On the Empirical Evaluation of Mixed
Multi-Unit Combinatorial Auctions

Meritxell Vinyals and Jestis Cerquides

IITA, Artificial Intelligence Research Institute
CSIC, Spanish National Research Council
{meritxell,cerquide}@iiia.csic.es

Abstract. Mixed Multi-Unit Combinatorial Auctions extend and gen-
eralise all the preceding types of combinatorial auctions. In this paper,
we try to make headway on the practical application of MMUCAs by:
(1) providing an algorithm to generate artificial data that is representa-
tive of the sort of scenarios a winner determination algorithm is likely to
encounter; and (2) subsequently assessing the performance of an Integer
Programming implementation of MMUCA on CPLEX.

1 Introduction

A combinatorial auction (CA) is an auction where bidders can buy (or
sell) entire bundles of goods in a single transaction ([1]). Although compu-
tationally very complex, selling items in bundles has the great advantage
of eliminating the risk for a bidder of not being able to obtain comple-
mentary items at a reasonable price in a follow-up auction (think of a
combinatorial auction for a pair of shoes, as opposed to two consecutive
single-item auctions for each of the individual shoes). The study of the
mathematical, game-theoretical and algorithmic properties of combina-
torial auctions has recently become a popular research topic in AI. This
is due not only to their relevance to important application areas such as
electronic commerce or supply chain management, but also to the range
of deep research questions raised by this auction model. In particular,
supply chain formation (SCF) appears as a very promising application
area where strong complementarities arise as discussed in [6].

The work in [3] introduces a generalisation of the standard model of
CA. This new auction extends and generalises all the preceding types of
combinatorial auctions: single-unit CAs, multi-unit CA, double CAs, and
supply chain formation CAs. It provides a bidding language that can ex-
press several types of complex bids, and allows for bids on combinations of
production processes, as well as a general winner determination problem
(WDP) solver working on any network topology. This auction model is
called mixed multi-unit combinatorial auction (MMUCA). Consider as an
example the assembly of a car’s engine, whose structure is depicted in Fig.

(a) in table 1. Notice that each part in the diagram, in turn, is produced
form further components or raw materials. For instance, a cylinder ring
(part 8) is produced by transforming some amount of stainless steel with
the aid of an appropriate machine. Therefore, there are several production
levels involved in the making of a car’s engine. A MMUCA allows to run
a supply chain formation auction where bidders can bid over bundles of
parts, bundles of transformations, or any combination of parts and trans-
formations. Despite its potential for application, and unlike CAs, little is

E]

goswnn §
coNagoaw]
*

QTY DESCRIPTION
e | @-T W I
rankshaft e g
d &) 1 1
Pistc
cre y 1
Beal
=)

1 1

i
1

1 “ “ 1

i
1

Table 1. (a) Components of a car engine. (b) Market transformations for a car’s engine.

known about the practical application of MMUCAS since no empirical re-
sults have been reported on any winner determination algorithms. These
results are unlikely to come up unless, and along the lines of the research
effort carried out in CAs [4], researchers are provided with algorithms or
test suites to generate artificial data that is representative of the auction
scenarios a winner determination algorithm is likely to encounter. Hence,
winner determination algorithms could be accurately tested, compared,
and improved. In this paper, we try to contribute to the practical applica-
tion of MMUCASs along two directions. Firstly, we provide an algorithm to
generate artificial data sets that are representative of the sort of scenarios
a winner determination (WD) algorithm is likely to encounter. Secondly,
we employ such algorithm to generate artificial data and subsequently
assess the performance of an Integer Programming (IP) implementation
of MMUCA on CPLEX. Based on our empirical results, we argue that
there is a need for special-purpose WD algorithms for MMUCAs if these
are intended to be employed in large scenarios.

The paper is structured as follows. In section 2 we provide some back-
ground on MMUCAs. Next, in section 3 we analyse the required features
of an artificial data set generator for MMUCAs whose algorithm is de-
tailed in section 4. In sections 5 and 6, we analyse some early, empirical

results of an IP formulation of the WDP, draw some conclusions and
outline paths to future research.

2 Background

Next, we introduce MMUCA by summarising the work in [3,2]. Let G
be the finite set of all the types of goods. A transformation is a pair of
multisets over G: (Z,0) € N x N¢. An agent offering the transforma-
tion (Z,O) declares that it can deliver O after having received Z. In our
setting, bidders can offer any number of such transformations, including
several copies of the same transformation. That is, agents will be nego-
tiating over multisets of transformations D € NOXN) - For example,
{({ },{a}), ({b},{c})} means that the agent in question is able to deliver
a (no input required) and that it is able to deliver ¢ if provided with b.
In an MMUCA, agents negotiate over bundles of transformations.
Hence, a valuation v : NNXNY) | R s a (typically partial) map-
ping from multisets of transformations to the real numbers. Intuitively,
v(D) = p means that the agent equipped with valuation v is willing to
make a payment of p in return for being allocated all the transforma-
tions in D (in case p is a negative number, this means that the agent will
accept the deal if it receives an amount of |p|). For instance, valuation
v({({line, ring, head, 6 - screws, screwdriver}, { cylinder, screwdriver})}) =
—10 means that some agent can assemble a cylinder for $10 when pro-
vided with a cylinder line, a cylinder ring, a cylinder head, six screws,

and a screwdriver, and returns the screwdriver once done’.

An atomic bid BID({(Z',OY),. .., (Z", O™)},p) specifies a finite multi-
set of finite transformations and a price. Informally, an OR~combination
of several bids signifies that the bidder would be happy to accept any
number of the sub-bids specified, if paid the sum of the associated prices.
An XOR-combination of bids expresses that the bidder is prepared to
accept at most one of them.

The input to the WDP consists of a complex bid expression for each
bidder, a multiset U;, of goods the auctioneer holds to begin with, and
a multiset Uyy; of goods the auctioneer expects to end up with. A wvalid
solution to the WDP will be a sequence of transformations satisfying
that: (1) the multiset of transformations in the sequence has to respect
the bids submitted by the bidders; and (2) the set of goods held by the
auctioneer in the end is a superset of Upy;.

For the formal definition of the WDP, we restrict ourselves to bids
in the XOR-language, which is known to be fully expressive (as proved

! We use 6 - screws as a shorthand to represent six identical elements in the multiset.

by Cerquides et al. [3]). Therefore, solving the WDP for MMUCAs with
XOR-bids amounts to maximise), pxp - pp, while fulfilling the con-
straints informally defined above, where B stands for the set of all atomic
bids, x; is binary decision variable indicating whether bid b is selected or
not, and p, stands for the price of bid b. As noticed in [3], the number
of decision variables of an IP to solve a MMUCA WDP is of the order
of |T|?, where |T| is the overall number of transformations mentioned
anywhere in the bids. As the reader may notice, this represents a serious
computational cost as the number of transformations grow.

3 Bid Generator Requirements

In order to test and compare MMUCA WD algorithms, researchers must
be provided with algorithms or test suites to generate artificial data that
is representative of the auction scenarios a WD algorithm is likely to
encounter. Hence, WD algorithms can be accurately tested, compared,
and improved. Unfortunately, we cannot benefit from any previous re-
sults in the literature since they do not take into account the notion of
transformation introduced in [3,2]. In this section we make explicit the
requirements for a bid generation technique considering that in MMUCA
agents trade transformations instead of goods.

3.1 A Taxonomy of Transformations

Bids in MMUCASs are composed of transformations. Each transformation
expressses either an offer to buy, to sell, or to transform some good(s) into
(an)other good(s). Since transformations are the building blocks compos-
ing bids, we must firstly characterise the types of transformations a bid
generator may need to construct in order to produce bids. Our analysis
of transformations has led to a classification into three types, namely:

1. Output transformations are those with no input good(s). Thus,
an O-transformation represents a bidder’s offer to sell some good(s).
Besides, an O-transformation is equivalent to a bid in a reverse CA.

2. Input transformations are those with no output good(s). Thus,
an I-transformation represents a bidder’s offer to buy some good(s) .
Notice that an I-transformation is equivalent to a bid in a direct CA.

3. Input-Output transformations are those whose input and output
good(s) are not empty. An IO-transformation stands for a bidder’s
offer to deliver some good(s) after receiving some other good(s): I can
deliver T after having received O. They can model a wide range of
different processes in real-world situations (e.g. assembly, transforma-
tion, or exchange).

Figure (b) in Table 1 presents samples of each transformation type.
In the figure, vertical, black bars stand for transformations, cercles stand
for goods, and directed arrows from goods into or from transformations
represent the goods input into or produced out of a transformation. Thus,
for instance, we differentiate an I-transformation to consume a piston, an
O-transformation to give away a piston, and an IO-transformation giving
away a piston after receiving a piston ring and a piston line.

Notice that any bid in a MMUCA results as a combination of transfor-
mations of the above-listed types. Therefore, a bid generator for MMUCA
must support the generation of transformations of all these types.

3.2 Requirements

It is time to consider how to combine transformations of the above-
described types in order to construct bids. Since MMUCAs generalise
CAs, as discussed in [3], our approach is to depart from artificial data sets
generators for CAs, keeping the requirements summarised in [4], namely:
(1) certain goods are more likely to appear together than others; (2) the
number of goods in a bundle is often related to which goods compose the
bundle; (3) valuations are related to which goods appear in the bundle,
and, where appropiate, valuations can be configured to be subadditive,
additive or superadditive in the number of goods requested; and (4) sets
of XOR’ed bids are constructed in a meaningful way, on a per-bidder
basis.

Notice though that the requirements above must be reformulated,
and eventually extended, in terms of transformations since a bidder in
a MMUCA bids over a bundle of transformations, whereas a bidder in
a CA bids over a bundle of goods. This difference leads to pose a fun-
damental issue: how should an artificial data set generator for MMUCA
compose bids? Indeed, notice that a CA generator bundles goods from
a given set of goods to construct bids. And hence, analogously, what is
the set of transformations from which a MMUCA generator constructs
bids? In order to provide a proper answer we must take inspiration on
realistic scenarios faced by buyers and providers. If so, within a given
market we expect several producers to offer the very same or similar ser-
vices (transformations) at different prices, as well as several consumers
to require the very same or similar services (transformations) valued at
different prices. In other words, within a given market we can identify a
collection of common services that companies request and offer. For in-
stance, in the example in Fig. (a) in table 1, several providers may offer
to assemble a cylinder through the very same transformation: t = ({6 -
screws, 1 - cylinder_line, 1 - cylinder rig, 1 - cylinder_head}, {cylinder}).

Eventually, a provider may either offer to perform such transformation
several times (e.g. as many times as cylinders are required), or to bun-
dle it with other transformations, or the two. Whatever the case, we can
regard this sample transformation as an atomic transformation because
it represents the minimum transformation required to deliver a service.
Hereafter, we shall consider the common goods and services in a given
market to be represented as a collection of atomic tranformations that
we shall refer to as market transformations. Therefore, market transfor-
mations represent the ”goods” providers and buyers can request and bid
for. Hence, bids for MMUCASs shall be composed as combinations of mar-
ket transformations. More formally, we define atomic transformations and
market transformations as follows?:

Definition 1 (Atomic transformation). Given a set of transforma-
tions T = {t1,...,tn}, we say that transformation t; = (Z;,0;) is min-
imum in T iff Vt; € T satisfying that Vg, € Z;,g; € I; gi,g; € ZTNT
and Vg; € 04,95 € O gi, 95 € ONO', the following inequalities hold: (i)
mIi(Q) < mz; (g) Vg € I and; (M) mOi(g) < m(’)j(g) Vg € Oj :

Definition 2 (Market transformations). We say that T C N¢ x N¢
is a set of market transformations iff: (i) it is finite; (ii) every transfor-
mation t € T is minimum; and (iii) ({g},{}), {},{g}) € T Vg € G.

Notice that the third condition ensures that there are at least two
market transformations for every good in @, thus ensuring that every
good is individually available to buy and/or sell. Fig. (b) in table 1 depicts
a sample of market transformations if intending to build the car engine
in Fig. (a) in table 1. From the discussion so far, we shall consider a new
requirement: “there is a finite set of market transformations to bid for”.

If bids are composed as combinations of market transformations, we
must introduce the notion of transformation multiplicity as the counter-
part of good multiplicity (the number of units of a given good within
an offer or a request). Say that in a CA a bidder submits a bid for the
goods in multi-set {engine, engine, piston}. It is clear that the multi-
plicity in this bundle of good engine is two, whereas the multiplicity of
good piston is one. But things become more complicated when we con-
sider transformations because the multiplicity of a given transformation
must be defined in terms of another transformation, which in turn is
composed of multiple input and output goods. Intuitively, we say that a

2 Hereafter, we consider that the multiplicity (that is, the number of occurrences) of
the elements in a multiset S is provided by a function ms from S to N.

transformation is a multiple of another one if both share the same input
and output goods and the former has more input and output goods than
the latter but keeping the same ratio between input and output goods.
For instance, given transformations ¢t = ({6 - screws, 1 - cylinder_line, 1 -
cylinder rig, 1 - eylinder_head}, {cylinder}) and t' = ({12 - screws,2 -
cylinder_line, 2 - cylinder rig, 2 - cylinder_head},{2 - cylinder}) we way
that ¢’ has multiplicity two with respect to t. Put formally:

Definition 3 (Tranformation multiplicity). Let t = (Z,0) and t' =
(Z',0") be tranformations such that Vg € Z,q9' € 7' g,¢' € TNT and
Vg € O, € O g, € ONO'. We say that t has multiplicity k with
respect to t' iff mz(g) = k-mz (g) Vg € Z and mo(g) = k-mer(g) Vg € O.

A further issue has to do with the way bidders value transformations.
Notice that performing a transformation to assemble the engine in Fig.
(a) in table 1 results in a new product that has more market value than
its parts. Therefore, a car maker values the transformation according to
his expected benefits, namely the difference between the expected market
value of the engine and the cost of its parts. Therefore, if the parts cost
$850 and the expected market value of the engine is $1000, the car maker
should be willing to offer to pay less than $150 for the transformation.
On the other hand, any provider is expected to request less than $150 in
order to perform the transformation. In general, buyers and providers in
a MMUCA should value a transformation on the basis of the difference
between the expected market value of its output goods and the cost of
its input goods. Notice though that we are not assuming here that such
difference must be always positive. This dicussion leads us to a further
requirement: “every transformation valuation is assessed in terms of the
surplus resulting from the valuation of its output goods with respect to the
valuation of its input goods”.

Finally, a last requirement stems from the fact that, unlike auctioneers
in CAs, not all goods involved in a MMUCA must be requested by the
auctioneer. Back to our example of a car maker in need of engines as
depicted in Fig. (a) in table 1, it can run a MMUCA only requesting
engines. Thereafter, bidders may offer already-assembled engines, or other
goods (e.g. parts like crankcases, crankshafts, or screws) that jointly with
transformations over such goods help produce the requested goods. Hence,
the new requirement goes as follows: "unrequested goods by the auctioneer
may become involved in the auction”.

Following the analysis above, we can reformulate the requirements for
an artificial data set generator for CAs and add the new requirements

derived so far to finally obtain the requirements for an artificial data set
generator for MMUCASs: (1) there is a finite set of market transformations
to bid for; (2) certain transformations are more likely to appear together
than others; (3) the number of transformations in a bundle is often related
to which transformations compose the bundle; (4) valuations are related
to which transformations appear in the bundle, and, where appropiate,
valuations can be configured to be subadditive, additive or superadditive
in the number of transformations requested; (5) every transformation
valuation is assessed in terms of the difference between the valuation of
its ouput goods with respect to the valuation of its input goods; (6) sets
of XOR’ed bids are constructed in a meaningful way, on a per-bidder
basis; and (7) unrequested goods by the auctioneer may be involved in
the auction.

4 An Algorithm for Artificial Data Set Generation

In what follows we describe a bid generation algorithm that automates
the generation of artificial data sets for MMUCA that while capturing
the requirements above. The algorithm’s purpose is to generate MMUCA
WDP (each one composed of a collection of XOR bids and the set of goods
available to and requested by the auctioneer) that can be subsequently
fed into an MMUCA WD algorithm. The bid generation technique makes
explicit which transformations and how many of them to offer/request
in a bundle, how to price the bundle, and which bids to combine in an
XOR bid. Hence, the algorithm starts by generating the set of goods in-
volved in MMUCA. Next, it generates the goods the auctioneer requests.
After that, it creates a subset of atomic transformations, which are the
market transformations to employ for bid generation. Thereafter, it gen-
erates bids as linear combinations of market transformations, which are
subsequently priced according to a pricing policy. The resulting bids are
further composed into XOR (mutually exclusive) bids because the XOR
language is a fully expressive language allowing bidders to express all their
preferences in a single XOR bid [3]3. Hence, our algorithm assumes that
each bidder formulates a single XOR bid, being the number of bidders
equal to the number of XOR bids.

Good Generation This process requires the number of different goods
(Ngoods) involved in an auction along with the maximum price any good
can take on (maxPrice). Based on these values, it assesses for each good
g: (1) its average market price (14) drawn from a uniform distribution

3 Here we only provide the bid generation algorithm. The interested reader must refer
to [5] for a description of all algorithms required by the artificial data set generator.

U1, maxPrice] where maxPrice stands for the maximum market price
any good can take on; and (2) the distribution to assess its multiplic-
ity, or more precisely, the success probability (ggeometric) of a geometric
probability distribution from which the good multiplicity can be drawn.

Requested Goods Generation This process assesses the number of
units of each good the auctioneer requests, namely the multiset Uy,;.
Since the auctioneer must not request all goods, this process selects a
subset of the goods in G to be part of Uyy:. Firstly, it determines whether
a good g is requested by the auctioneer by comparing the value drawn
from a uniform distribution U[0, 1] with pgood_requested, the probability of
adding a new good to Uy, . Once included a given good g, the number
of units requested for g is drawn from a geometric distribution with the
success probability ggeometric Obtained by the good generation process.

Market Transformations Generation This process generates a finite
set of transformations to be employed as the building blocks to subse-
quently compose bids. For each good, this procedure constructs two mar-
ket transformations (one I-transformation and one O-transformation).
Each transformation, which according to definition 2 is atomic, involves
a single good with multiplicity one. For instance, ({engine},{}) and
({}, {engine}) stand respectively for the I-transformation and O-transformation
for good engine. After that, the algorithm generates a limited number of
market IO-transformations (770 market_trans formations)- In order to gener-
ate each market 10-transformation, this procedure chooses the goods to
include in its input and output set employing the probabilities of adding
some good to the input and output set respectively (Pgood_in_input and
Pgood_in_output)- Once included a good to either the input or output set,
its multiplicity is calculated from a geometric distribution parametrised
by Ygeometric-

Finally, there is the matter of attaching to each market transforma-
tion a probability distribution to draw its multiplicity. We assume that the
bid generation process, detailed by algorithm 1, is to employ a geometric
distribution for each market transformation to calculate its multiplic-
ity. Hence, the generatio of market transformations assesses the success
probability to be employed by such geometric distributions, namely the
probability of adding an extra unit of a transformation already included
in a bundle bid. Thus, each transformation ¢ is assigned a success prob-
ability tgeometric- However, we cannot randomly generate success proba-
bilities because transformations are defined over multisets of goods, and
therefore we must keep consistency with respect to the success probabili-
ties assigned to each good by the good generation process. Therefore, we

propose to set the success probability for each transformation as follows.
Given a transformation t = (Z, O), for each good involved in the transfor-
mation, g, we assess its probability of having multiplicity |mz(g)—mo(g)|.
We set the success probability of ¢ to the minimum of these probabilities

) . Imz(g)—mo(g)]
as follows: tgeometric = mlngégggeometm’c :

Algorithm 1 Bid Generation(MTS, nxoOR.bids, M Opricess Madd-new_XOR._clauses

Oadd_new_transformation, Madd_-new_transformations Tadd_-new_transformation; a)

1: for g =1 to nyooqs do
2 for b=1to nxoR._bids do

3 pprices,bid[b7 9] — M[g} . N(17 Up'r’ices)

4 end for

5: end for

6: Bids — {}

7: for b=1to NXOR_bids do

8 XORBid «— EmptyX ORBid()

9 nXORClauses «— N(lu'add,new,XOR,clausez O'add,new,XOR,clause)
10: for x =1 to nXORClauses do

11: Bid «— EmptyCombinatorial Bid()
12: nTTanSfBid — N(liadd,new,transformation7 O'add,new,tra.nsformation)
13: for t =1 to nTransfBid do
14: MT «— Randomly select transformation from MTS
15: maltiplicity «— Geometric(MT.tgeometric)
16: T.inputs «— MT.inputs - multiplicity
17: T.outputs «— MT.outputs - multiplicity
18: T.price < Z pprices,bid[bv g} - Z pprices,bid[bv g]
g€T.outputs g€T . inputs
19: Poffer < (T~tgeometric)mul“pllcny
. 1_el"Poffer
20: discount «— o=—"5———
21: Bid.t «— BidtUuT
22: Bid.price < Bid.price + T.price - (1 — discount)
23: end for
24: XORBid — XORBidU {Bid}
25: end for
26: Bids — Bids U {XORDBid}
27: end for

28: return Bids

Bid Generation The bid generation algorithm (algorithm 1) generates
bids that are subsequently combined into XOR bids, each one encoding
the offer or request of a bidder. Firstly, for each XOR bid (XORBid) the
algorithm composes each bid (Bid) by combining the market transfor-
mations (MTS) returned by the market transformation generation pro-
cess. The number of market transformations (nTransfBid) to compose
each bid is obtained from a normal distribution N (1add_new_trans formations
Oadd new_trans formation) (line 12). Market transformations are randomly
chosen from the set of market transformations (MT'S) (line 14) and their
multiplicity in the bundle bid is obtained from a geometric distribution

with success probability tgeometric (line 15). Next, the algorithm prices the
transformation according to its multiplicity (lines 16-20), and bunldes it
into the bid under construction (line 21). Finally, after creating the bid,
the algorithm adds it to the XOR bid (line 24). At this point, notice that
the number of bids that compose an XOR bid is obtained from a normal
distribution N(Madd,new,XOR,clausev Jadd,new,XOR,clause) (hne 9)

And yet there remains the matter of setting a valuation for each bid
within an XOR bid via some pricing policy while fulfilling the require-
ments in section 3. At this aim, a pricing policy must provide the means
to price a good, a transformation, multiple units of the very same trans-
formation, and a bundle of transformations in a realistic manner. As to
pricing goods, in order to vary prices among bidders, our algorithm gen-
erates a price for bidder b for good g, represented as pyrices_bia[b, g], from a
normal distribution N (u[g], oprices), where pu[g] stands for good g’s aver-
age price in the market and opjces for the variance among bidders’ prices
(lines 2-4). Thereafter, a transformation’s price for bidder b is assessed in
terms of the difference from his valuation of its output goods with respect
to his valuation of its input goods (line 19) as stated by requirement 5
in section 3. It is time to address bid valuations while keeping in mind
requirement 4 in section 3. At this aim, we propose to introduce super-
additivity by applying multiplicity-based discounts to transformations.
Going back to the example in Fig. (a) in table 1, we observe that screws
are usually traded in higher quantities than full engines. Thus, not sur-
prisingly the same (percentage) discount may apply to an offer for 100
screws than to an offer for 5 engines. Hence, an offer to produce more
than 5 engines, though more unlikely, should reflect higher discounts. In
other words, as a general rule the more unlikely for a transformation
to be traded at certain units (multiplicity), the higher the discount to
apply to its overall price. In this way we try to capture in a realistic
manner the way multiplicity-based (volume-based) discounts are applied
in the real world. Therefore, given transformation t, we firstly assess the
probability p, fe, of the transformation to be traded with multiplicity m
from a geometric distribution with success probability tgcometric as fol-
lows: poffer = tgeomemcm“l”plmty (line 20). Secondly, we compute the

discount to apply (discount) as follows: discount = 041_611_#. Indeed,
in this way we manage to apply higher discounts to more unlikely offers
within the range [0, o]. Notice too that setting « to zero leads to no dis-
counts, and thus to no superadditvity. Finally, a bid valuation is obtained

by adding the prices of its transformations (line 23).

5 Experimental results

In this section we shall illustrate the computational cost of solving the
WDP for MMUCA. At this aim, we present our first experimental results
for MMUCA by assessing the performance of an IP implementation on
CPLEX.

As explained at the end of section 2, the number of decision vari-
ables of an IP to solve a MMUCA WDP depends on the overall number
of transformations. Thus, the number of transformations must be con-
sidered as one dimension when measuring the time complexity of a WD
algorithm for MMUCA. However, transformations are subsequently com-
bined in several ways in order to finally compose bids in the XOR bidding
language. Thus, transformations can be bundled into bids (adding AND-
constraints), which in turn may be put together into XOR bids (adding
XOR-constraints) giving as a result problems with different levels of con-
striction. Here we list the significant changes that involve the introduction
of different constraints in a MMUCA problem : (1) the introduction of
AND-relationships reduces the resulting number of bids ; (2) the intro-
duction of XOR-relationships reduces the resulting number of XOR-bids
; (3) the introduction of XOR-relationship reduces the length of the solu-
tion sequence and, consequently, the number of decision variables of the
IP since the maximum length of a solution sequence is the sum of the
number of transformations contained in the largest bid of each XOR bid.

Hence, we believe that the size of bids (transformation bundles) as
well as the size of XOR bids must be regarded as further dimensions
when measuring the time complexity of a WD algorithm. Considering
the dimensions mentioned so far, we propose a first experiment to evalu-
ate an implementation of the IP formulated in [3] when solving artificial
data sets in scenarios with: (1) XOR-bids composed of a single bid with a
single transformation (neither AND nor XOR constraints); (2) XOR-bids
composed of a single bid with two transformations (AND constraints) (3)
XOR-bids composed of two bids with one single transformation (XOR
constraints); and (4) XOR-bids composed of two bids with two transfor-
mations (both AND and XOR constraints).

Considering the above-described experimental scenarios, we have run
our experiments as follows. Firstly, we have generated 50 WDP instances
for each configuration using a MATLAB implementation of the artificial
data set generator detailed in section 4 whose source code is publicly avail-
able at http://www.iiia.csic.es/ meritxell/material/MMUCA_problem_generator.zip. We
have solved each WDP with an IP implementation of MMUCA on CPLEX

10.1 and recorded the resulting solving times. Notice though that we have

Solving Time (Seconds)

set to 3600 seconds the time deadline to solve each WDP. Furthermore,
we have only considered feasible WDP instances to calculate solving times
since the time required by CPLEX to prove infeasibility is (usually) signif-
icantly lower than time required to find an optimal solution. All our tests
have been run on a Dell Precision 490 with double processor Dual-Core

Xeon 5060 running at 3.2 GHz with 2Gb RAM on Linux 2.6.

Scenario 1 Scen.|XOR|Bid [Num. |[Sol. Num. |[Num.
.. Scenario 2 bid [size |Transf |[Length|Bids XOR-
— ——— Scenario 3 size bids

4000 Scenario 4 40 40 40 40
_____________ 80 80 80 80

3500 f 1%k 11 1 120 120 120 120

/ 160 160 160 160

3000 / % 200 200 200 200
/ 3 40 40 20 20
g E y 80 80 40 40
/ £ 2 2 %% 11 2 120 120 60 60
i 4 ¥ 160 160 80 80
/ ; 200 200 100 100
4 5 10 20 10 20
1500 i : 80 40 80 20
i = 4 3 *¥* |2 1 120 60 120 60
1000 - 160 80 160 80
/-/ 200 100 200 100
o = 10 20 20 10
i 2 80 40 40 20
X e ‘) ‘) a2 2 120 60 60 30
40 =] &0 100 120 140 160 180 200 160 80 80 40
Number of Transformations 200 100 100 50

Fig.5 Solving time with respect to number of

** Rest of parameters fixed asingooqs =

transformations.

4x"IOJnarket,transformations

100,0prices = 0.05,pg00d_requested = 0-3, Pgood_in_input = 0-3;Pgood_in_output

1
0.1

Parameters characterising our experimental scenarios.

0, maxPrice =

Fig. 5 depicts the median of the solving times resulting when varying
the number of transformations for the above-described scenarios. The
star(*) symbol stands for the median value exceeding the time limit
(3600s). If that is the case, we cannot know the exact median value, but
only that it exceeded the time limit. Observe that indeed the MMUCA
computational cost increases as the number of transformations grows.
Solving times exponentially increase for all scenarios. However, significant
differences appear among different scenarios. Observing results of scenario
2 and 3 it stands out that CPLEX solving times increase with the intro-
duction of restrictions with respect to a unconstrained problem (scenario
1). In these scenarios, the space search reduction provided by the addi-
tion of the constraints does not compensate CPLEX for considering these
restrictions. We also observe that considering XOR-relationships signifi-
cantly increases the complexity of the problem with respect to considering
AND-relationships. However, as we observe in scenario 4, the introduction
of constraints can involve important reductions in solving times. We hy-
pothesize that the introduction of a larger number of constraints (in this
scenario we introduce AND-constraints and XOR-constraints) leads to a
larger reduction of the search space with respect to scenario 2 and 3. In

this case, although CPLEX has to operate with two types of constraints,
the reduction of the search space compensates for the introduction of
more complexity and produces better results. Nonetheless, it stands out
the need for more research in order to accurately understand and ex-
plain the significant variations obtained in these experiments through the
different scenarios above.

6 Conclusions and future work

In this work, we have attempted at making headway in the practical ap-
plication of MMUCASs along two directions. Firstly, we have provided an
algorithm to generate artificial data sets for MMUCA that are represen-
tative of the sort of scenarios a WD algorithm is likely to encounter. A
distinguishing feature of the algorithm is that it pursues to capture in
a realistic manner how bidders trade transformations. Our algorithm re-
formulates and extends in terms of transformations the requirements for
an artificial data set generator for CAs. Secondly, we provide the first
empirical tests for MMUCAs by assessing the performance of a CPLEX
IP implementation. These tests assess the computational cost of solving
the WDP as transformations grow for different bid expressions in the
XOR bidding language. Our results indicate that the scalability of an IP
implementation of MMUCA is seriously compromised by the exponential
growth of computational cost as the number of transformations increases.
Hence, we argue in favour of special-purpose optimal and local algorithms
that improve the current performance of an IP implementation.

References

1. P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial Auctions. MIT
Press, 2006.

2. A. Giovannucci, J. A. Rodriguez-Aguilar, J. Cerquides, and U. Endriss. On the win-
ner determination problem in mixed multi-unit combinatorial auctions. In Proceed-
ings of the Sixth International Conference on Autonomous Agents and Multiagent
Systems, Honolulu, Hawaii, USA, May 14-18 2007. In press.

3. J.Cerquides, U.Endriss, A.Giovannucci, and J.A Rodriguez-Aguilar. Bidding lan-
guages and winnder determination for mixed multi-unit combinatorial auctions.
In Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007), pages 1221-1226, India, January 2007.

4. K.Leyton-Brown and Y. Shoham. A Test Suite for Combinatorial Auctions, chap-
ter 18. MIT Press, 2006.

5. M. Vinyals, J. Cerquides, and J. A. Rodriguez-Aguilar. On the empirical evaluation
of mixed multi-unit combinatorial auctions. Technical Report RR-IITA-2007-01,
IITA-CSIC, February 2007.

6. W. E. Walsh, M. P. Wellman, and F. Ygge. Combinatorial auctions for supply chain
formation. In Proc. of the 2nd ACM Conference on Electronic Commerce, pages
260—269, Minneapolis, Minnesota, 2000.

