the vector of the basis image. s ⊂ �d×1 is the vector
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of lighting coefficients which denotes the lighting conditions of the image. Error
term e(s) ⊂ �d×1 is related to the pixels’ position and lighting conditions.

For a novel image, we estimate its basis images through the maximum a
posterior (MAP) estimation. That is

BMAP = arg max
B

P (B|I) (7)

According to the Bayes rule

P (B|I) =
P (I|B)P (B)

P (I)
(8)

where P (I) is the evidence factor which guarantees that posterior probabilities
would sum to one. Then Eq.(7) can become

BMAP = argmax
B

(P (I|B)P (B)) (9)

In order to recover basis images from an image with Eq.(9), one should know
the pdf of the basis images, i.e. P (B), and the pdf of the likelihood, i.e. P (I|B).
Assuming the error term of Eq.(6) is normally distributed with mean μe(s) and
variance σ2

e(s), we can deduce that the pdf of the likelihood P (I|B) is also
Gaussian with mean Bs + μe(s) and variance σ2

e(s) according to Eq.(6).
We assume that the pdf of the basis images B are Gaussians of means μB

and covariances CB as in [12,20]. The probability P (B) can be estimated from
the basis images in the training set. In our experiments, the basis images of 20
different subjects from the extented Yale face database B [8] are introduced to
the bootstrap set. Note that, the basis images of every subject are real images
which were taken under certain lighting conditions. The lighting conditions are
determined by the universal configurations of the 9PL subspace. The sample
mean μB and sample covariance matrix CB are computed. Figure 1(b) shows
the mean basis images, i.e. μB.

The error term e(s) = I − Bs models the divergence between the real image
and the estimated image which is reconstructed by the low dimensional subspace.
The error term is related to the lighting coefficients. Hence, we need to know
the lighting coefficients of different lighting conditions. In the training set, there
are 64 different images that taken under different lighting condition for every
subject. Under a certain lighting condition, we calculate the lighting coefficients
of every subject’s image, i.e. sp

k (the lighting coefficients of the pth subject’s image
under the lighting condition sk). For a training image, its lighting coefficients
can be estimated by solving the linear equation I = Bs. The mean value of
different subjects’ lighting coefficients can be the estimated coefficients (s̄k) for
that lighting condition, i.e. s̄k =

∑N
p=1 sp

k/N . Then, under a certain lighting
condition, the error term the of the pth subject’s image is

ep(s̄k) = Ip
k − Bps̄k (10)

where Ip
k is the training image of the pth subject under lighting condition sk and

Bp is the basis images of the pth subject. Following the above assumption, we
estimate the mean μe(s̄k)and variance σ2

e(s̄k) of the error term.
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4 Estimating the Basis Images

As described in the previous section, the basis images of a novel image can
be recovered by using the MAP estimation. Since the error term is related to
lighting condition, we need to estimate the lighting condition, i.e. the lighting
coefficients, of every image before calculating its basis images.

4.1 Estimating Lighting Coefficients

Lighting influences greatly the appearance of an image. Under similar illumina-
tion, images of different subjects will appear almost the same. The difference
between the images of the same subject under different illuminations is always
larger than that between the images of different subjects under the same illumi-
nation [21]. Therefore we can estimate the lighting coefficients of a novel image
with an interpolation method. The kernel regression is a smooth interpolation
method [22]. It is applied to estimating the lighting coefficients. For every train-
ing image, we have their corresponding lighting coefficients. For a novel image
In, its lighting coefficient is given by

s =
∑M

k=1 wks
p
k∑M

k=1 wk

(11)

wk = exp(− [D(In, Ip
k )]2

2(σIp
k
)2

) (12)

where D(In, Ip
k ) = ‖In − Ip

k‖2 is the L2 norm of the image distance. σIp
k

deter-
mines the weight of test image Ip

k in the interpolation. In the training set, every
subject has 64 different images and there are altogether 20 different subjects.
Thus, for a novel image, there are 20 images with similar illumination. In our
experiment, we assign the farthest distance of these 20 images from the probe
image to σIp

k
. sp

k is the lighting coefficient of image Ip
k .

4.2 Estimating the Error Term

The error term denotes the difference between the reconstructed image and the
real image. This divergence is caused by the fact that the 9PL subspace is the
low-dimensional approximation to the lighting subspace, and it only accounts for
the low frequency parts of the lighting variance. The statistics of the error under
a new lighting condition can be estimated from those of the error under known
illumination, i.e. μe(s̄k), σ2

e(s̄k), also via the kernel regression method [20].

μe(s) =
∑M

k=1 wkμe(s̄k)∑M
k=1 wk

(13)

σ2
e(s) =

∑M
k=1 wkσ2

e(s̄k)∑M
k=1 wk

(14)
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wk = exp(− [D(s, s̄k)]2

2[σs̄k
]2

) (15)

where D(s, s̄k) = ‖s − s̄2‖2 is the L2 norm of the lighting coefficient distance.
Like σIp

k
, σs̄k

determines the weight of the error term related to the lighting
coefficients s̄k. Also, we assign the farthest lighting coefficient distance of these
20 images from the probe image to σs̄k

.

4.3 Recovering the Basis Images

Given the estimated lighting coefficients s and the corresponding error term
μe(s), σ2

e(s), we can recover the basis images via the MAP estimation. If we
apply the log probability, omit the constant term, and drop s for compactness,
Eq.(9) can become

arg max
B

(
−1

2
(
I − Bs− μe

σe
)2 − 1

2
(B − μB)C−1

B (B − μB)T

)
(16)

To solve Eq.(16), we estimate the derivatives,

− 2
σ2

e

(I − Bs− μe)sT + 2(B − μB)C−1
B = 0 (17)

Then we rewrite Eq.(17) as a linear equation,

AB = b (18)

where A = ssT

σ2
e

+ C−1
B and b = I−μe

σ2
e

s + C−1
B μB.The solution of the linear

equation is B = A−1b. Using the Woodbury’s identity [25], we can obtain an
explicit solution

BMAP = A−1b (19)

=
(

CB − CBssT CB

σ2
e + sT CBs

) (
I − μe

σ2
e

s + C−1
B μB

)

=
(

I − μBs− μe

σ2
e + sT CBs

)
CBs + μB

From Eq.(19), the estimated basis image is composed of the term of characteris-
tics,

(
I−μBs−μe

σ2
e+sT CBsCBs

)
, and the term of mean, μB. In the term of characteristics,

(I − μBs − μe) is the difference between the probe image and the image recon-
structed by the mean basis images.

4.4 Recognition

The most direct way to perform recognition is to measure the distance between
probe images and the subspace spanned by the recovered basis images. Every
column of B is one basis image. However, the basis images are not orthonormal
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vectors. Thus we perform the QR decomposition on B to obtain a set of or-
thonormal basis, i.e. the matrix Q. Then the projection of probe image I to the
subspace spanned by B is QQT I, and the distance between the probe image I
and the subspace spanned by B can be computed as ‖QQT I − I‖2. In the recog-
nition procedure, the probe image is identified as the subspace with minimum
distance from it.

5 Experiments

The statistical model is trained by images from the extended Yale Face Database
B. With the trained statistical model, we can reconstruct the lighting subspace
from only one gallery image. This estimation is insensitive to lighting variation.
Thus, recognition can be achieved across illumination conditions.

5.1 Recovered Basis Images

To recover the basis images from a single image, the lighting coefficients of the
image are estimated first. Then we estimate the error terms of the image Finally,
the basis images of the image can be obtained with Eq.(19).

Fig. 2. Recovered basis images. (a)∼(d) are images in subset 1∼4 of Yale Face Database
B respectively. (e)∼(h) are recovered basis images from image (a)∼(d) respectively. (i)
are the reconstruction results: from left to right, the columns are the original im-
ages, the reconstruction results from the real basis images and the estimated basis
images(e)∼(h), respectively.
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Although the images of the same object are under different lighting condi-
tions, the recovered basis images should be similar. The probe images are from
the Yale face database B. There are 10 subjects and 45 probe images per subject.
According to the lighting conditions of the probe images, they can be grouped
into 4 subsets as in [8]. The details can be found in Table 1. From subset1 to
subset4, the lighting conditions become extreme. For every subject, we recover
its basis images from only one of its probe images each time. Then we can ob-
tain 45 sets of basis images for every subject. Fig.2(e)∼(h) are the basis images
recovered from an image of each subset. σ̄basis(the mean standard deviation of
the 45 sets of basis images of 10 subjects) is 7.76 intensity levels per pixel, while
σ̄image(the mean standard deviation of the original 45 probe images of 10 sub-
jects) is 44.12 intensity levels per pixel. From the results, we can see that the
recovered basis images are insensitive to the variability of lighting. Thus we can
recover the basis images of a subject from its images under arbitrary lighting
conditions. Fig.2(i) are the reconstruction results from different basis images.The
reconstructed images also contain shadows and inter-reflections because the re-
covered basis images contain detailed reflection information. As a result, good
recognition results can be obtained.

Table 1. The subsets of Yale Face Database B

subset1 subset2 subset3 subset4

illumination 0∼12 13∼25 26∼50 50∼77

Number of images 70 120 120 140

5.2 Recognition

Recognition is performed on the Yale Face Database B [8] first. We take the
frontal images (pose 0) as the probe set, which is composed of 450 images (10
subjects, 45 images per subject). For every subject, one image is used for recov-
ering its lighting subspace and the 44 remaining images are used for recognition.
The comparison of our algorithm with the reported results is shown in Table 2.

Our algorithm reconstructed the 9PL subspace for every subject. The recov-
ered basis images also contained complicated reflections on faces, such as cast
shadows, specularities, and inter-reflection. Therefore the recovered 9PL sub-
space can give a more detailed and accurate description for images under differ-
ent lighting conditions. As a result, we can get good recognition results on images
with different lighting conditions. Also, the reported results of ’cone-cast’, ’har-
monic images-cast’ and ’9PL-real’ showed that better results can be obtained
when cast shadows were considered. Although [15,16] also use only one image to
adjust lighting conditions, they need to recover the 3D model of the face first.
The performance of our algorithm is comparable to that of these algorithms,
which are based on high-resolution rendering [15,16] and better than that of
those algorithms based on normal rendering [14]. Our algorithm is a completely
2D-based approach. Computationally, it is much less expensive compared with
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Table 2. The Recognition Error Rate of Different Recognition Algorithms on Yale
Face Database B

Algorithms subset1&2 subset3 subset4

Correlation[8] 0.0 23.3 73.6

Eigenfaces[8] 0.0 25.8 75.7

Linear Subspace[8] 0.0 0.0 15.0

Cones-attached[8] 0.0 0.0 8.6

Cones-cast[8] 0.0 0.0 0.0

harmonic images-cast[8] 0.0 0.0 2.7

3D based SH model [12] 0.0 0.3 3.1

BIM(30 Bases)[15] 0.0 0.0 0.7

Wang et al.[16] 0.0 0.0 0.1

Chen et al.[17] 0.0 0.0 1.4

9PL-real[19] 0.0 0.0 0.0

our algorithm 0.0 0.0 0.72

those 3D based methods. The basis images of a subject can be directly com-
puted with Eq.19 while the recognition results are comparable to those from the
3D-based methods.

5.3 Multiple Lighting Sources

An image taken under multiple lighting sources can be considered as images
taken under a single lighting source being superimposed. Through interpolation,
the lighting coefficients of images taken under single lighting are linearly com-
bined to approximate those of the image taken under multiple-lighting. Here we
also apply the statistical model trained on the extended Yale Database B to ba-
sis images estimation. Similarly the lighting coefficients of images are estimated
through interpolation. Then the error term can be estimated according to the
lighting coefficients. Finally, the basis images are recovered.

In the PIE face database [23], there are 23 images per subject taken under
multiple lighting sources, and altogether 69 subjects. We recover 23 sets of the
basis images from the 23 images of every subject respectively. With these esti-
mated basis images, we perform recognition on the 1587 images (23 images per
person) 23 times. We also estimate basis for images in the AR database [24]. We
select randomly 4 images under different illumination per subject (image 1, 5,
6, 7) and recover the respective basis images from those images. Recognition is
performed on 504 images (126 subjects and 4 images per subject) 4 times. Sam-
ples of the recovered basis images from images in the PIE and AR databases
are shown in Fig.3. The average recognition rates, the mean standard deviation
of the recovered basis images (σ̄basis) and the mean standard deviation of the
gallery images (σ̄images) are presented in Table 3. Also [12] reported a recogni-
tion rate of 97.88% on part of PIE and [18] reported his recognition rate as 97%
on PIE database. Our recognition results are better. The results show that the
statistical model trained by images taken under a single lighting source can also
be generalized to images taken under multiple lighting sources.
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Table 3. Recognition Rate on Different Databases

Face Database PIE AR

σ̄basis 11.01 11.34

σ̄image 285 38.59

Recognition rate 98.21% 97.75%

Fig. 3. Recovered basis images. (a) and (b) are images in PIE database, (e) and (f)
are estimated basis images from image (a) and (b), respectively. (c) and (d)are im-
ages in AR database, (g) and (h) are estimated basis images from image (c) and (d),
respectively.

6 Conclusion

The 9PL provides a subspace which is useful for recognition and is spanned by real
images. Based on this framework, we built a statistical model for these basis im-
ages. With the MAP estimation, we can recover the basis images from one gallery
image under arbitrary lighting conditions, which could be single lighting source
or multiple lighting sources. The experimental results based on the recovered sub-
space are comparable to those from other algorithms that require lots of gallery
images or the geometric information of the subjects. Even in extreme lighting con-
ditions, the recovered subspace can still appropriately represent lighting variation.
The recovered subspace retains the main characteristics of the 9PL subspace.

Based on our statistical model, we can build the lighting subspace of a sub-
ject from only one gallery image. It avoids the limitation of requiring tedious
training or complex training data, such as many gallery images or the geometric
information of the subject. After the model has been trained well, the computa-
tion for recovering the basis images is quite simple and without the need of 3D
models. The proposed framework can also potentially be used to deal with pose
and lighting variations together, with training images in different poses taken
under different lighting for building the statistical model.
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