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Abstract. Reasoning in systems integrating Description Logics (DL) ontologies
and Datalog rules is a very hard task, and previous studies have shown undecid-
ability of reasoning in systems integrating (even very simple) DL ontologies with
recursive Datalog. However, the results obtained so far constitute a very partial
picture of the computational properties of systems combining DL ontologies and
Datalog rules. The aim of this paper is to contribute to complete this picture, ex-
tending the computational analysis of reasoning in systemsintegrating ontologies
and Datalog rules. More precisely, we first provide a set of decidability and com-
plexity results for reasoning in systems combining ontologies specified in DLs
and rules specified innonrecursiveDatalog (and its extensions with inequality
and negation): such results identify, from the viewpoint ofthe expressive abil-
ities of the two formalisms, minimal combinations of Description Logics and
Datalog in which reasoning is undecidable. Then, we presentnew results on the
decidability and complexity of the so-calledrestricted(or safe) integration of DL
ontologies and Datalog rules. Our results show that: (1) theunrestricted interac-
tion between DLs and Datalog is computationally very hard even in the absence
of recursion in rules; (2) surprisingly, the various ”safeness” restrictions, which
have been defined to regain decidability of reasoning in the interaction between
DLs and recursive Datalog, appear as necessary restrictions even when rules are
not recursive.

1 Introduction

Background The problem of adding rules to ontologies is currently a hot research
topic, due to the interest of Semantic Web applications towards the integration of rule-
based systems with ontologies. Most of the approaches in this field concern the study
of Description Logic (DL) knowledge bases [3] augmented with rules expressed in
Datalog and its nonmonotonic extensions [9].

DLs are currently the most used formalisms for building ontologies, and have been
proposed as standard languages for the specification of ontologies in the Semantic
Web [26]. DLs are a family of knowledge representation formalisms based on first-order
logic (FOL). In fact, almost all DLs coincide with decidablefragments of function-free
first-order logic with equality, and the language of a DL can be seen as a restricted FOL
language over unary and binary predicates and with a controlled form of quantification
(actually, DLs are equipped with a special, variable-free syntax). Notably, DLs have
been designed to optimize the trade-off between expressiveabilities and complexity of



reasoning, hence the computational properties of DLs have been extensively studied
[3].

From the knowledge representation viewpoint, Datalog is somehow “complemen-
tary” to DLs. Indeed, with respect to DLs, Datalog allows forusing predicates of ar-
bitrary arity, the explicit use of variables, and the ability of expressing more powerful
queries. Moreover, its nonmonotonic features (in particular, the negation-as-failure op-
eratornot ) allow for expressing default rules and forms of closed-world reasoning.

Problem studied Unfortunately, reasoning in systems integrating DLs and Datalog is
a very hard task, and well-known previous results have shownundecidability of reason-
ing in systems fully integrating (even very simple) DL ontologies with Datalog rules.
In fact, in general this combination does not preserve decidability, i.e., starting from a
DL knowledge base in which reasoning is decidable and a set ofrules in which rea-
soning is decidable, reasoning in the knowledge base obtained by integrating these two
components may not be a decidable problem.

To avoid undecidability of reasoning, practically all decidable approaches to inte-
grating ontologies and rules impose (either at the syntactic or at the semantic level)
specific conditions which restrict the interaction betweenthe rules and the ontology.
Such restrictions were mainly introduced to keep reasoningdecidable in the presence
of recursion in Datalog rules.

However, the results obtained so far [20, 11, 18, 23, 27, 28, 10] actually constitute a
very partial picture of the computational properties of systems combining DL ontolo-
gies and Datalog rules. In particular, the computational properties of systems combin-
ing DL ontologies and the class ofnonrecursiveDatalog rules are mostly unknown.
The only known studies related to this topic are the work onCARIN [20], which has
shown decidability of nonrecursive positive Datalog with the DL ALCNR, and the
studies on conjunctive query answering in DLs (see e.g. [7, 24, 25, 14, 15]), which are
indirectly related to integrating Datalog and DLs (since conjunctive queries can be seen
as nonrecursive Datalog programs consisting of a single rule).

Contribution The aim of this paper is to contribute to fill this gap, extending the com-
putational analysis of reasoning in systems integrating ontologies and Datalog rules.
More precisely, our contributions can be summarized as follows:

– We first provide a set of decidability and complexity resultsfor reasoning in sys-
tems combining ontologies specified in (different classes of) DLs and rules speci-
fied in (different classes of)nonrecursiveDatalog (and its extensions with inequal-
ity or negation). Such results identify, from the viewpointof the expressive abili-
ties of the two formalisms, minimal combinations of Description Logics and (non-
monotonic) Datalog in which reasoning is undecidable. A summary of the results
obtained is reported in Figure 2 (Section 4).

– Then, we present new results on the decidability and complexity of the restricted
integration of DL ontologies and Datalog rules. In particular, we consider the so-
called “weakly DL-safe” interaction between rules and DL ontologies [28], which
is currently one of the most expressive decidable combinations of DLs and rules:



we extend the framework of [28] to deal with both negation of DL predicates and
the presence of inequality, and provide new decidability and complexity results for
such a class of weakly DL-safe Datalog rules.

Besides constituting one of the first refined computational analyses taking into ac-
count the expressive power of both the DL language and the rule language (the only
similar study which we are aware of is [20]), the above results imply the following
consequences:

– the unrestricted interaction of DLs and Datalog is computationally very hard even in
the absence of recursion in rules. This contrasts with the general opinion (suggested
by the results in [20]) that the presence of recursion in rules is necessary in order to
rise the undecidability issue in their combination with DL ontologies;

– surprisingly, the “safeness” restrictions, which have been defined to regain decid-
ability in the interaction between DLs and recursive Datalog, appear as necessary
restrictions even when rules are not recursive.

Structure of the paper In Section 2, we briefly recall the basics of Description Logics
and Datalog. In Section 3, we formally define syntax and semantics of systems integrat-
ing DLs and Datalog. In Section 4, we consider the full integration of DLs and rules,
and present a set of undecidability and hardness results forreasoning in systems fully
combining DLs and Datalog rules. In Section 5, we focus on weakly DL-safe systems,
which are based on a restricted form of interaction between DLs and rules, extend them
to the presence of inequality atoms, and present a computational analysis of reasoning
in such systems. Finally, we conclude in Section 6. Due to space limits, in the present
version of the paper we provide proof sketches of the theorems.

2 Description Logics and Datalog

In this section we briefly introduce Description Logics and Datalog.

Description Logics We now briefly recall the basics of Description Logics (DLs) and
introduce the following DLs: (i) three prominenttractable DLs, i.e., DL-LiteRDFS ,
DL-LiteR andEL; (ii) the “classical” andmoderately expressiveDL ALC; (iii) two very
expressiveDLs, i.e.,SHIQ andDLR. We refer to [3] for a more detailed introduction
to DLs.

We start from an alphabet of concept names, an alphabet of role names and an
alphabet of constant names. Concepts correspond to unary predicates in FOL, roles
correspond to binary predicates, and constants corresponds to FOL constants.

Starting from concept and role names,concept expressionsand role expressions
can be constructed, based on a formal syntax. Different DLs are based on different
languages concept and role expressions. Details on the concept and role languages for
the DLs considered in this paper are reported below.

A concept inclusionis an expression of the formC1 ⊑ C2, whereC1 andC2 are
concept expressions. Similarly, arole inclusionis an expression of the formR1 ⊑ R2,
whereR1 andR2 are role expressions.



DL concept expressions role expressions TBox axioms

DL-LiteRDFS CL ::= A | ∃R R ::= P | P
−

CL ⊑ CR

CR ::= A R1 ⊑ R2

DL-LiteR CL ::= A | ∃R R ::= P | P
−

CL ⊑ CR

CR ::= A | ¬CR | ∃R R1 ⊑ R2

EL C ::= A | C1 ⊓ C2 | ∃P .C R ::= P C1 ⊑ C2

ALC C ::= A | C1 ⊓ C2 | ¬C | ∃P .C R ::= P C1 ⊑ C2

C1 ⊑ C2

SHIQ C ::= A | ¬C | C1 ⊓ C2 | (≥ n R C) R ::= P | P
−

R1 ⊑ R2

Trans(R)

Fig. 1.Abstract syntax of the DLs studied in the paper.

An instance assertionis an expression of the formA(a) or P (a, b), whereA is
a concept name,P is a role name, anda, b are constant names. We do not consider
complex concept and role expressions in instance assertions, since in this paper we are
interested in data complexity of reasoning (see Section 4).

A DL knowledge base (KB)is a pair〈T ,A〉, whereT , called theTBox, is a set of
concept and role inclusions, andA, called theABox, is a set of instance assertions.

The DLs mainly considered in this paper are the following:

– DL-LiteRDFS , which corresponds to the “DL fragment” of RDFS [1], the schema
language for RDF (see also [16]);

– DL-LiteR [5], a tractable DL which is tailored for efficient reasoningand query
answering in the presence of very large ABoxes;

– EL [2], a prominent tractable DL;
– ALC, a very well-known DL which corresponds to multimodal logicKn [3];
– SHIQ, a very expressive DL which constitutes the basis of the OWL family of

DLs adopted as standard languages for ontology specification in the Semantic Web
[26].

The syntax of the above DLs is summarized in Figure 1, in whichthe symbolA
denotes a concept name and the symbolP denotes a role name (in addition to concept
and role inclusions,SHIQ also allows for TBox axioms of the form Trans(R), which
state transitivity of the roleR).

We will also mention the DLDLR [7], which informally extendsSHIQ (without
transitive roles) through the use ofn-ary relations, and for which decidability results on
query answering are known (we refer to [7] for details on the syntax ofDLR, which is
quite different from the other DLs due to the usage of relations of arbitrary arity).

The above mentioned DLs verify the following ordering with respect to their relative
expressive power (see [3] for details):DL-LiteRDFS ⊂ DL-LiteR ⊂ SHIQ ⊂ DLR;
andEL ⊂ ALC ⊂ SHIQ.

We give the semantics of DLs through the well-known translationρfol of DL knowl-
edge bases into FOL theories with counting quantifiers (see [3]).



ρfol(〈T ,A〉) = ρfol (T ) ∪ ρfol (A)
ρfol (C1 ⊑ C2) = ∀x.ρfol(C1, x)→ ρfol (C2, x)
ρfol (R1 ⊑ R2) = ∀x, y.ρfol (R1, x, y)→ ρfol (R2, x, y)
ρfol (Trans(R)) = ∀x, y, z.ρfol (R, x, y) ∧ ρfol (R, y, z)→ ρfol (R, x, z)

ρfol (A, x) = A(x)
ρfol (¬C, x) = ¬ρfol (C, x)

ρfol (C1 ⊓ C2, x) = ρfol (C1, x) ∧ ρfol (C2, x)
ρfol (∃R, x) = ∃y.ρfol (R, x, y)

ρfol (∃R.C, x) = ∃y.ρfol (R, x, y) ∧ ρfol (C, y)
ρfol ((≥ n R C), x) = ∃≥ny.ρfol (R, x, y) ∧ ρfol (C, y)

ρfol (P, x, y) = P (x, y)
ρfol (P

−, x, y) = P (y, x)

An interpretation ofK is a classical FOL interpretation forρfol (K), where constants
and predicates are interpreted over a non-empty interpretation domain which may be
finite or countably infinite. Actually, in this paper we adoptthe standard names as-
sumption, i.e.: (i) we assume a countably infinite set of constant symbolsΓ ; (ii) the
interpretation domain∆ is countably infinite and is the same for every interpretation;
(iii) the interpretation of constants inΓ is the same in every interpretation and is given
by a one-to-one correspondence betweenΓ and∆. Such an assumption is necessary
for the nonmonotonic semantics defined in Section 3: however, we point out that all
the results presented in this paper under the first-order semantics (i.e., the results for
FOL-satisfiability) also hold in the absence of the standardnames assumption.

A modelof a DL KB K = 〈T ,A〉 is a FOL model ofρfol (K). We say thatK is
satisfiableif K has a model.

Disjunctive Datalog In this section be briefy recall disjunctive Datalog [9], denoted by
Datalog¬∨, which is the well-known nonmonotonic extension of Datalogwith negation
as failure and disjunction.

We start from a predicate alphabet, a constant alphabet, anda variable alphabet. An
atom is an expression of the formp(X), wherep is a predicate of arityn andX is
a n-tuple of variables and constants. If no variable symbol occurs inX , thenp(X) is
called aground atom(or fact). A Datalog¬∨ ruleR is an expression of the form

α1 ∨ . . . ∨ αn ← β1, . . . , βm,not γ1, . . . ,not γk, t1 6= t′1, . . . , th 6= t′h (1)

where eachαi, βi, γi is an atom, eachti, t′i, is either a variable or a constant, and
every variable occurring inR must appear in at least one of the atomsβ1, . . . , βm. This
last condition is known as theDatalog safenesscondition for variables. The variables
occurring in the atomsα1, . . . , αn are called thehead variablesof R. If n = 0, we call
R a constraint.

A Datalog¬∨ program is a set of Datalog¬∨ rules. If, for all R ∈ P , k = 0 and
h = 0, P is called apositive disjunctive Datalogprogram. If, for allR ∈ P , n ≤ 1,
k = 0 andh = 0, P is called apositive Datalogprogram. If there are no occurrences



of variable symbols in a ruleR, thenR is called agroundrule. A groundprogram is a
program containing only ground rules.

Thedependency graphof a programP is a graph whose nodes are the predicates
of P and in which there is an edge fromp1 to p2 if there is a ruler in P such thatp2

occurs in the body ofr andp1 occurs in the head ofr. A programP is recursiveif its
dependency graph contains a cycle. Otherwise,P is callednonrecursive.

The semantics of disjunctive Datalog is given in terms ofstable modelsof a program
P . Due to space limitations, we refer to [9] for details on suchsemantics: however, in
the following we will provide a detailed definition of such semantics in the more general
framework of r-hybrid KBs integrating DLs and disjunctive Datalog.

3 R-hybrid KBs

In this section we present the framework of r-hybrid KBs which integrate DLs with dis-
junctive Datalog. More precisely, we slightly extend the framework of r-hybrid knowl-
edge bases presented in [27] to the presence of both inequality atoms and negation of
DL predicates in rules.

Syntax From the syntactic viewpoint, integrating a DL with (disjunctive) Datalog sim-
ply means the possibility of writing ahybrid knowledge baseH containing a DL KB
K = 〈T ,A〉 and a disjunctive Datalog programP (i.e.,H = (K,P)) whereK andP
share both the alphabet of predicates and the alphabet of constants. However, for tech-
nical reasons related to the subsequent definition of the nonmonotonic semantics, we
distinguish the predicates occurring only inP , which we callDatalog predicates, from
the ones occurring both inK and inP , or even only inK, which we callDL predicates.
In the following, we denote byΣC ∪ ΣR the set of DL predicates, and denote byΣD

the set of Datalog predicates. Formally, a ruleR in P is a rule of the form (1) over
both DL-predicates and Datalog predicates. An atom whose predicate is a DL predicate
is called aDL atom, while an atom whose predicate is a Datalog predicate is called a
Datalog atom.

First-order semantics According to a semantic approach based on classical logic, the
hybrid knowledge base can be considered as a first-order theory, by interpreting Datalog
rules as first-order implications. More specifically, letR be the Datalog¬∨ rule of the
form (1). Then, we denote byFO(R) the first-order sentence

∀x1, . . . , xp. β1∧ . . .∧βm∧¬γ1∧ . . .∧¬γk ∧ t1 6= t′1∧ . . .∧ th 6= t′h → α1∨ . . .∨αn

wherex1, . . . , xp are all the variable symbols appearing inR. Given a Datalog¬∨ pro-
gramP , we denote byFO(P) the set of first-order sentences{FO(R) | R ∈ P}.

Finally, the semantics of a knowledge baseH = (K,P) composed of a DL-KBK
and a Datalog programP is given by the first-order theoryFO(H) corresponding to the
union ofFO(P) and the first-order translationFO(K) of K: in particular, we say that
H is FOL-satisfiableif FO(H) has a model (which is calledFOL-modelofH), and we
say that a ground atomg is FOL-entailed byH, denoted byH |=FOL g iff, for each
FOL-modelI ofH, I satisfiesg.



Nonmonotonic semantics We now recall the nonmonotonic semantics for r-hybrid
KBs presented in [27], which is a “conservative extension” of both the open-world se-
mantics (classical FOL models) of DLs and the closed-world semantics (stable models)
of disjunctive Datalog.

Given an interpretationI and a predicate alphabetΣ, we denote byIΣ the projec-
tion of I to Σ, i.e.,IΣ is obtained fromI by restricting it to the interpretation of the
predicates inΣ.

Theground instantiation ofP , denoted bygr(P), is the program obtained fromP
by replacing every ruleR in P with the set of rules obtained by applying all possible
substitutions of variables inR with constants inΓ .

Given an interpretationI of an alphabet of predicatesΣ′ ⊂ Σ, and a ground pro-
gramPg over the predicates inΣ, theprojection ofPg with respect toI, denoted by
Π(Pg, I), is the ground program obtained fromPg as follows. For each ruleR ∈ Pg:

– deleteR if there exists an atomr(t) in the head ofR such thatr ∈ Σ′ andtI ∈ rI ;
– delete each atomr(t) in the head ofR such thatr ∈ Σ′ andtI 6∈ rI ;
– deleteR if: either (i) there exists an atomr(t) in the body ofR such thatr ∈ Σ′

andtI 6∈ rI ; or (ii) there exists a negated atomnot r(t) in the body ofR such that
r ∈ Σ′ andtI ∈ rI ;

– delete each atomr(t) in the body ofR such thatr ∈ Σ′ andtI ∈ rI ;
– delete each negated atomnot r(t) in the body ofR such thatr ∈ Σ′ andtI 6∈ rI .

Informally, the projection ofPg with respect toI corresponds to evaluatingPg with
respect toI, thus eliminating fromPg every atom whose predicate is interpreted inI.
Thus, whenΣ′ = ΣC ∪ ΣR, all occurrences of DL predicates are eliminated in the
projection ofPg with respect toI, according to the evaluation inI of the atoms with
DL predicates occurring inPg.

Given two interpretationsI1, I2 of the set of predicatesΣ, we writeI1 ⊂Σ I2 if (i)
for eachp ∈ Σ and for each tuplet of constants fromΓ , if tI1 ∈ pI1 thentI2 ∈ pI2 ,
and (ii) there existp ∈ Σ and tuplet of constants fromΓ such thattI1 6∈ pI1 and
tI2 ∈ pI2 .

Given a positive disjunctive ground Datalog¬∨ programP over an alphabet of pred-
icatesΣ and an interpretationI, we say thatI is aminimal modelof P if: (i) I satisfies
the first-order translationFO(P) of P ; (ii) there is no interpretationI ′ such thatI ′

satisfiesFO(P) andI ′ ⊂Σ I.
Given a ground Datalog¬∨ programP and an interpretationI for P , theGL-reduct

[12] of P with respect toI, denoted byGL(P , I), is the positive disjunctive ground
program obtained fromP as follows. For each ruleR ∈ P :

1. deleteR if either there exists a negated atomnot r(t) in the body ofR such that
tI ∈ rI , or there exists an inequalityc 6= c in the body ofR;

2. delete each negated atomnot r(t) in the body ofR such thattI 6∈ rI and delete
each inequalityc 6= d wherec andd are distinct constants.

Given a ground Datalog¬∨ programP and an interpretationI, I is astable modelfor
P iff I is a minimal model ofGL(P , I).



Definition 1. An interpretationI of ΣC ∪ ΣR ∪ ΣD is a NM-model forH = (K,P)
if the following conditions hold: (i)IΣC∪ΣR

satisfiesK; (ii) IΣD
is a stable model for

Π(gr(P), IΣC∪ΣR
).H is calledNM-satisfiableif H has at least one NM-model.

We say that a ground atomg is NM-entailed byH, denoted byH |=NM g iff, for
each NM-modelI ofH, I satisfiesg.

According to the above semantics, DL predicates are interpreted under the open-
world assumption, while Datalog predicates are interpreted under the closed-world
assumption of disjunctive Datalog and Answer Set Programming. As a consequence,
negation of DL predicates in rule bodies is interpeted as classical (monotonic) negation,
while negation of Datalog predicates is interpreted as nonmonotonic negation (negation
as failure under stable model semantics).

Reasoning: general propertiesNotice that, under the above NM semantics (as well
as under the FOL semantics), entailment can be reduced to unsatisfiability, since it is
possible to express constraints (i.e., rules with empty head) in the Datalog program.
More precisely, the following property holds.

Proposition 1. LetH = (K,P) be a r-hybrid KB and letg be a ground atom. Then,
H |=NM g (respectively,H |=FOL g) iff the r-hybrid KB (K,P ∪ {← g}) is NM-
unsatisfiable (respectively, FOL-unsatisfiable).

Then, we show that, when there are no negated Datalog atoms inthe bodies of rules,
the above two semantics are equivalent with respect to the satisfiability problem. The
following property extends an analogous one shown in [28].

Proposition 2. LetH = (K,P) be a r-hybrid KB, whereP is such that there are no
occurrences of negated Datalog atoms inP . Then,H is FOL-satisfiable iffH is NM-
satisfiable.

4 Results for nonrecursive rules

In this section we present a set of new results on the decidability and complexity of
reasoning in r-hybrid KBs, under both FOL-semantics and NM-semantics.

We have conducted our computational analysis on the following subclasses ofnon-
recursiveandnondisjunctiveDatalog programs:

– NR-Datalog= nonrecursive positive Datalog, i.e., nonrecursive rulesof the form (1)
wheren ≤ 1, k = 0, h = 0;

– NR-Datalog6= = nonrecursive positive Datalog with inequality, i.e., nonrecursive
rules of the form (1) wheren ≤ 1, k = 0;

– NR-Datalog6=s = single-rule nonrecursive positive Datalog with inequality (i.e.,
NR-Datalog6= programs consisting of a single rule);

– NR-Datalog¬ = nonrecursive Datalog with negation, i.e., nonrecursive rules of the
form (1) wheren ≤ 1, h = 0;



– NR-Datalog¬s = single-rule nonrecursive Datalog with negation (i.e.,NR-Datalog¬

programs consisting of a single rule);
– NR-Datalog¬A = nonrecursive Datalog with “atomic” negation, i.e.,NR-Datalog¬

programs such that predicates occurring in negated atoms cannot occur in rule
heads.

Moreover, throughout this section we impose the further restriction that programs
are such thatDL predicates do not occur in the head of rules. We call head-DL-free
the programs satisfying the above restriction. Such a restriction strengthens the lower
bounds and undecidability results which are presented below.

Furthermore, we remark that we focus ondata complexityof satisfiability, which
in the framework of r-hybrid KBs (H = (K,P) with K = 〈T ,A〉) corresponds to the
analysis of the computational complexity of the problem when we only consider the
size of the ABoxA and of the EDB ofP , i.e., the set of facts contained inP .

Finally, we point out that most of the proofs of the followingtheorems are obtained
by exploiting and extending the proofs of recent results on query answering in DLs, in
particular the results in [6, 29].

We start by analyzing r-hybrid KBs withNR-Datalogprograms.

Theorem 1. Let H = (K,P) be a r-hybrid KB such thatP is a head-DL-free
NR-Datalog program. Then, under both FOL semantics and NM semantics:

– whenK is either a DL-LiteRDFS KB or a DL-LiteR KB, deciding satisfiability of
H is in LOGSPACEwith respect to data complexity;

– whenK is anEL KB, deciding satisfiability ofH is PTIME-complete with respect
to data complexity.

Proof (sketch). First, observe that by Proposition 2 FOL-satisfiability andNM-
satisfiability coincide for the class of r-hybrid KBs considered. Then, forDL-LiteRDFS

andDL-LiteR the thesis follows from the complexity results on answeringunions of
conjunctive queries inDL-LiteR [6] and from the fact that it is possible to reduce unsat-
isfiability of (K,P), whereP is nonrecursive, to the evaluation of unions of conjunctive
queries overK. In the case ofEL, the thesis follows from a similar argument and from
the computational properties of answering unions of conjunctive queries inEL [29,
Theorem 4].

Then, we provide the following computational characterization of satisfiability in
the presence ofNR-Datalog6=s programs.

Theorem 2. Let H = (K,P) be a r-hybrid KB such thatP is a head-DL-free
NR-Datalog6=s program. Then, under both FOL semantics and NM semantics:

– whenK is a DL-LiteRDFS KB, deciding satisfiability ofH is in LOGSPACEwith
respect to data complexity;

– whenK is anEL KB, deciding satisfiability ofH is PTIME-complete with respect
to data complexity;

– whenK is a DL-LiteR KB, deciding satisfiability ofH is NP-hard with respect to
data complexity;



– whenK is anALC KB, satisfiability ofH is undecidable.

Proof (sketch). First, observe that by Proposition 2 FOL-satisfiability andNM-
satisfiability coincide for the class of r-hybrid KBs considered. Then, forDL-LiteRDFS

andEL the thesis is a consequence of a property analogous to [29, Theorem 7], and
to the data complexity of answering conjunctive queries in those DLs [6, 29], while for
DL-LiteR the proof is by reduction from satisfiability of a 3-CNF propositional formula,
in a way analogous to [29, Theorem 6]. Finally, in the case ofALC the proof is by re-
duction from the unbounded tiling problem [4], in a way analogous to [29, Theorem
5].

We then analyze reasoning in r-hybrid KBs withNR-Datalog6= programs.

Theorem 3. Let H = (K,P) be a r-hybrid KB such thatP is a head-DL-free
NR-Datalog6= program. Then, under both FOL semantics and NM semantics:

– whenK is a DL-LiteRDFS KB, deciding satisfiability ofH is in LOGSPACEwith
respect to data complexity;

– whenK is either a DL-LiteR KB or anEL KB, satisfiability ofH is undecidable.

Proof (sketch).Again, we start by observing that by Proposition 2 FOL-satisfiability
and NM-satisfiability coincide for the class of r-hybrid KBsconsidered. Then, for
DL-LiteRDFS the proof is obtained by extending the result in [29, Theorem11], while
in the case of bothDL-LiteR andEL the proof is obtained by reducing the word prob-
lem for semigroups to satisfiability in such DLs, in a way analogous to Theorem 8 and
Theorem 9 of [29].

Next, we are able to prove the following results for r-hybridKBs with NR-Datalog¬s
programs.

Theorem 4. Let H = (K,P) be a r-hybrid KB such thatP is a head-DL-free
NR-Datalog¬s program. Then, under both FOL semantics and NM semantics:

– whenK is a DL-LiteRDFS KB, deciding satisfiability ofH is in LOGSPACEwith
respect to data complexity;

– whenK is anEL KB, deciding satisfiability ofH is PTIME-complete with respect
to data complexity;

– whenK is a DL-LiteR KB, deciding satisfiability ofH is NP-hard with respect to
data complexity;

– whenK is anALC KB, satisfiability ofH is undecidable.

Proof (sketch).First, we consider the case of FOL-satisfiability. ForDL-LiteRDFS and
EL the proof is obtained from [29, Theorem 14] and from the data complexity of an-
swering conjunctive queries in those DLs [6, 29], while forDL-LiteR the proof is by
reduction from satisfiability of a 3-CNF propositional formula, in a way analogous to
[29, Theorem 13]. Finally, in the case ofALC the proof is by reduction from the un-
bounded tiling problem [4], in a way analogous to [29, Theorem 12]. The above results



NR-Datalog NR-Datalog6=
s

NR-Datalog6= NR-Datalog¬
s

NR-Datalog¬A NR-Datalog¬

DL-LiteRDFS ≤LOGSPACE ≤LOGSPACE ≤LOGSPACE ≤LOGSPACE = NP UNDEC.
DL-LiteR ≤LOGSPACE ≥NP UNDEC. ≥NP UNDEC. UNDEC.

EL = PTIME = PTIME UNDEC. = PTIME UNDEC. UNDEC.
from ALC = NP UNDEC. UNDEC. UNDEC. UNDEC. UNDEC.
to SHIQ

DLR DECID., UNDEC. UNDEC. UNDEC. UNDEC. UNDEC.
≥ NP

Fig. 2. Decidability/data complexity of both FOL-satisfiability and NM-satisfiability in r-hybrid
KBs (head-DL-free programs).

can be easily extended to the case of NM-satisfiability: in particular, the above reduc-
tions used forDL-LiteR andALC do not employ negated Datalog atoms in rules, hence
by Proposition 2 such reductions also prove the thesis underthe NM semantics.

Finally, we considerNR-Datalog¬A programs, and provide the following results.

Theorem 5. Let H = (K,P) be a r-hybrid KB such thatP is a head-DL-free
NR-Datalog¬A program. Then, under both FOL semantics and NM semantics:

– whenK is a DL-LiteRDFS KB, deciding satisfiability ofH is NP-hard with respect
to data complexity;

– whenK is either a DL-LiteR KB or anEL KB, satisfiability ofH is undecidable.

Proof (sketch).First, we consider the case of FOL-satisfiability. ForDL-LiteRDFS the
proof is obtained from [29, Theorem 16], while forDL-LiteR andEL the proof is by
reduction from the unbounded tiling problem, in a way analogous to [29, Theorem 15].
Finally, the above reductions do not employ negated Datalogatoms in rules, hence by
Proposition 2 such reductions also prove the thesis under the NM semantics.

The table displayed in Figure 2 summarizes the results presented in this section. In
the table, each column corresponds to a different rule language, while each row corre-
sponds to a different DL. Each cell reports the data complexity of satisfiability (both
under FOL semantics and under NM semantics) in the corresponding combination of
DL and rule language. If the problem is decidable, then hardness (≥) and/or member-
ship (≤) and/or completeness (=) results are reported.

More precisely, observe that:

– the results forNR-Datalogprograms follow from Theorem 1 and from the results
in [6, 13];

– the well-known translation of arbitrary first-order queries in NR-Datalog¬ allows
for reducing satisfiability of first-order sentences to satisfiability of r-hybrid KBs
with NR-Datalog¬ programs forany choice of the DL language, which immedi-
ately implies undecidability of reasoning in this class of r-hybrid KBs.

Finally, due to the correspondence between unsatisfiability and entailment in r-
hybrid KBs illustrated in Section 3 (Proposition 1), it is also immediate to turn these
results (obtained for satisfiability of programs with constraints) into results for skeptical
entailment (also for classes of programs without constraints).



5 Results for weakly DL-safe rules

In this section we consider the weakly DL-safe integration of DLs and disjunctive Dat-
alog. More precisely, we extend the weak DL-safeness restriction defined in the frame-
work of DL+log [28] to the r-hybrid KBs defined in Section 3, thus extending the
setting presented in [28] by considering the presence of inequality and of negation of
DL predicates. Then, we extend the computational results presented in [28] to such a
class of r-hybrid KBs.

Weak DL-safeness is formally defined as follows.

Definition 2. Given a r-hybrid KBH = (K,P), we say thatP is weaky DL-safeif
every ruleR in P of the form (1) is such that, for every variablex appearing inR,
eitherx occurs in a positive Datalog atom in the body ofR, or x only occurs in positive
DL atoms in the body ofR.

In other words, weak DL-safeness imposes (besides the usualDatalog safeness) the
following condition: every variable that is either a head variable or a variable occurring
in a negated atom or in an inequality occurs in a positive Datalog atom in the body of
the rule. Such a restriction only constrains the interaction between the DL KB and the
Datalog program, in the sense that neither it imposes any additional restriction on the
rules if the DL KB is empty, nor it imposes any restriction on the DL KB.

We now show decidability of reasoning in r-hybrid KBs under the above restriction.
To this aim, we start from the algorithm for NM-satisfiability in DL+log presented in
[28] and extend it to the broader class of rules considered here. Due to space limits,
we do not report details on the algorithm, which is actually very similar to the one
reported in [28]. Such an algorithm checks satisfiability ofa r-hybrid KB by solving a
finite number ofBoolean CQ/UCQ containmentproblems in DLs. Boolean CQ/UCQ
containment is the problem of checking the containment between two queriesq1 andq2

with respect to a DL KBK, whereq1 is a Boolean conjunctive query andq2 is a Boolean
union of conjunctive queries (this problem is also known asexistential entailment[20]).

Based on such an algorithm, we are able to extend the general decidability result of
[28] to the present class of r-hybrid KBs. Formally:

Theorem 6. Let DL be a description logic and letH = (K,P) be a r-hybrid KB,
whereK is aDL KB andP is a weakly DL-safe Datalog¬∨ program. NM-satisfiability
(as well as FOL-satisfiability) ofH is decidable iff Boolean CQ/UCQ containment is
decidable inDL.

In particular, the above theorem and the results on CQ/UCQ containment in DLs
presented in [20, 7, 15, 25] imply the following property:for all the DLs studied in this
paper, NM-satisfiability (as well as FOL-satisfiability) ofweakly DL-safe r-hybrid KBs
is decidable.

Moreover, based on the above cited results and on our technique for NM-
satisfiability, we are able to provide a computational characterization of r-hybrid KBs
with weakly DL-safe rules for all the DLs and all the classes of nonrecursive programs
above considered. More specifically, the table in Figure 3 summarizes the results on
data complexity of NM-satisfiability (as well as for FOL-satisfiability) which hold for



NR-Datalog, NR-Datalog6=, NR-Datalog¬

DL-LiteRDFS ≤LOGSPACE
DL-LiteR ≤LOGSPACE

EL = PTIME
fromALC toSHIQ = NP

DLR DECIDABLE, ≥ NP

Fig. 3. Data complexity of both NM-satisfiability and FOL-satisfiability in r-hybrid KBs with
nonrecursive weakly DL-safe programs.

the class of r-hybrid KBs with weakly DL-safe rules. The complexity is the same for all
the classes of nonrecursive Datalog rules considered in this paper.

A comparison of the table in Figure 3 with the previous one in Figure 2 allows
us to evaluate the impact of the weak-DL-safeness assumption on the complexity of
reasoning in r-hybrid KBs. Indeed, restricting the interaction between DLs and rules
through the weak DL-safeness condition allows for using even very expressive DLs as
the ontology language of the r-hybrid KB, without losing decidability of reasoning. In
particular, Theorem 6 implies that, under the weak DL-safeness condition, it is possible
to combine every DL considered in this paper with full Datalog¬∨ programs (i.e., with
recursion, inequality, negation, and disjunction in the head), and obtain a decidable for-
malism. Moreover, Figure 3 shows that, for all the DLs and theclasses of nonrecursive
Datalog rules considered in this paper, when we impose weak DL-safeness the data
complexity of reasoning is no worse than the data complexityof reasoning in the ab-
sence of rules: i.e., adding weakly DL-safe nonrecursive rules does not actually affect
data complexity of reasoning in all the DLs considered.

On the other hand, the unrestricted integration of DLs and rules imposes severe
restrictions on the expressive power of both the DL component and the rule component:
indeed, as explicitly shown by Figure 2, decidability in thepresence of inequality or
negation in rules can be regained at the price of restrictingboth the ontology language to
DLs of very little expressiveness and the rule language to extremely limited fragments
of Datalog.

6 Conclusions

In this paper we have tried to extend the computational analysis of reasoning in sys-
tems integrating Description Logics ontologies and Datalog rules. To this aim, we have
considered a group of Description Logics which, from the viewpoint of the expressive
power, lie within the range from RDFS to OWL, and thus constitute very important
classes of ontology formalisms with respect to Semantic Webapplications. Moreover,
we have considered disjunctive Datalog and several subclasses of it, with special em-
phasis on nonrecursive and nondisjunctive fragments.

In our opinion, the results presented in Section 4 clearly show that the unrestricted
interaction of DLs and Datalog is computationally very hardeven in the absence of
recursion in rules. This contrasts with the general opinionthat recursion is a necessary



feature for rules to rise the undecidability issue in their integration with DL ontologies.
So, surprisingly, the various “safeness” restrictions which have been defined to regain
decidability in the interaction between DLs and recursive Datalog, appear as necessary
restrictions even when rules are not recursive. In this respect, the results in Section 5
further enlarge the class of Description Logics and rules with decidable, restricted in-
tegration, and provide a refined computational analysis forthe integration of weakly
DL-safe rules with the Description Logics considered in this paper.

The present study can be extended in several directions. In our opinion, the most
interesting ones are the following:

– the analysis presented in Section 4 should be extended to other very promising
tractable DLs recently defined, in particularHornSHIQ [19], EL++ [2] and
DL-LiteF [5];

– the analysis presented in Section 4 should be further extended to classes of disjunc-
tive programs;

– it would be very interesting, for the decidable cases of Figure 2, to provide upper
bounds fornon-head-DL-freeprograms;

– with respect to the results presented in Section 5, an important open issue is whether
it is possible to identify other forms of decidable interaction between DL-KBs
and rules, which overcome the expressive limitations of theweak DL-safeness
(see [28]). An approach in this direction is presented in [22], which is based on
the use of a modal autoepistemic logic, as well as the approach in [8]. Moreover,
other interesting approaches have been presented. Some of the most recent ones
study the combination of DLs and rules under a different semantic approach [21]
or under different restrictions on variables in rules [17].
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