
From User Context States to
Context-Aware Applications

Boris Shishkov and Marten van Sinderen

University of Twente, Department of Computer Science

Enschede, The Netherlands
{b.b.shishkov; m.j.vansinderen}@ewi.utwente.nl

Abstract. In many cases, in order to be effective, software applications need to
allow sensitivity to user context state changes. This implies however additional
complexity associated with the need for applications’ adaptability (being
capable of capturing context, interpreting it and reacting on it). Hence, we
envision 3 ‘musts’ that, in combination, are especially relevant to the design of
context-aware applications: (i) At the business level, the different possible
context states of the user must be properly identified and modeled; (ii) Both at
the business and application level, the corresponding desirable behaviors must
be identified and modeled, as well as the overall behavior which represents the
required adaptability in terms of valid switches between desirable behaviors;
(iii) The models at the business and application level must be aligned, i.e. the
application models should represent proper solutions with respect to
functionality and adaptability needs expressed at the business level. In this
work, we address the mentioned challenges, by furthering the development of a
business-application-alignment approach, extending it to cover context-
awareness. We illustrate our achieved results by means of a small example. It is
expected that this research contribution will be relevant and useful with respect
to the challenge of aligning business modeling and software design.

Keywords: Business modeling; Application modeling; Context-aware
applications; Context states; SOA; MDA; LAP.

1 Introduction

In developing a software application, the designer should take into account not only
the user requirements but also the characteristics of the environment or situation in
which the user will interact with the application [13,14]. This sometimes leads to the
identification of different possible states – referred to as (user) context states, where
by context is meant ‘the interrelated conditions in which something exists’ [7]. For
example, possible user context states could be "user is at home", "user is travelling",
and "user is at work". Hence, sensitivity to context changes is sometimes essential for
the effectiveness of applications, usually referred to as Context-Aware (CA)
applications [10,16]. It should be decided therefore which are the relevant context
states to be considered by the application. Further, the application should be capable
of deriving the context states and performing the desirable behaviors corresponding to

these states. Deriving context states involves sensing the user environment and
transforming the sensed raw data into context information which is useful to the
application. Such context information would allow the application to recognize a
context state change and react on this by switching to the corresponding desirable
behavior. This capability of an application does constitute a quality known as
adaptability.

All this implies complex design. We envision 3 ‘musts’ that, in combination, are
especially relevant to the design of CA applications:

(i) At the business level, the different possible context states of the user must be
properly identified and modeled;
(ii) Both at the business and application level, the corresponding desirable
behaviors must be identified and modeled, as well as the overall behavior which
represents the required adaptability in terms of valid switches between desirable
behaviors;
(iii) The models at the business and application level must be aligned, i.e. the
application models should represent proper solutions with respect to functionality
and adaptability needs expressed at the business level.

By business modeling we mean the modeling of business-level entities as well as

their corresponding relations and behaviors. The desirable application behaviors must
(logically) be appropriate refinements of the business-level behaviors. Business
modeling and application modeling are considered to address different levels of
abstraction, and thus form separate design activities, each one focusing on the
concerns appropriate to the level at hand. These activities could be carried out in any
order, or could be (partially) done in parallel; however the results of these modeling
activities should be consistent according to the required business-application
alignment. For example, one could model firstly entities and behaviors at the business
level, which concern a computation- and technology-independent ‘view’ on business
processes, and secondly, one could model entities and behaviors at the application
level, which concern application functionality views that are inevitably computation-
dependent and to some extent technology platform independent (and technology-
rooted at the same time). Bridging the gap between these abstraction levels and
achieving an adequate business-application alignment is partially considered in this
paper and more thoroughly approached in previously reported work [14].

The desirable context-awareness and context-driven adaptability of applications
imply, as mentioned before, the necessity for adequate capturing and processing of
context information, and reaction on context changes. Although an application would
be required to react on context changes at real time, those changes should be foreseen
at design time, so that proper desirable application behaviors are prescribed.

This design preparation is the main focus of the current paper. In particular, we
further the development of a business-application-alignment approach [13], by
extending it to cover context-awareness. This relates to another issue addressed in the
paper, namely consistency - claimed to be important in the business-application
alignment [12,13]. Consistency is a desired relationship between models that address
separate concerns, for instance business and application concerns [1]. We illustrate
our achieved results, by means of a small example.

We adopt service-orientation [1,8] as a preferred architectural style for organizing
systems (to be reflected in our models) - this decision has been motivated and inspired
by previously achieved results [14]. This implies that we aim at system structures
where functionality is only accessible through services, hiding how each of the
services is implemented, and where services can be published and discovered through
corresponding service descriptions. Service-orientation helps to speed up the
development of business-aligned application models (through the composition of
services), and also to flexibly utilize advanced technological platforms for their
implementation (through the independence of services from implementations) [15].

The paper’s outline is as follows. Section 2 motivates further our proposed design
views and also introduces the concepts/theories and methods that we use. Section 3
introduces a case study that is used in the next sections to detail and illustrate the
different phases of our approach. Section 4 and Section 5 present the business and
application modeling activities, respectively. Finally, Section 6 contains the
conclusions and outlook for future work.

2 Modeling Approach

During business and application modeling, the notions of business/software system
and environment [2] should be explicitly considered. A system and its environment
are both composed of entities which could fulfill different roles. Entities are
constrained in their behavior, corresponding to the roles they fulfill [11]. A system
integrates entities’ behaviors, which results in an overall external behavior (or
service) provided to the system’s environment; the entities in the system’s
environment that interact with the system (in accordance to the service) are often
referred to as service users or users, for short.

A service provisioning needs to appear sometimes in different ‘versions’,
depending on the user context state. Said otherwise, for one user context state, the
system should provide one type of external behavior to the user while for another
state, another behavior is to be provided. Hence, context state changes trigger changes
in the system behavior [6], including changes in the number and composition of
entities involved in the service provisioning. Based on these basic considerations
concerning the design of CA applications, we identify a number of challenges.
Among them are:

 The application should be able to sense context and capture this context as

context information;
 The application should be able to interpret the captured context information

and derive higher-level context information, in particular – user context state
changes, as triggers to alternative behaviors;

 The application should be able to handle the switching between its alternative
behaviors;

 The application should be able to provide services covering all possible
context states.

I

S

w Legend:

 S: Sensing
 I: Interpretation
 w: Switching
 P: Provisioning

○ = action
→ = dependency

P

Fig. 1. Simplified view on a CA application.

As illustrated in Figure 1, a CA application can be seen as concerning a sequence

of ‘actions’ that achieve: S (sensing and capturing), I (interpretation and state
derivation), w (switching), and P (provisioning), respectively, as explained above.
This is obviously a simplified model, since each of the actions represents a potentially
complex process, and the dependencies between these normally involve multiple
instances of information exchange or triggering.

In the following, we largely ignore Sensing (supported by sensors and context
sources, for example) and Interpretation (supported by aggregation and inference, for
example) – they are addressed in related work [16]. Further, we pay little attention to
Switching between alternative application behaviors; this is positioned as future
research.

Hence we focus here on the modeling of alternative desirable behaviors (as needed
by the user in corresponding context states) and their consequent realization by an
application. We face thus the gap between domain-driven requirements on the
application service, or its alternative behaviors, on one hand, and the technology-
rooted application realization of this service, on the other hand. In order to properly
address this, we need to consider different aspects of consistency:

 Correspondence between user context states and the business model
(concerning the desirable – business level – application service and how this
affects business entities);

 Consistency between the business model and the application model
(concerning the application realization in terms of – application level –
services to be assigned to application entities);

 Consistency between dynamic aspects (behavior) and corresponding static
(entity) aspects of the business/application models.

Figure 2 illustrates these consistency aspects (designated by dashed lines).

Context state i

Business entity model i

Business behavior model i

Application entity model i

Application behavior model i

Fig. 2. Consistency aspects in the application design process.

As shown in the figure, the models considered in the application design process
depend on context states (i.e., different states correspond to different behaviors and
possibly different entities involved). Two aspect models are considered, namely entity
and behavior models. Furthermore, models are refined in the design process, starting
with abstract business level models and ending up with more concrete application
models (as suggested by the black arrow in Figure 2), through gradually increasing
consideration of computational and technology platform concerns. Two fundamental
modeling phases and milestones are distinguished, namely the business modeling
phase, which leads to a business model, and the application modeling phase, which
leads to an application model.

We model a behavior as a set of related events; each event corresponds to a unit of
behavior, which is indivisible at the abstraction level at which it is defined. We
distinguish two types of events, viz. action (performed by a single entity) and
interaction (performed by two or more entities, in cooperation). An interaction is
expressed as two or more connected interaction contributions that represent the
participation of the involved entities.

Our modeling approach adopts the abstractions introduced by the Model Driven
Architecture – MDA [9,3], by considering: (i) business modeling from a computation-
independent perspective (no decisions are made with respect to the - complete or
partial - automation of business processes), and (ii) application modeling from a
technology platform independent perspective (even though the applications are
technology-rooted, no decisions are made with respect to the specific technological
platform on which the application is implemented). The consideration of such specific
technological platforms is left beyond the scope of this paper; for a discussion on
web-services-based technology solutions, readers are referred to [8].

Further, the mentioned adoption of service-orientation, affects our modeling in a
way that we are mainly interested in external behaviors (services) [17]. We hence
could arrive at a service model from two directions: either by identifying services
from business level requirements or by abstracting from available technology
solutions. We claim that both directions are possible; nevertheless, the former is
probably always needed. This is the case since a business-requirements-driven service
model would possess the right restrictions, whose fulfillment (in application design)
guarantees that the application is not only feasible from a technical point of view but
also useful from the business (user) point of view.

With respect to the modeling of real-life-level business requirements, we consider
a theoretically-rooted approach, namely the Language-Action Perspective – LAP [12],

possessing strengths in modeling real-life interactions. LAP distinguishes between
two types of activities - production acts and coordination acts, and two types of roles
that an entity could fulfill - initiator and executor. The initiator initiates an interaction
and the executor delivers the required production fact. This is accompanied however
by coordination acts which could be request, promise, state, accept, and decline, and
which together with the production act form a generic interaction (GI) pattern that
concerns real-life communication/coordination [11,12,2]. Complex interactions can in
most cases be represented in terms of such patterns.

The GI pattern specifies that the initiator initiates an interaction, by making a
request which could be either taken or declined by the executor. If taken, it should be
fulfilled by the executor, by performing a production act and delivering the
corresponding production fact. If the executor has declined the request, he and the
initiator enter a negotiation. A negative negotiation result leads to interaction’s
failure; if the result is positive, i.e. they find a compromise, the executor must make
commitment of delivering the ‘updated’ desired result. As for the production act, it is
responsibility of the executor. This act however does not mark the interaction’s
completion; a result delivery is subject to announcement (explicit or implicit) by the
executor. The result is to be ‘evaluated’ by the initiator who may accept it (interaction
completed) or not (interaction not completed and negotiation starts). A negative
negotiation result leads to interaction’s failure; if a compromise is found then the
interaction is to reach completion.

3 The Health-Care Scenario

We will describe and illustrate (in Section 4 and Section 5) the different modeling
phases, supported by a health-care scenario (outlined below), inspired by a broader
case that has been studied in [16].

In the scenario, we consider patients who are suffering from conditions that are
characterized by occasional occurrences of undesired effects; an example if this is
epilepsy. For this reason, such patients need help from caregivers each time when
symptoms occur.

We distinguish two situations: Situation 1 – the traditional institutional-care
situation, and Situation 2 – the situation in which patients are no longer bound to an
institution like a hospital, but receive mobile care through monitoring and/or
treatment realized from distance, using advanced technology.

SITUATION 1. In approaching the traditional institutional-care situation, we
identify the role of Caregiver (fulfilled by a medical doctor or a medical nurse) who
provides help to patients. In this help provisioning, the Caregiver receives support
from medical workers who fulfill the following roles: Triager (the allocator of
treatment to patients), Trend Synthesizer (the first checker of the patient’s condition),
Processor (the examiner of the patient’s symptoms), Analyst (the patient history
analyzer), and Advisor (the rules-supported generator of advice to the Caregiver).
Furthermore, we distinguish between two possible states that are relevant to this care
provisioning, namely: State 1 (‘not too busy’) - some doctors are immediately
available to provide help, and State 2 (‘very busy’) - all doctors are occupied or have

scheduled appointments (within half an hour, for example). In State 1, the Caregiver
(in particular, a doctor) helps a patient if the patient had been directed by the Triager.
In order to give a proper direction to the patient, the Triager must have received input
from the Trend Synthesizer who in turn must have checked (beforehand) the patient’s
condition, for which the Trend Synthesizer needs two inputs, one coming from the
Processor and another one – coming from the Analyst. The Processor provides
information resulting from a conducted examination of the patient’s symptoms (for
example, a consideration of vital signs, such as blood pressure and blood sugar). The
Analyst delivers conclusions derived from the medical history of the patient. In State
2, it is desirable (if possible) to minimize the work directed to doctors and to replace
them (in some cases) by nurses (such a replacement could happen nevertheless only if
the patient had been directed by the Triager and the Advisor had provided sufficient
instructions that allow the nurse to give adequate care). As for the delivery of
instructions, the Advisor needs input from the Triager who in turn needs input similar
to the one concerning State 1.

SITUATION 2. In approaching the technology-facilitation-driven situation, we
identify the same roles and interactions as described in Situation 1, and they are
involved in the same scenario. The difference however is that those who fulfill the
roles of Triager, Trend Synthesizer, Processor, Analyst, and Advisor, are not human
beings, they are components belonging to a distributed software application; it runs on
a number of devices, supporting the doctors and nurses in their help provisioning.

Section 4 considers (CA) business modeling that is relevant to Situation 1. Section
5 outlines, based on this, the specification of an application that could run on
(advanced) devices, adequately fulfilling the corresponding requirements, as
suggested in the above paragraph that concerns Situation 2.

4 Business Modeling

In achieving the first modeling milestone (as according to Section 2) we come
through the following 3 sub-phases.

The Context analysis sub-phase, approaching the possible context states and
corresponding desirable behaviors, includes: (i) study of the possible context states
and their occurrence probabilities; (ii) discovery of useful context parameters whose
values indicate the occurrence of particular states.

The Structural (static) modeling sub-phase includes the identification of: (i)
business system(s) relevant to each desirable behavior; (ii) relevant entities belonging
to the system/environment - for each of the system ‘versions’; (iii) relations between
entities, representing interaction abilities that concern only two-entity interactions
(see Section 2) - for each of the system ‘versions’; (iv) the entities’ Initiator/Executor
roles in the relations - for each of the system ‘versions’; (v) proper rules that define
the ‘switch’ between different desirable behaviors. All this builds up a Business entity
model.

The Behavior modeling and Service identification sub-phase concerns the
modeling of entities’ integrated interaction behavior, abstracting from interaction
contributions. Being concerned with different levels of abstraction and elaboration,
the modeling evolves as follows: (i) the system’s external behavior is firstly modeled,
considering the system as a ‘black box’; (ii) the system’s internal behavior is
disclosed on this basis (relevant interactions are modeled as well as the way the
interactions relate to each other); (iii) units of composite behaviors are identified by
grouping interactions (putting together the coordination acts, following the GI
pattern), arriving therefore at a service model. For more elaborations on these steps
and on the related conformance justification, readers are referred to [13,14].

4.1 Context Analysis Sub-Phase

As mentioned already, the context analysis should come through an occurrence
probability study as well as a parameter-value study.

OCCURRENCE PROBABILITIES. Deciding about states, the designer is
sometimes inevitably driven by subjective judgments that are hardly supportable by
rules: How a situation is perceived? What behaviors can be expected? Further, the
designer must often make pragmatic decisions – ignoring, for example, states that
usually do not occur (although they might occur). In our view, besides such subjective
decisions, there are steps however which in general help to adequately approach the
context analysis challenge. These steps concern the consideration of random
variables. Exploring their probabilities, allows us to apply statistical analysis,
including hypotheses testing and parameters estimation [4].

Considering just possible outcomes is sometimes not enough in approaching a
phenomenon; we might need to refer to an outcome in general. This is possible if we
have a random variable and we study the occurrence probability of the outcomes.

As concerns the Health-Care Scenario, we have there exactly two possible states,
namely: ‘not too busy’ and ‘very busy’. We consider the random variable Y with
respect to these outcomes. Y would be a discrete random variable [4] since it may
take on only a countable number of distinct values (in our case two). Provided the
number of possible distinct values is exactly two, we have the case of a priori
probabilities of each of the alternative outcomes (one of these probabilities can be
calculated by deducting the other one from 1).

alternative ‘not too busy’ ‘very busy’

a priori probability 0.9 0.1

context

Fig. 3. Two context-state alternatives.

According to a conducted study, whose details are omitted for brevity, the a priori
probability of the first of the mentioned possible outcomes is 0.9. The a priori
probability of the second alternative outcome is therefore 0.1.

Hence, our context states represent the ‘not too busy’ and ‘very busy’ alternatives,
with a priori probabilities 0.9 and 0.1, respectively, as illustrated in Figure 3.

Knowing the occurrence probability of each outcome helps in deciding which to
be the ‘default’ desirable external behavior and also what could be ignored (if
anything).

PARAMETERS AND VALUES. In order to prescribe how to recognize each of
the states (two in our case), we assume that the state at a particular moment is
recognizable through observing the values of appropriate parameters. If we have n
parameters appropriate to our scenario and if each of them has certain possible values,
then each values combination would point to a particular state.

For brevity, we exemplify with just two parameters, namely p1 and p2:
 p1 is about the ratio between the number of patients and the number of doctors

at a moment, and is with just three possible values: v11 (the number is less
than 1), v12 (it is exactly 1), and v13 (it is more than 1);

 p2 concerns the particular moment – normal or not (‘not’ would be during
night-time, for example), and has just two possible values, respectively for
‘normal’ and ‘not’ (not normal), namely v21 and v22.

There are six possible value (p1,p2) combinations, namely v11.v21, v11.v22, v12.v21,

v12.v22, v13.v21 and v13.v22. Driven by additional domain analysis, omitted here for
brevity, we determine that only the last combination is validly corresponding to the
0.1-probability alternative (the ‘Second’ alternative); thus all the rest of the
combinations correspond to the 0.9-probability alternative (the ‘First’ alternative), as
depicted in Figure 4.

 first alternative v11.v21, v11.v22, v12.v21, v12.v22, v13.v21

 second alternative v13.v22

parameters’ values’ combinations

Fig. 4. Context state recognition.

Hence, knowing the values of the two parameters (the values could be captured
using sensors for example), one could actually ‘sense’ the context state at a particular
moment.

4.2 Structural Modeling Sub-Phase

We omit the business-entity-model-derivation steps concerning each of the two
desirable behaviors (the ones corresponding to the ‘First alternative’ state and the
‘Second alternative’ state) as well as decisions on which are the relevant entities and

how they are related to each other. We omit all this not only because the SDBC
approach is exhaustive about it, possessing capabilities to transform unstructured case
information into a business model [12,11], but also because the consideration of such
early-business-analysis-related issues would actually shift the focus from the
business-application alignment (addressed in this paper as main challenge).

Hence, we ‘arrive’ directly at the Business entity model for the Health-Care (HC)
case (Figure 5); the model is expressed using a diagramming technique, inspired by
DEMO [11]. The identified entities are presented in named boxes – these are
Caregiver (C; D/N – fulfilled by a doctor/nurse), Triager (T), Trend Synthesizer (TS),
Processor (P), Analyst (A), and Advisor (Adv), while the small grey boxes, on one
end of each connection, indicate the executor role of the connected entities. The lines
that connect entities, indicate the need for interactions between those entities, in order
to achieve the objective of delivering a health-care service; with each such
‘connection’ we associate a single interaction, as follows: C(CaregiverD)-T (i1), T-
TS (i2), TS-P (i3), and TS-A (i4). As for the delimitation, C is positioned in the
environment of the health-care (HC) system, and T, TS, P, and A together form the
system. Through i1, the HC system is related to its environment (represented by C).
Thus, from the perspective of C, there is no difference between the system and T. All
this concerns the ‘First alternative’ state, as depicted in the left part of the figure,
labeled ‘a)’.

b) a)

i4

i1

 HC system

i2

C

T

A

i3

P

 i1b

TS

i4

HC system

i2

C

A

i3

P

TS

i1a

Adv

T

Legend:

C = Caregiver D/N
T = Triager
TS = Trend
 Synthesizer
A = Analyst
P = Processor
Adv = Advisor

Fig. 5. Business entity model for the HC case.

In the ‘Second alternative’ state (the ‘b)’ model), an Advisor (Adv) is envisioned
‘between’ C (CaregiverN) and T (interaction i1 is replaced by two interactions,
namely i1a and i1b).

For brevity, we will consider further only the ‘First-alternative’ state model since it
represents a sufficient base for us to discuss the business-application alignment. As
for modeling a transition from desirable behavior (corresponding to a state) to
another, this can be done (in our view) using Semiotic norms [5], and is positioned as
future research (see Section 2).

4.3 Behavioral Modeling and Service Identification Sub-Phase

We decide firstly on the external behavior of the HC system, at a high level of
abstraction, and then we move to the abstraction level that concerns the internal
behavior of HC.

With respect to the external behavior model, it should envision the interaction
between the Caregiver (C) and the system (HC), and is represented by a single action
(expressed by an oval) in Figure 6-a).

Regarding the internal behavior model, it should reflect the interactions between
the entities of the system, as exhibited in Figure 6-b). This model shows how the
interaction i1 (between the CaregiverD C and the Triager T) is made dependent on
other interactions (i2, i3 and i4). The black box indicates that the results of both i3
and i4 are necessary for the triggering of i2. Such models can be extended further
(e.g., with attributes) and interested readers could find more on this issue in [13].

i1i2

i

a) b)

i4

i3

Fig. 6. a) HC external behavior represented by a single action; b) Interactions in decomposed
HC system, implementing the HC external behavior.

We need to further elaborate this model, in order to achieve a service specification

that allows for a better ‘link’ to relevant real-life aspects. As already mentioned, we
apply the LAP-driven GI pattern in enriching our behavior model. We thus consider
the coordination acts request (r), promise (p), state (s), and accept (a). We also
follow the interaction-interaction triggering ‘mechanism’ (as in the LAP theory): if
the initiator of one interaction requests something and if the executor promises to
realize the requested production act, and if this requires another interaction’s input,
then in parallel with promising to realize the production act, the executor requests a
production fact delivery, which actually is the triggering of another interaction. For
more information on this, readers are referred to [11].

We therefore replace each interaction by its corresponding coordination acts (r, p,
s, a) following the above mentioned ‘mechanism’. In doing this, we group together
coordination acts based on their relation to production acts (Figure 7).

We need nevertheless to model also the possible decline acts (see Section 2); we
could model them (decline-after-request and decline-after-state) by special values of
information attributes (e.g., Result r ׀ r = ‘decline’) of the promise and accept acts,
respectively. Information attributes and related value constraints are not represented
in the figure.

r4 p4

r3 p3 s3 a3

Service T

r1 p1 s1 a1

r2 p2 s2 a2

Service TS

Service A
s4 a4

Service P

Fig. 7. Refined interactions in decomposed HC system, implementing the HC-service behavior.

The model, presented in this way, defines services rooted in the GI pattern,
consistently with our initial modeling output (Figure 5-a)).

5 Application Modeling

In achieving the second modeling milestone (as distinguished in Section 2) we come
through the following 4 sub-phases.

The Delimitation-requirements sub-phase concerns the following decisions: (i)
which part of the business model is addressed by the overall application service; (ii)
what the user requirements are and how we are reflecting them in the application
model. Decision (ii) is beyond the direct scope of this paper.

The SOA decisions sub-phase addresses, at the business modeling level, SOA-
related decisions that concern the further realization of the (distributed) application
service. In particular, these are decisions concerned with the way in which re-usable
services are to be addressed and coordinated by application-specific component(s), in
support of achieving the desirable application functionality.

The Application design sub-phase considers, on top of delimitation-requirements-
related decisions and from a SOA perspective, the actual derivation of application
models as proper refinements and extensions of the models from the business
modeling phase.

The Consistency analysis sub-phase (not addressed in the current paper; addressed
in [13]) envisions the desirable consistency between the original business models and
the (derived) application models (such an analysis supports therefore the validation of
the built application models).

5.1 Delimitation-Requirements Sub-Phase

The scenario statement is not exhaustive, as the users’ intended automation level or
criteria are concerned, helping to make related choices (e.g., on non-functional
aspects, such as cost/performance and ease-of-use). Getting the ‘message’ of the
statement, we assume however that the whole business (HC) system should be
automated. Thus, the HC business service is also the initial specification of the overall
application service.

5.2 SOA Decisions Sub-Phase

What is easiest-to-do is to map one-to-one between business modeling entities and
application components. Such a mapping would be disadvantageous nevertheless,
because the identified services (as according to the service model in the previous
section) are tightly coupled. This means that there is a dependency of the service
provided by one entity on services provided by other entities (see Figure 7). Avoiding
this would be advantageous because then the flexible (re-)use of generic services
would be stimulated. We claim that a solution would be to introduce ‘in between’ an
additional overall-functionality-specific entity that has coordination tasks. We label it
‘Orchestrator‘.

Hence the application component that is to be mapped from the Orchestrator,
would be application-specific (as the coordination is application-specific). The
(subordinate) services, however, which would be coordinated by this component, may
be useful for many different types of applications. Their description may therefore be
published through a public or corporate registry, such that they can be discovered, and
selected for invocation. Related to its coordination tasks, the Orchestrator could
sometimes supply to one service the result of another service, if this is necessary for
the service to perform its task.

TS

T

A

P

O

C

Fig. 8. Illustration of the role of the Orchestrator.

Figure 8 illustrates the Orchestrator’s (O) role. It concerns the interactivities
between the original entities as well as coordination. As it is seen from the figure, the
Orchestrator mediates not only the interaction between the ‘customer’ (C) and the
system but also all interactions between entities inside the system.

5.3 Application Design Sub-Phase

In the application design, we firstly refine the Business entity model (Figure 5-a)), by
reflecting there the Orchestrator entity (colored grey in Figure 9) that mediates
interactions between entities.

C i1a i1b

 i2a i2b

i3a

i4a

i3b

i4b

O

TS

A

P

T

Fig. 9. The Application entity model.

Then, analogously to what we did in Section 4, we can derive an application
behavior model and a service-oriented model. We omit this for brevity.

6 Conclusions

This paper proposes business-application-alignment–related improvements relevant
to the design of context-aware applications. A model-driven service-oriented
approach has been introduced, which is essentially concerned with consistency as the
target quality to ensure an adequate business-application alignment. We have shown
how different business and application models that progressively capture more details,
can be consistently derived from an initial business model. Moreover, the approach
allows some useful design preparations in cases of desired adaptability of the
application to possible context changes. In support of the proposed approach, is an
explicit design decision - to specify applications according to the Service-Oriented
Architecture (SOA). Such a SOA application model applies an orchestration
component responsible for coordinating the use of subordinate services, such that the
required external behavior is provided to the application’s environment. The
orchestration component in this model is typically application-specific, whereas the
subordinate services are not: they could be discovered from a registry. The SOA
application model is still at a high level of abstraction and does not depend on any
specific technology platform; in particular, the model uses integrated interactions. A
further step in the design would be the distribution of such interactions, i.e. consider
the exchange of information necessary for an interaction in a distributed environment,
using a communication pattern supported by a commercially available middleware or
data transport platform. Considering mappings onto particular technology platforms
(such as Web services, CORBA, J2EE) is beyond this work’s scope.

As for the modeling of real-life-level business requirements, we consider the
theory of the Language Action Perspective (LAP), applying the LAP-inspired GI
pattern that is particularly useful for modeling real-life communication/coordination.

We have also studied how the user context states could be taken into account
(identifying them and studying their occurrence probabilities), in supporting the
achievement of adaptability, as an important desirable quality of a CA application.

Finally, we have used a case study in order to better detail and also illustrate the
different phases of the proposed approach.

Taking all this (above mentioned) into account, we claim that this paper makes
useful contributions concerning (i) the possibility to analyze user context in support of
the design of CA applications; (ii) the proposed use of LAP in business modeling,
motivated by relevant strengths, namely possibilities for capturing real-life aspects;
(iii) the SOA focus that facilitates an adequate business-application alignment.

To justify this claim, we have studied related work, identifying several
approaches/methods which usefully address the business-application alignment
challenge, notably SDBC, Catalysis, Tropos [13].

SDBC supports the identification of re-usable business models that are soundly
mappable to UML-driven software specification models. Catalysis provides a
coherent set of techniques for business analysis and system development, and also
well-defined consistency rules across models. Tropos facilitates application
specification, supporting it with sound goal-driven requirements analysis.

A distinctive feature of our proposed approach (compared to the mentioned ones)
however is the combination of: (i) LAP-based business-interaction identification and
modeling; (ii) progressive and consistent further derivation of behavior models; (iii)
sound business-application alignment; (iv) adequate consideration of user context
states; (v) SOA focus.

Concerning SOA, the approach allows for an adequate consideration of relevant
real-life aspects in consistency with which service models can be properly specified,
guaranteeing that the developed services would appropriately function in their
environment. These features distinguish the proposed approach also from currently
popular SOA methods, such as Crystal, XP and DSDM [17].

To further this research, we plan to address some challenges concerning the
switching between alternative application behaviors (as mentioned in Section 2), and
we also plan to work on techniques that allow for automated assessment of the
consistency between business and application models.

Acknowledgment. This work is part of the Freeband A-MUSE project (http://a-
muse.freeband.nl). Freeband is sponsored by the Dutch government under contract
BSIK 03025.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services, Concepts, Architectures and
Applications. Springer-Verlag, Berlin-Heidelberg (2004)

2. Bunge, M.A.: A World of Systems, Treatise on Basic Philosophy, Vol. 4. Reidel Publ.
Company, Dordrecht (1979)

3. Caceres, P., Marcos, E., De Castro, V.: Integrating Agile and Model-Driven Practices in a
Methodological Framework for the Web Information Systems Development. In: ICEIS’04,
6th International Conference on Enterprise Information Systems (2004)

4. Levin, R.I., Rubin, D.S.: Statistics for Management. Prentice Hall, USA (1997)
5. Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press,

Cambridge (2000)
6. Maamar, Z., Baina, K., Benslimane, D., Narendra, N.C., Chelbabi, M.: Towards a Contextual

Model-Driven Development Approach for Web Services. In: ICEIS’06, 8th International
Conference on Enterprise Information Systems (2006)

7. Merriam-Webster, Inc.: Merriam-Webster Online: http://m-w.com
8. Newcomer, E.: Understanding Web Services, XML, WSDL, SOAP and UDDI. Addison-

Wesley, Boston (2002)
9. Rational / OMG MDA, Model-Driven Architecture, Object Management Group:

http://www.omg.org/mda
10. Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. In:

WMCSA’94, Workshop on Mobile Computing Systems and Applications (1994)
11. Shishkov, B., Quartel, D.: Refinement of SDBC Business Process Models Using ISDL. In:

ICEIS’06, 8th International Conference on Enterprise Information Systems (2006)
12. Shishkov, B., Dietz, J.L.G., Liu, K.: Bridging the Language-Action Perspective and

Organizational Semiotics in SDBC. In: ICEIS’06, 8th International Conference on Enterprise
Information Systems (2006)

13. Shishkov, B., Van Sinderen, M.J., Quartel, D.: SOA-Driven Business-Software Alignment.
In: ICEBE’06, IEEE International Conference on e-Business Engineering (2006)

14. Shishkov, B., Van Sinderen, M.J., Tekinerdogan, B.: Model-Driven Specification of
Software Services. In: ICEBE’07, IEEE International Conference on e-Business
Engineering (2007)

15. Van Sinderen, M.J.: Architectural Styles in Service Oriented Design. In: ICSOFT’06,
International Conference on Software and Data Technologies (2006)

16. Van Sinderen, M.J., Van Halteren, A., Wegdam, M., Meeuwissen, E., Eertink, H.:
Supporting Context-Aware Mobile Applications: An Infrastructure Approach. IEEE
Communications Magazine

17. Wang, H., Zhang, H.: Enabling Enterprise Resources Reusability and Interoperability
Through Web Services. In: ICEBE’06, IEEE International Conference on e-Business
Engineering (2006)

