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Abstract. There are many local and greedy algorithms for energy min-
imization over Markov Random Field (MRF) such as iterated condition
mode (ICM) and various gradient descent methods. Local minima so-
lutions can be obtained with simple implementations and usually re-
quire smaller computational time than global algorithms. Also, methods
such as ICM can be readily implemented in a various difficult problems
that may involve larger than pairwise clique MRFs. However, their short
comings are evident in comparison to newer methods such as graph cut
and belief propagation. The local minimum depends largely on the ini-
tial state, which is the fundamental problem of its kind. In this paper,
disadvantages of local minima techniques are addressed by proposing
ways to combine multiple local solutions. First, multiple ICM solutions
are obtained using different initial states. The solutions are combined
with random partitioning based greedy algorithm called Combined Lo-
cal Minima (CLM). There are numerous MRF problems that cannot be
efficiently implemented with graph cut and belief propagation, and so
by introducing ways to effectively combine local solutions, we present a
method to dramatically improve many of the pre-existing local minima
algorithms. The proposed approach is shown to be effective on pairwise
stereo MRF compared with graph cut and sequential tree re-weighted be-
lief propagation (TRW-S). Additionally, we tested our algorithm against
belief propagation (BP) over randomly generated 30 x 30 MRF with 2 x 2
clique potentials, and we experimentally illustrate CLM’s advantage over
message passing algorithms in computation complexity and performance.

1 Introduction

Recently, there are great interests in energy minimization methods over MRF.
The pairwise MRF is currently the most prominent MRF which became most
frequent subject of study in computer vision. Also, in the forefront, there is a
movement toward 2 x 2 and higher clique potentials for de-noising and segmenta-
tion problems [T2I3A5I6]. They claim better performance through larger clique
potentials that can give more specified constraints.

However, the conventional belief propagation which has been so effective in
the pairwise MRF, is shown to have severe computational burden over large
cliques. In a factor graph belief propagation, the computational load increases
exponentially as the size of clique increases, although for the linear constraint
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MRFs, the calculation can be reduced to time linear [6I3]. Graph cut based
methods are also introduced for energy functions with global constraints and
larger clique potentials with pair-wise elements [5/4]. However, these methods
are targeted toward a specific category of energy functions and the applicability
limitations are high.

A practical and proven method for minimizing even the higher order MRF's
is simulated annealing. Gibbs sampler, generalized Gibbs sampler, data-driven
Markov chain Monte Carlo and Swendsen-Wang cut were respectively applied
to de-noising, texture synthesizing and segmentation problems that involved
large clique potentials [7I8I9IT0]. However, simulated annealing is considered im-
practically slow compared to belief propagation and graph cut even in pairwise
MRFs [I0/II]. More recently, simulated annealing has been modified by local-
ized temperature scheduling and additional window scheduling to increase its
effectiveness [I2/13].

Another approach that is often being ignored is the greedy local minimum
algorithms. With the introductions of theoretically sound graph cut and belief
propagation over pairwise MRF, older methods such as ICM [I4] and various
gradient descent methods are often disregarded as an under-performing alter-
natives [I1]. However, methods like ICM and other local minimum algorithms
do not have any constraints over the size of cliques in MRF. Gradient descent
method was readily implemented over 5 x 5 and 3 x 2 clique potential in the de-
noising problem [2/T]. Texture synthesis and segmentation problems were model
by high order MRF and the energy was minimized using ICM [I5]. Thus, when
considering both the computational time and performance, local greedy methods
that depend largely on the initial states are still viable in many of the high order
MRFs.

In this paper we propose a new algorithm to effectively combine these local
minima to obtain a solution that is closer to the global minimum state. First,
local solutions are calculated from various initial states. Then, they are com-
bined by random partitioning process such that the energy is minimized. The
proposed Combined Local Minima (CLM) approach is very simple but it can
effectively find lower energy state than graph cut and belief propagation. CLM
is tested on the pairwise stereo MRFs provided by [TGIT7I8IT920], and it is
shown that the performance can be better than graph cut [21I] and sequential
tree reweighted belief propagation (TRWS) [22]. We also performed tests over
randomly generated 2 x 2 clique MRFs, and showed that the proposed method
converges not only faster but finds lower energy state than belief propagation.
However, the biggest advantage of the proposed algorithm is that it can bring
further improvement over various local minima algorithms that are applicable
to general energy functions.

Section 2 will review ICM algorithm. Section 3 presents proposed CLM. In
the experiment section, CLM is shown to be competative over pairwise MRF
and superior over 2 x 2 clique MRF. The paper will close with conclusion and
possible future work.
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(d) ICM 10 -' (e) ICM 14 ’ (f) CLM

Fig.1. (a) to (e) show ICM solutions from different initial states. Homogeneous states
of disparity 0, 5, 8, 10, and 14 are respectively used as the initial states of (a), (b),
(¢), (d), and (e). Combined local minima algorithm effectively combines these ICM
solutions into an lower energy state (f).

2 Iterated Conditional Mode (ICM)

For obtaining the local minima states, there are various different methods to
choose from. However, in this section, iterated conditional mode will be reviewed
for discrete MRF.

MRF consists of a set of nodes V' = {vy, v, ...uxn}. For each nodes v € V, a
label [ can be assigned from a set L, producing a state z. The number of nodes
in V' is denoted as N, and the number of labels in L is Q). In a discrete labelling
problem, the number of possible states will be Q. The energy function () is
a function of N dimension vector x = (1, 22,23, ..., TN ).

ICM is a simple algorithm that determines the minimum energy at each ver-
tex v € V. For a non-convex energies (such as pairwise energy function), ICM
produces a local minima solutions that depends upon the starting state. Follow-
ing pseudo code minimizes the energy function ¢(x) in a labelling problem with
nodes v; € {v1,v2,..vn} and labels [; € L = {l1,1s,...lg}.

Iterated Conditional Modes: ICM
1. Determine the initial state x
2. Repeat until no further energy minimization.
3 Fori=1toi=N
4. Forj=1toj=0@Q
5 Assign [; to v;
if (a1, ...,z =1, .., an) < (a1, ..., 2N).
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The problem of choosing the right initial state is the big disadvantage of ICM.
Figure[ll(a) to (e) show the ICM solutions for Tsukuba stereo MRF. The solutions
in Figure [l are obtained with different initial homogeneous states. Even though
the energy minimization cannot be low as graph cut or belief propagation, the
computational time is very small because the comparative inequality of step 5 can
be evaluated in O(1) for most of the energy functions, including pairwise functions.
ICM guarantees to converge but the performance is very poor as shown in figure[ll
Also, because of its simplicity, I[CM can be applied to high order MRF with larger
cliques where graph cut and BP are having problems with.

3 Combined Local Minima

The simplest way to overcome the initial state dilemma of greedy algorithm is
to take multiple initial states. Among the multiple local minima obtained from
ICM, the lowest energy state can be chosen as the final solution. However, this
approach is problematic for MRF with very large dimensions, and obtaining
comparable solutions to graph cut and belief propagation is near impossible.
Thus, greedy algorithms are not often used for the MRF problems. In this sec-
tion, however, we assume that each local minima solution has a subset that is a
match to a subset of global minima state. We believe that a random partition
combination of local minima solution can be used to obtain energy level closer
to global minima.

3.1 Combined Space

In a typical labelling problems such as segmentation and stereo, the nodes are
presented by the pixel positions. The number of all possible states for such set
up will be Q. However, the combination of local minima will produce a smaller
space. In this section, the general notations will be defined for the proposed
algorithm.

The solution space for N number of nodes and set of labels L = {l1, 12, ..., 1o}
is 2 ={LxLx,...,xL}, where 2 is N dimension space. However, we are propos-
ing to minimize energy over reduced solution space that is obtained from the
combinations of local solutions. First, &k number of local minima set {s1, s2, ..., Sx }
are found using ICM such that each s; is N dimension vector having following
labels.

= (1,208, (1)

80

l{ is the label value for v; € V' node of s; local minima state. £2g C {2 is the
new solution space composed of the new sets of labels L; C L.

QS = (Ll X L2 X Lg><7...7 XLN). (2)

Lj is obtained from the set of the local solutions such that L; = {17 ,17 .17 ,....1] }.
The search for the minimum energy state will be over (2g, although there
is no guarantee that the global minima is in the reduced space. Choosing the

right combinations of local minima for CLM will admittedly be heuristic for
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each problem. More on the choices of local minima will be discussed in the later
sections. However, when the sufficient number and variety of local minima are
present in the proposed CLM, the solution space will be the original 2.

3.2 Combined Local Minima

The proposed combinatorial algorithm for local minima is very simple and intu-
itive, however, it is shown to be very effective over traditional pairwise MRF and
randomly generated 2 x 2 clique MRF. For the pairwise MRF, QPBO algorithm
can effectively combine two minima solutions together [23]. However, QPBO al-
gorithm is viable only for pairwise MRF, thus we rely on random partitioning
technique which is simpler and can be applicable to higher order MRF.

We propose following algorithm to minimize energy from a set of local minima.
CLM partitions both current state and local minima states and replaces a part
of current state to one of the local minima states’ such that energy is reduced
for current state. It is a basic greedy algorithm over partitioned states.

Combined Local Minima: CLM
1. Given k number of local minima states from k different initial states,
s1= (111203 ), sy = (L0203, 1Y),
= (12 B
and the current state x = (I2,12,13,...,1)),
repeat for specified number of iterations.
2. Randomly partition both the current state x and local minima states
81, 832, ..., Sk into same m number of partitions such that
v = (VI V2VE V) s = (VI V2 V3, vm),
52 = (Vslw Vivvts?;v ey VsT) oSk = (Vslkvvsi ) Vsiu o VsT) :
3. Repeat for i =1 to i = m.
4. Make k + 1 proposal states {zg, x1, Z2, ..., T } in combinations
of current state z and s1, ..., s, such that Vmi vector partition of
x is replaced by the V of local minima states. See below.
vo=x=(V,VEV2 . V"), o= (VH,VE . ViV,

ty = (VL V2, o VE VY o g = (VI V2, Vi VY.

Sk
Among set S = {xg, 1, ..., 2}, take the lowest energy state as the

current state.

The computational complexity of CLM depends largely on the complexity of
evaluating ¢(x;). If p(x;) is needed to be calculated in O(N), ICM’s complexity
will be O(kmN). If m is randomly chosen, the worst case would be for m = N,
and the time complexity will be O(kN?) per iteration. However, if the maximum
clique size is small compared to MRF size, both the worst and best complexity
will be O(kN) because only V? and areas around V' are needed to be evaluated
to find the lowest energy among S = {xg,x1, ..., zx}. Also, the complexity can
still be lowered using various computation techniques such as integral image
method [24].

The proposed algorithm is greedy and guarantees that the energy does not
increase for each iteration. Figure [2l shows the iterative results of the proposed
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(a) Initial state (b) Iteration 1 (c) Tteration 2

(d) Iteration 3 (e) Iteration 4 (f) Iteration 6

Fig. 2. (a) shows the initial state of CLM. (b), (c), (d), (e), and (f) show respectively
the first, second, third, fourth, and sixth iterations of combined local minima algorithm.

CLM over Tsukuba stereo pair MRF. k& = 16 number of local minima were
used. Few of local minima are shown in Figure [l With only a small number
of iterations, CLM can output energy minimization result far superior to ICM
method, and with enough iterations it can be effective as the message passing
and graph cut algorithms.

However, there are two heuristics that must be resolved for CLM. First, it is
unclear how current state z and {s1, s2, ..., s} should be randomly partitioned
in step 2 of the algorithm. Second, the choice of local minima and the value of k
are subject to question. These two issues are important to the performance of the
proposed algorithm and the basic guidelines are provided in next subsections.

3.3 Obtaining k Local Minima

It is intuitive to assert that if large number of local minima is used for CLM,
the obtained energy will be lower. However, for the price of lower energy, more
computational time and memory are required. The right tradeoff between com-
putation resources and desired energy level is essential to CLM. This is both
advantage and disadvantage of proposed method because by using CLM, you
can control the level of performance and computing resources.

Another factor that contributes to the performance of CLM is the variety of
local minima. For example, if all the local minima solutions are same, the energy
will not be lowered no matter how many times they are combined. Usually, vari-
ety of initial states for ICM result in the variety of minima solutions. However,
some heuristics may be needed for obtaining different local minima. We have
empirically developed few precept for both of these issues.
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Thus, in order to have different local minima states, ICM with different ho-
mogeneous initial states were used. See experimental section and Figure[d and [l
In both of the comparison tests, the number of local minima are set to @, the
number of labels. {s1,..., 8¢} are obtained from ICM with homogeneous initial
state, respectively having labels I, s, ...,lg. In both stereo MRF and randomly
generated MRF, such initial states resulted in the energy minimization compa-
rable to message passing algorithms. Thus, the rule of thumb is to use 2 number
of local minima derived from the respective homogeneous initial states.

However, by increasing the number of local minima as shown in Figure [l
much lower energy can be achieved with incremental addition to computation
time. In Figure B CLM200 minimizes energy using total of 200 local minima
composed of () homogeneous initial states and 200 — @ number of ICM solutions
obtained from random initial states. CLM200 achieves much lower energy than
belief propagation. Although, random initial states are used here, more adaptive
initial states can also be applied for different problems.

3.4 Random Partition

In this paper, we use rectangular partition method for step 2 of CLM algorithm,
much like window annealing of [13]. See Figure Bl (a). 4 integers are randomly
chosen, and MRF can be partitioned accordingly. Such method is used because of
simplicity of computation and the fact that it can commodate the square lattice
structure of digital images. Furthermore, by having rectangular partitions, the
energy value of state can be obtained very fast using integral image technique
[24], which was used for the stereo pair experiment. However, the integral image
technique is not essential to the CLM. In Figure [, integral image technique is
not used during the operations of CLM, and it has superior performance over
belief propagation.

For MRFs with random structure, rectangular partition can not be applied.
A possible random partitioning algorithm that can be used is the one that was
applied in Swendsen-Wang cut algorithm [10]. In Swendsen-Wang cut, the edges
between the nodes are probabilistically cut, and the connected nodes after the ran-
dom cut would make a single cluster. This method was not used in the experimen-
tation section because of needless complexity over square lattice MRF. Again, the
partition method can be specified to each problem at hand. However, V* should
be no larger than N obviously, and there should be a positive probability that size
of V¥ could be 1, so that the optimization can be occur over single nodes.

4 Experiments

In order to show the effectiveness of the proposed CLM, we compared it’s per-
formance with graph cut and TRW-S over pairwise stereo MRF. Additionally,
window annealing (WA) [13] results are included in the test. Pairwise stereo
MREF is known to be effectively optimized by alpha expansion graph cut (GC)
and TRW-S [21I22], but very ill posed for greedy algorithms such as ICM. The
experiments were performed over stereo pairs provided by [TOIT7/I8I200T9].
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(a) Rectangular Partition (b) 2 x 2 clique MRF

Fig. 3. (a) shows an example of rectangular partitioning of a square lattice MRF. A
state can be partitioned into rectangular clusters V = {V*, V2 ..., V™}. Such partition
method allows simple calculation of energy function by integral image technique which
was used for the pairwise MRF test. In this Figure (b), 4 x 4 MRF with 2 x 2 clique
potentials is depicted. The circle nodes are v € V. The square factor nodes define the
cliques of MRF by connected the neighbors, Ny. MRF is built by assigning random
clique potentials from an uniform distribution. In the randomly generated 2 x 2 clique
MREF, integral image technique is not used for computational speed up.

Also recently, larger than pairwise clique models are often proposed for vision
problems. Gradient descent and belief propagation are used over 2 x 2 and larger
clique MRF to attack such problems as de-noising, and shape from shading
[BT2I3]. Thus, we tested our algorithm over randomly generated MRF with
2 x 2 clique potentials, see Figure [ (a). Alpha expansion algorithms cannot
deal with randomly generated larger than pairwise MRF, and it was excluded
from the test. CLM reaches a lower energy faster than belief propagation (BP)
and WA methods. The computational complexity of proposed method is O(kN),
allowing CLM to be a practical minimization scheme over large clique MRFs.
All computations are done over a 3.4GHz desktop.

4.1 Pair-Wise Stereo MRF

Pairwise and sumodular MRF is most common MRF used in computer vision.
Also, it has been the subject to many comparative tests. Particularly, the stereo
MRF has been an frequent in comparison tests of energy minimization meth-
ods [T1125l22]. However, the performance differences between two state of art
methods, graph cut and message passing algorithms, are still not clear when
the computational time is an issue. Although, TRW-S may eventually find lower
energy than graph cut, it can take many more iterations to do so. In some cases,
TRW-S is faster and finds lower energy than graph cut. In this test, we tried to
present energy functions that are fair to both graph cut and TRW-S. As shown in
Figure [ for Cones and Bowling2 MRF, TRW-S clearly outperforms the graph
cut. Otherhand, for Teddy and Art MRF, the graph cut finds lower energy
much faster. The performance of each methods seem to depend largely upon the
strength of discontinuity costs. Simulated annealing, otherhand, depends large
on the temperature scheduling. Awhile WA is competitive with previous methods
in speed, usually it could not find lower energy. Although it is possible to tweak
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Fig.4. (a)Cones uses truncated quadratic discontinuity cost. (¢) Bowling2 is the result
for truncated linear discontinuity cost. (b) Teddy and (d) Art use Potts discontinu-
ity cost. CLM 60 means 60 local minima are used in CLM algorithm. The CLM’s
performance is shown to be in-between TRW-S and GC. The performance difference
to state-of-art methods are very small, however, CLM performance does not seem to
strongly vary according to the discontinuity model apposed to TRW-S and graph cut.

the annealing scheduling for lower minimization, we kept the same temperature
and window scheduling of [13].

For the energy function, gray image Birchfield and Tomasi matching costs [20]
and Potts, truncated linear and truncated quadratic discontinuity cost are used.

e)=Y D)+ Y, V(pq). (3)

peV (p,q)ENg

D(p) is a pixel-wise matching cost between left and right image. V(p,q) is
pair-wise discontinuity costs. The implementations of graph cut and TRW-S
by [TT2TU272829I22] are used in this experiment.

For the implementation of CLM, @ number of local minima ICM solutions
are obtained from following set of initial states {(0,0,...,0),(1,1,...,1),...,(Q —
1,Q—1,...,Q—1)}. As mentioned before, a rule of thumb seems to be @ number
of local minima with homogeneous initial states, especially if the MRF is known
to have smoothness constraint. For the state partition technique of step 2 of
CLM, a simple rectangular partitioning method is used, see Figure Bl
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Fig.5. Energy versus time results of max product BP, ICM, WA, and CLM over
30 x 30 randomly generated MRF. Figure (a), (b), (c), and (d) respectively have label
size Q = 2, Q =3, Q =4, and @ = 5. CLM using k£ = @ and k = 200 number of
local minima are performed for each random MRF. The increase in the local minima
allows lower energy state to be achieved in exchange for computation time and memory.
However, such price is very small compared to the computation time of BP.

Figure [ shows energy vs time graph results using Potts, truncated linear,
truncated quadratic discontinuity model. Qualitatively, there is a very small
difference between TRW-S, graph cut, WA, and CLM, see Figure [fl However,
the energy versus time graphs show more edifying comparison. The first iteration
of the CLM takes much longer time than the other iterations because all the local
solutions are needed to be computed. Overall performance of the proposed CLM
stands in the middle of graph cut and TRW-S. However, compared with window
annealing, CLM outperforms it everywhere except for the initial calculations.

4.2 Randomly Generated 2 X 2 Clique MRF

However, the biggest advantage of proposed CLM is that the computational
complexity does not increase exponentially. Belief propagation based methods,
however, the time complexity of message calculation goes up exponentially as
the number of clique size increases [6]. In this section, the proposed CLM is
tested over randomly generated 2 x 2 clique MRF. Below equation describes the
energy function as sum of clique potentials.
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(d-1) Graph cut (d-2) Graph cut (d-3) Graph cut

(e-1) TRW-S (e-2) TRW-S (e-3) TRW-S (e-4) TRW-S

Fig. 6. This figure shows the qualitative stereo energy minimization results at roughly
at same computation time. (a-1) to (a-4) are left reference stereo images. (b-1) to (b-
4) are the results of proposed CLM. (c), (d), and (e) respectively show the results
of window annealing, graph cut and TRW-S. For each stereo pair, the same energy
function is used. The qualitative differences between 4 methods are very small, except
for Teddy image where graph cut’s lower energy makes a difference over the roof area of
image. Otherwise, the energy difference between 4 methods are small enough to make
no visible differences.
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@)=Y Vipgrs) (4)
(p,q,m,8)ENy

The clique potential V(p,q,r,s) is a function of 4 dimensioned vector. The
value of each V(p,q,r,s) is randomly assigned from an uniform distribution
[0,1]. In Figure [ (b), the square factor nodes are connected to 4 variable nodes
p,q,7,s. 30 x 30 variable nodes with 2 x 2 clique potentials are generated for
the comparison test. The energy minimization results of CLM, ICM, and BP are
shown in Figure Bl (a) to (d) are the results obtained for MRFs with label size
Q =2 to @ = 5, respectively.

For the implementation of belief propagation, the factor nodes are transformed
into variable nodes with Q% number of labels having corresponding V (p, q,7, s)
as the unary costs. The pairwise potentials are assigned either 0 or co based on
the consistency requirement. CLM is implemented using £ = @ local minima
and also for & = 200 local minima. For k = @, local minima are found by ICM
over (Q homogeneous states like the stereo problem, even though the smoothness
assumption is no longer viable in this problem. For CLM200, additional 200 — @
ICM minima obtained from random initial states are used. Same rectangular
partitioning is used but the integral image technique is not used.

In these 4 tests, it is clear that the proposed CLM converges faster than
BP and WA. The difference from BP is more evident for Figure [l (¢) and (d),
because even though BP is fast as CLM200 for @ = 2 Figure [ (a), but as
the label size increases, BP could not keep up with speed of CLM. Thus, as
the number of labels and clique size become larger, message passing algorithms
will become practically ineffective awhile proposed CLM can maintain reasonable
computational time. Furthermore, with larger number of local minima, the CLM
can reach much lower energy than BP and WA with comparably insignificant
addition to computation resources.

5 Conclusion and Future Work

In this paper, we propose a new a method to combine local minima solutions
toward more global minimum by random partition method. CLM’s performance
is compared with state-of-art energy minimization methods over most well known
pairwise stereo MRF. Combined local minima is shown to be effective as graph
cut and TRW-S. Furthermore, tests over randomly generated 2 x 2 clique MRF's
show that the computation complexity of CLM is much smaller than traditional
message passing algorithms as the clique and label size become larger.

Additionally, we included window annealing method in the experiment. How-
ever, due to heuristics of simulated annealing and the proposed method, it is hard
tosay which method is better. Nevertheless, both algorithms show clear advantages
over the high ordered MRF compared to existing methods awhile maintaining com-
petitiveness in the pairwise MRFs. We hope that such conclusion will encourage
other computer vision researchers to explore more complex MRFs involving larger
clique potentials. In the future, MRF with random structure (non square lattice)
will be studied using Swendsen Wang cut like partition method.
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