Skip to main content

On the Equivalence of Generic Group Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5324))

Abstract

The generic group model (GGM) is a commonly used tool in cryptography, especially in the analysis of fundamental cryptographic problems, such as the complexity of the discrete logarithm problem [1,2,3] or the relationship between breaking RSA and factoring integers [4,5,6]. Moreover, the GGM is frequently used to gain confidence in the security of newly introduced computational problems or cryptosystems [7,8,9,10,11]. The GGM serves basically as an idealization of an abstract algebraic group: An algorithm is restricted to basic group operations, such as computing the group law, checking for equality of elements, and possibly additional operations, without being able to exploit any specific property of a given group representation.

Different models formalizing the notion of generic groups have been proposed in the literature. Although all models aim to capture the same notion, it is not obvious that a security proof in one model implies security in the other model. Thus the validity of a proven statement may depend on the choice of the model. In this paper we prove the equivalence of the models proposed by Shoup [2] and Maurer [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55(2), 165–172 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Google Scholar 

  3. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Damgård, I., Koprowski, M.: Generic lower bounds for root extraction and signature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Leander, G., Rupp, A.: On the equivalence of RSA and factoring regarding generic ring algorithms. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 241–251. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Aggarwal, D., Maurer, U.: Factoring is equivalent to generic RSA. Cryptology ePrint Archive, Report 2008/260 (2008), http://eprint.iacr.org/

  7. Schnorr, C.P., Jakobsson, M.: Security of signed elgamal encryption. In: [24], pp. 73–89

    Google Scholar 

  8. Smart, N.P.: The exact security of ECIES in the generic group model. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 73–84. Springer, Heidelberg (2001)

    Google Scholar 

  9. Brown, D.R.L.: Generic groups, collision resistance, and ECDSA. Des. Codes Cryptography 35(1), 119–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dent, A.W.: The hardness of the DHK problem in the generic group model. Cryptology ePrint Archive, Report 2006/156 (2006), http://eprint.iacr.org/ .

  11. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shanks, D.: Class number, a theory of factorization, and genera. In: Lewis, D.J. (ed.) 1969 Number Theory Institute. Proceedings of Symposia in Pure Mathematics, Providence, Rhode Island, vol. 20, pp. 415–440. American Mathematical Society (1971)

    Google Scholar 

  15. Pollard, J.M.: A Monte Carlo method for factorization. BIT 15, 331–334 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic significance. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 224–314. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  17. Fischlin, M.: A note on security proofs in the generic model. In: [24] pp. 458–469

    Google Scholar 

  18. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Maurer, U.M.: Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete algorithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 271–281. Springer, Heidelberg (1994)

    Google Scholar 

  20. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to cryptography (extended abstract). In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 283–297. Springer, Heidelberg (1996)

    Google Scholar 

  21. Maurer, U.M., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Altmann, K., Jager, T., Rupp, A.: On black-box ring extraction and integer factorization. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 437–448. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Koblitz, N., Menezes, A.: Another look at generic groups. Advances in Mathematics of Communications 1, 13–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Okamoto, T. (ed.): ASIACRYPT 2000. LNCS, vol. 1976. Springer, Heidelberg (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jager, T., Schwenk, J. (2008). On the Equivalence of Generic Group Models. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds) Provable Security. ProvSec 2008. Lecture Notes in Computer Science, vol 5324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88733-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88733-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88732-4

  • Online ISBN: 978-3-540-88733-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics