Simulation Subsumption or Déja vu on the Web

Frangois Bry, Tim Furche, and Benedikt Linse

Institute for Informatics, University of Munich,
Oettingenstrafie 67, 80538 Miinchen, Germany
http://pms.ifi.lmu.de/

Abstract. Simulation unification is a special kind of unification adapted
to retrieving semi-structured data on the Web. This article introduces
simulation subsumption, or containment, that is, query subsumption un-
der simulation unification. Simulation subsumption is crucial in general
for query optimization, in particular for optimizing pattern-based search
engines, and for the termination of recursive rule-based web languages
such as the XML and RDF query language Xcerpt. This paper first
motivates and formalizes simulation subsumption. Then, it establishes
decidability of simulation subsumption for advanced query patterns fea-
turing descendant constructs, regular expressions, negative subterms (or
subterm exclusions), and multiple variable occurrences. Finally, we show
that subsumption between two query terms can be decided in O(n!™)
where n is the sum of the sizes of both query terms.

1 Introduction

Xcerpt query terms [I] are an answer to accessing Web data in a rule-based
query language. Like most approaches to Web data (or semi-structured data,
in general), they are distinguished from relational query languages such as SQL
by a set of query constructs specifically attuned to the less rigid, often diverse,
or even entirely schema-less nature of Web data. Xcerpt terms are similar to
normalized forward XPath (see [2]) but extended with variables, deep-equal,
a notion of injective match, regular expressions, and full negation. Thus, they
achieve much of the expressiveness of XQuery without sacrificing the simplicity
and pattern-structure of XPath.

When used in the context of Xcerpt, query terms serve a similar role to terms
of first-order logic in logic languages. Therefore, the notion of unification has been
adapted for Web data in [3], there called “simulation unification”. This form of
unification is capable of handling all the extensions of query terms over first-
order terms that are needed to support Web data: selecting terms at arbitrary
depth (desc), distinguishing partial from total terms, regular expressions instead
of plain labels, negated subterms (without), etc.

To illustrate the notion of query term, consider the following query term.
It selects the content of title elements at arbitrary depth (desc) under a book
element in a bibliography database. In addition, we ask for the author of such
a book, but only if both first-name and last-name of that author are recorded in

D. Calvanese and G. Lausen (Eds.): RR 2008, LNCS 5341, pp. 28-F2] 2008.
© Springer-Verlag Berlin Heidelberg 2008

Simulation Subsumption or Déja vu on the Web 29

that order. Finally, if there is also information about the publisher of that book,
we retrieve that information as well:

bib{{
2 book{{
desc title{ var Title 1},
4 var Author as author[[first-name{{ }}, last-name{{ }} 11,

optional var publisher as publisher{{ }}
6 +}
I

Subsumption or containment of two queries (or terms) is an established technique
for optimizing query evaluation: a query ¢; is said to be subsumed by or contained
in a query go if every possible answer to ¢; against every possible data is also
an answer to qo. Thus, given all answers to g2, we can evaluate ¢; only against
those answers rather than against the whole database.

For first-order terms, subsumption is efficient and employed for guarantee-
ing termination in tabling (or memoization) approaches to backward chaining
of logic [45]. However, when we move from first-order terms to Web queries
subsumption (or containment) becomes quickly less efficient or even intractable.
Xcerpt query terms have, as pointed out above, some similarity with XPath
queries. Containment for various fragments of XPath is surveyed in [6], both in
absence and in presence of a DTD. Here, we focus on the first setting, where
no additional information about the schema of the data is available. However,
Xcerpt query terms are a strict super-set of (navigational) XPath as investigated
in [6]. In particular, the Xcerpt query terms may contain (multiple occurrences
of the same) variables. This brings them closer to conjunctive queries (with
negation and deep-equal), as considered in [7] on general relations, and in [§]
for tree data. Basic Xcerpt query terms can be reduced to (unions of) conjunc-
tive queries with negation. However, the injectivity of Xcerpt query terms (no
two siblings may match with the same data node) and the presence of deep-
equal (two nodes are deep-equal iff they have the same structure) have no direct
counterpart in conjunctive query containment. Though [9] shows how inequali-
ties in general affect conjunctive query containment, the effect of injectivity (or
all-distinct constraints) on query containment has not been studied previously.
The same applies to deep-equal, though the results in [I0] indicate that in ab-
sence of composition deep-equal has no effect on evaluation and thus likely on
containment complexity.

For Xcerpt query terms, subsumption is, naturally, of interest for the design
of a terminating, efficient Xcerpt engine. Beyond that, however, it is particularly
relevant in a Web setting. Whenever we know that one query subsumes another,
we do not need to access whatever data the two queries access twice, but rather
can evaluate both queries with a single access to the basic data by evaluating
the second query on the answers of the first one. This can be a key optimization
also in the context of search engines, where answers to frequent queries can
be memorized so as to avoid their repeated computation. Even though today’s
search engines are rather blind of the tree or graph structure of HTML, XML and

30 F. Bry, T. Furche, and B. Linse

RDF data, there is no doubt that some more or less limited form of structured
queries will become more and more frequent in the future (see Google scholar’s
“search by author, date, etc.”). Query subsumption, or containment, is key to a
selection of queries, the answers to which are to be stored so as to allow as many
queries as possible to be evaluated against that small set of data rather than
against the entire search engine data. Thus, the notion of simulation subsumption
proposed in this paper can be seen as a building block of future, structure-aware
search engines.

Therefore, we study in this paper subsumption of Xcerpt query terms. To that
end, the main contributions are:

— we introduce and formalize a notion of subsumption for Xcerpt query terms,
called simulation subsumption, in Section [3 To the best of our knowledge,
this is the first notion of subsumption for queries with injectivity of sibling
nodes and deep-equal.

— we show, also in Section Bl that simulation on query terms is equivalent
to simulation subsumption. This also shows that simulation unification as
introduced in [3] indeed captures the intuition that a query term that simu-
lates into another query term subsumes that term. Furthermore, all results
for simulation subsumption apply equally to simulation unification.

— we define, in Section[] a rewriting system that allows us to reduce the test
for subsumption of ¢ in ¢’ to finding a sequence of syntactic transformations
that can be applied to ¢ to transform it into ¢'.

— we show, in Section[5] that this rewriting system gives rise to an algorithm for
testing subsumption that is sound and complete and can determine whether
¢ subsumes ¢’ in time O(n!™). In particular, this shows that simulation sub-
sumption is decidable.

2 Xcerpt Basics: Query Terms and Simulation

This section lays the foundations for simulation subsumption by introducing the
notions of semi-structured trees (Definition [II), query terms (Definition) and
simulation (Definition [B]). Semi-structured trees are an abstraction for all kinds
of Web data such as XML-documents, RDF graphs or HTML-documents.

Definition 1 (Semi-structured Trees). Trees (also called data terms in the
following) are are inductively defined as follows:

— a label is an atomic tree
— if L is a label and t1,. .., t, are trees with n > 1, then l{t1,...,t,} is a tree.

Query terms are an abstraction for queries that can be used to extract data from
semi-structured trees. In contrast to XPath queries, they may contain (multiple
occurrences of the same) variables and demand an injective mapping of the child
terms of each term. For example, the XPath query /a/b[c]/c demands that
the document root has label a, and has a child term with label b that has itself

Simulation Subsumption or Déja vu on the Web 31

a child term with label c. The subterm c that is given within the predicate
of b can be mapped to the same node in the data as the child named c of b.
Therefore this XPath query would be equivalent to the query term a{{b{{c}}}},
but not to a{{b{{c, c}}}}. Simulation could be, however, easily modified to drop
the injectivity requirement.

Recall the example query term from Section [Tt

1 bib{{
book { {
3 desc title{ wvar Title 1},
var Author as author[[first-name{{ }}, last-name{{ }} 11,
5 optional var publisher as publisher{{ }}

}}
7 }}

This query term illustrates most of the features of Xcerpt query terms relevant for
this paper. As stated above, it selects titles, authors, and optionally publishers of
the same book. Titles may occur at any depth under the book element (indicated
by desc), but authors and publishers must be children. For authors we further
ask that they also record first and last name and that these are recorded in that
order (i.e., not last-name before first-name).

Single (double, resp.) braces or brackets in an Xcerpt query term mean that
the term’s content model is completely (incompletely, resp.) specified (i.e. there
must only be a single subterm within the title element of the example from
Section [Il but the author element may contain other children besides first-name
and last-name). (Curly) braces mean that the order of occurrence of the subterm
in the data is irrelevant, (square) brackets enforce the same order in the data
as in the query term (i.e. first-name must appear before last-name in the data,
otherwise the query term from Section [I] does not match).

Even though there are (many) XML serializations for RDF data, most promi-
nently RDF /XML, none convey the inherent graph structure of RDF data. Each
RDF serialization either approximates an RDF graph by a tree, or decomposes
it into triples. Xcerpt natively supports RDF with constructs conveying RDF
specifics such as containers, collections, the type system and reification. For the
sake of focus and simplicity, these RDF constructs are not addressed in the
present paper. A complete presentation of Xcerpt’s construct for RDF is given
in [11].

Definition 2 ((Xcerpt) Query Terms). Query terms over a set of labels N,
a set of variables V, and a set of reqular expressions R are inductively defined
as follows:

— for each label I € N, I{{ }} and I{ } are atomic query terms. [is a short
hand notation for I1{{ }}. The formal treatment of square brackets in query
terms is omitted in this contribution for the sake of brevity.

— for each variable X € V, var X is a query term

— for each regular expression r € R, /r/ is a query term. With £(r) we denote
the set of labels matched by r, i.e. the language defined by the regular
expression.

32 F. Bry, T. Furche, and B. Linse

— for each variable X € V and query term ¢, Xas ¢ is a query term. ¢ is called
a variable restriction for X.

— for each query term ¢, desc t is a query term and called depth-incomplete
or incomplete in depth.

— for each query term ¢, without t is a query term and called a negated sub-
term.

— for each label [and query terms t4,...,t, are query terms with n > 1,

q1 =1{{ t1, \1ldots, tn}}
q2 = 1{ t1, \ldots, tn}

are query terms. ¢; is said to be incompletely specified in breadth, or simply
breadth-incomplete, whereas qo is completely specified in breadth, or simply
breadth-complete.

In the following, we let D and Q denote the set of all semi-structured trees and
query terms, respectively.

A query term and a semi-structured tree are in the simulation relation, if
the query term “matches” the data. Matching trees with data is very similar to
matching Xpath queries with XML documents — apart from the variables and
the injectivity requirement in query terms. The formal definition of simulation
of a query term with a semi-structured tree is somewhat involved. To shorten
the presentation, we first introduce some notation:

Definition 3 (Injective and Bijective Mappings). Let I := {ti,...,t}1},
J = {2 ... 12} be sets of query terms and 7 : I = J be a mapping.
— 7 4s injective, if all t},t} € I satisfy t} # t} = 7(t}) # ﬂ'(t;).
— m is bijective, if it is injective and for all tf € J there is some t} € I such
that (t;) = t3.

We use the following abbreviations to reference parts of a query term g:

I(q): the label of g,

ChildT(q): the set of child subterms of g, i.e. those directly nested inside of g.

ChildT*(q): the set of positive direct subterms (i.e. those direct subterms which
are not of the form without . ..),

ChildT~(q): the set of negated direct subterms (i.e. the direct subterms of the
form without . . .),

Desc(q): the set of direct descendant subterms of ¢ (i.e. those of the from
desc...),

SubT(q): the direct or indirect subterms of g, i.e. all direct subterms as well as
their subterms.

ss(q): the subterm specification of ¢. It can either be complete (single curly
braces) or incomplete (double curly braces).

vars(q): the set of variables occurring somewhere in g.

pos(q): ¢, if q is of the form without ¢’ for some query term, g otherwise.

Simulation Subsumption or Déja vu on the Web 33

Definition 4 (Ground Query Term Simulation). Let q be a query term and
d be a semi-structured tree, A relation S C (SubT(q) U {q}) x (SubT'(d) U {d})
is a simulation of q into d if the following holds:

-qS5d

—if g == LW{{q,. .. qn}} S lo{dr,...,dn} =: d then Iy must subsume lo,
and there must be an injective mapping ™ : ChildT*(q) — ChildT*(d)
such that q; S w(q;) for all © € ChildT*(q). Moreover, there must not be a
q; € ChildT~(q) and d; € ChildT*(d) \ range(m) such that pos(q;) S dj.

—if ¢ :=1{q,...,qn} S 12{d1,...,dn} =: d then Iy must subsume lz, and
there must be a bijective mapping 7 : ChildT*(q) — ChildT*(d) such that
qi S 7(q;) for all i € ChildT*(q). Note that the set ChildT~(q) of negated
direct subterms of q should be empty — the presence of negated subterms in
breadth-complete query terms s irrelevant.

—ifg=descq Sdthenq Sdorq Sd for some subterm d of d.

If there is a relation S that satisfies the above conditions, g simulates into d
(short: q =< d; to state the contrary we write ¢ 2 d).

Since every semi-structured tree is also a query term, the above definition of
simulation between a query term and a tree can be extended to a relation between
pairs of query terms. For the sake of brevity this full definition of extended ground
query term simulation is given in the appendix of the online version [12].

The existence of a ground query term simulation states that a given semi-
structured tree satisfies the conditions encapsulated in the query term. Many
times, however, query authors are not only interested in checking the structure
and content of a document, but also in extracting data from the document,
and therefore query terms may contain logical variables. To formally specify the
data that is extracted by matching a query term with a semi-structured tree,
non-ground query term is introduced (Definition [l). Substitutions are defined
as usual, and the application of a substitution to a query term is the consistent
replacement of the variables by their images in the substitution.

Definition 5 (Non-Ground Query Term Simulation). A query term q with
variables simulates into a semi-structured tree d iff there is a substitution o :
Vars(q) — D such that go simulates into d.

3 Simulation Subsumption

In this section, we first introduce simulation subsumption (Definition [6), then
for several query terms we discuss whether one subsumes the other to give an
intuition for the compositionality of the subsumption relationship. Subsequently,
the transitivity of the subsumption relationship is proven (Lemma [I]), some con-
clusions about the membership in the subsumption relationship of subterms,
given the membership in the subsumption relationship of their parent terms are

34 F. Bry, T. Furche, and B. Linse

stated. These conclusions formalize the compositionality of simulation subsump-
tion and are a necessary condition for the completeness of the rewriting system
introduced in Section

In tabled evaluation of logic programs, solutions to subgoals are saved in a
solution table, such that for equivalent or subsumed subgoals, these sets do not
have to be recomputed. As mentioned before, this avoidance of re-computation
does not only save time, but can, in certain cases be crucial for the termination
of a backward chaining evaluation of a program. In order to classify subgoal
as solution or look-up goals, boolean subsumption as specified by Definition
must be decided. Although Xcerpt query terms may contain variables, n-ary
subsumption as defined in [6] would be too strict for our purposes. To see this,
consider the Xcerpt query terms ¢; := a{{var X}} and ¢z := a{{c}}. Although
all trees that are relevant for ¢o can be found in the solutions for g1, ¢1 and g2
cannot be compared by n-ary containment, because they differ in the number of
their query variables.

Definition 6 (Simulation Subsumption). A query term g1 subsumes an-
other query term qs if all data or query terms that qo simulates with are also
stmulated by q .

Ezample 1 (Examples for the subsumption relationship). Let ¢1 := a{{}}, ¢2 :=
a{{desc b,desc ¢,d}}, q3 := a{{desc b,c,d}}, qs := a{{without e}}, and ¢5 :=
a{{without e{{without f}}}}. Then the following subsumption relationships
hold:

— @2 subsumes q3 because it requires less than ¢3: While g3 requires that the
data has outermost label a, subterms ¢ and d as well as a descendant subterm
b, g2 requires not that there is a direct subterm ¢, but only a descendant
subterm. Since every descendant subterm is also a direct subterm, all trees
simulating with ¢3 also simulate with g¢o.
But the subsumption relationship can also be decided in terms of simulation:
g2 subsumes g3, because there is a mapping 7 from the direct subterms
Child(qz) of g2 to the direct subterms Child(gs) of g3, such that ¢; subsumes
7(g;) for all g; in Child(qa).

— g3 does not subsume g9, since there are trees that simulate with g2, but not
with gs. One such tree is d := a{b, e{c}, d}.
Again, the subsumption relationship between g3 and g2 (in this order) can
be decided by simulation. There is no mapping 7 from the direct subterms
of g3 to the direct subterms of g2, such that a simulates into 7 (a).

— 1 subsumes ¢4 since it requires less than g4. All trees that simulate with g4
also simulate with ¢;.

— ¢4 does not subsume ¢, since the tree a{{e}} simulates with ¢;, but does
not simulate with q4.

— @5 subsumes g4, but not the other way around.

Proposition 1. The subsumption relationship between query terms is transitive,
i.e. for arbitrary query terms q1, q2 and q3 it holds that if g1 subsumes q2 and
q2 subsumes qs, then q1 subsumes gs.

Simulation Subsumption or Déja vu on the Web 35

Proposition[Ilimmediately follows from the transitivity of the subset relationship.
Query term simulation and subsumption are defined in a way such that, given
the simulation subsumption between two query terms, one can draw conclusions
about subsumption relationships that must be fulfilled between pairs of subterms
of the query terms. Lemma [I] formalizes these sets of conclusions.

Lemma 1 (Subterm Subsumption). Let ¢ and g2 be query terms such
that q1 subsumes qz. Then there is an injective mapping © from Child*(q)
to Child™(q2) such that ¢i subsumes 7(qt) for all ¢ € Child™(q1).

Furthermore, if g1 and qz are breadth-incomplete, then there is a (not neces-
sarily injective) mapping o from Child™ (q1) to Child™ (q2) such that pos(o(q]))
subsumes pos(q{) for all q{ € Child— (q1).

If q1 is breadth-incomplete and qs is breadth-complete then there is no q{ mn
Child=(q1) and q§ € Child" (g2) \ range(n) such that pos(q]) < g5.

Lemma [limmediately follows from the equivalence of the subsumption relation-
ship and the extended query term simulation (see Lemma 4 in the appendix of
the online version [12]).

4 Simulation Subsumption by Rewriting

In this section we lay the foundations for a proof for the decidability of subsump-
tion between query terms according to Definition [0l by introducing a rewriting
system from one query term to another, which is later shown to be sound and
complete. Furthermore this rewriting system lays the foundation for the com-
plexity analysis in Section [(£.3]

The transformation of a query term ¢; into a subsumed query term g¢o is
exemplified in Figure [Tl

Definition 7 (Subsumption Monotone Query Term Transformations).
Let q be a query term. The following is a list of so-called subsumption monotone
query term transformations.

— if ¢ has incomplete subterm specification, it may be transformed to the anal-
ogous query term with complete subterm specification.

af{q,- .. qn}}
a{qi, ..., qn}

— if q is of the form desc ¢’ then the descendant construct may be eliminated
or it may be split into two descendant constructs separated by the reqular
expression /. x/, the inner descendant construct being wrapped in double
curly braces.

(1)

desc q desc q
q desc /. [{{desc q}}

(2)

36 F. Bry, T. Furche, and B. Linse

af{{ a{{ b{c, var X},
b{c, wvar X}, Equation 3 desc d,
desc d, > without e{{ £ }},
without e{{ £ }} var Y
+} +}
Equations 2, 4, 7
\ 4
a{{ b{var X, c}, a{{ b{var X, c},
g{{ desc d }}, /.x/{{ desc d }},
var Y, < - without e{{ £ }},
without e{{ £ }} Equations 8, 4 var Y
+} +}
Equation 2

all bivar %, c}, a{{ b{var X, c}

gf{{ /.x/{{
desc d }} }}, Equation 8 g{{ h{{ d }} }},
var Y > var Y,

without e{{ £ }} without e{{ f }}

1) b}

Equation 1
Y

a{ b{var X, c}, a{ b{var X, c},
g{{ h{{ d }} }}, gf{{ h{{ d }} 1}},
i{ 1}, < var Y,
without e{{ }} Equation 6, 9, 7 without e{{ £ }}

} }

Fig. 1.

— if q has incomplete-unordered subterm specification, then a fresh variable
X may be appended to the end of the subterm list. A fresh variable is a
variable that does not occur in q1 or g2 and is not otherwise introduced by
the rewriting system.

a{{q17 e 7qﬂ}}7
X fresh = oTla, g var X7 (3)

— if ¢ has unordered subterm specification, then the subterms of ¢ may be ar-
bitrarily permuted.

erms n alla, .- &)
reP ({1,...,n}) = al{de(y, ---1 duim}} W
a{ql, ceey Qn}

m € Perms({1,...,n}) =

a{qﬂ'(l)/ s e ey Qﬂ(n)}

Simulation Subsumption or Déja vu on the Web 37

— if ¢ contains a variable var X, which occurs in q at least once in a positive
context (i.e. not within the scope of a without) then all occurrences of var X
may be substituted by another Xcerpt query term.

q
X € PV(q),t € QTerms = X0 (6)
This rule may only be applied, if q contains all occurrences of X in qi.
Furthermore, no further rewriting rules may be applied to the replacement
term t.

Notice that if a variable appears within q only in a negative context (i.e.
within the scope of a without), the variable cannot be substituted by an
arbitrary term to yield a transformed term that is subsumed by q. The query
terms a{{ without var X }} and a{{ without b{ } }} together with
the tree a{ c } illustrate this characteristic of the subsumption relationship.
For further discussion of substitution of variables in a negative context see
Ezample 2.

— if ¢ has a subterm q;, then q; may be transformed by any of the transforma-
tions in this list except for Equation[@ to the term t(g;), and this transformed
version may be substituted at the place of q; in q, as formalized by the fol-
lowing rule:

G _ af{q1, - qn}}
t(gi) a{{q, -5 qi-1,4(ai); Giv1;s - - qn}}

— if the label of q is a regular expression e, this reqular expression may be
replaced by any label that matches with e, or any other regular expression
e’ which is subsumed by e (see Definition 8 in the appendiz of the online
version [12]).1

(7)

e{{a, ... an}}
eHa, - an}}

— if q contains a negated subterm q; = without r and v’ is a query term such
that t(r') = r (i.e. v’ subsumes r) for some transformation step t, then g;
can be replaced by ¢} := without r'.

e € RE, e subsumes e’ =

(8)

/

(q; = without r) A ZA (¢; = without ")
T

a{{qlv' LR 7Q’n}}
= a{{q1,....¢,...qu}} 9)

! The respective rules for complete-unordered subterm specification, incomplete-
ordered subterm specification and complete-ordered subterm specification are omit-
ted for the sake of brevity.

2 The exclusion of Equation [ensures that variable substitutions are only applied
to entire query terms and not to subterms. Otherwise the same variable might be
substituted by different terms in different subterms.

38 F. Bry, T. Furche, and B. Linse
5 Properties of the Rewriting System

In this section we show that the rewriting system introduced in the previous
section is sound (Section [5.1]) and complete (Section [(.2). Furthermore we study
the structure of the search tree induced by the rewriting rules, show that it can
be pruned without losing the completeness of the rewriting system and conclude
that simulation subsumption is decidable. Finally we derive complexity results
from the size of the search tree in Section 0.3

5.1 Subsumption Monotonicity and Soundness

Lemma 2 (Monotonicity of the Transformations in Definition [7]). All
of the transformations given in Definition[] are subsumption monotone, i.e. for
any query term q and a transformation from Definition 7] which is applicable to
q, q subsumes t(q).

The proof of Lemma[2 is straight-forward since each of the transformation steps
can be shown independently of the others. For all of the transformations, inverse
transformation steps t~! can be defined, and obviously for any query term g it
holds that t~1(¢) subsumes gq.

Lemma 3 (Transitivity of the Subsumption Relationship, Monotonic-
ity of a Sequence of Subsumption Monotone Query Term Transfor-
mations). For a sequence of subsumption monotone query term transformations
t1,...,tn, and an arbitrary query term q, q subsumes t1 o ...0t,(q1).

The transitivity of the subsumption relationship is immediate from its definition
(Definition[6) which is based on the subset relationship, which is itself transitive.
As mentioned above, the substitution of a variable X in a negative context of
a query term g by a query term ¢, which is not a variable, results in a query term
q' := ¢[X +— t] which is in fact more general than ¢. In other words ¢[X +— t]
subsumes q for any query term ¢ if X only appears within a negative context in
g- On the other hand, if X only appears in a positive context within ¢, then ¢’ is
less general — i.e. ¢ subsumes ¢’. But what about the case of X appearing both
in a positive and a negative context within ¢7 Consider the following example:

Ezample 2. Let q := a{{ var X, without b{{ var X }} }}. One may be
tempted to think that substituting X by c[] to give ¢’ makes the first subterm
of g less general, but the second subterm of ¢ more general. In fact, a subterm
b[¢] within a tree would cause the subterm without b{{ var X }} of
g to fail, but the respective subterm of ¢’ to succeed, suggesting that there is
a tree that simulation unifies with ¢/, but not with ¢, meaning that g does not
subsume ¢’. However, there is no such tree, which is due to the fact that the
second occurrence of X within ¢ is only a consuming occurrence. When this part
of the query term is evaluated, the variable X is already bound.

Simulation Subsumption or Déja vu on the Web 39

The normalized form for Xcerpt query terms is introduced, because for an un-
normalized query term ¢; that subsumes a query term g2 one cannot guarantee
that there is a sequence of subsumption monotone query term transformations
t1,...,t, such that ¢, o...0¢1(q1) = ¢g2. To see this, consider example Bl

Ezample 8 (Impossibility of transforming an unnormalized query term). Let ¢q :
= a{{var X as b{{c}},var X as b{{d}}}} and ¢z := a{{b{{c,d}}, b{{c,d}}}}.
g2 subsumes g1, in fact both terms are even simulation equivalent. But there is
no sequence of subsumption monotone query term transformations from ¢o to
q1, since one would have to omit one subterm from both the first subterm of ¢
and from the second one. But such a transformation would not be subsumption
monotone.

To overcome this issue, query terms are assumed to be in normalized form (Def-
inition 9 in the appendix of the online version [12]). In fact, almost all Xcerpt
query terms can be transformed into normalized form.

5.2 Completeness

Theorem 1 (Subsumption by Transformation). Let g1 and g2 be two query
terms in normalized form such that g1 subsumes q2. Then q1 can be transformed
into g2 by a sequence of subsumption monotone query term transformations listed
in Definition [}

Proof. We distinguish two cases:

— ¢1 and ¢y are subsumption equivalent (i.e. they subsume each other)
— 1 strictly subsumes ¢

The first case is the easier one. If ¢; and g are subsumption equivalent, then
there is no tree t, such that ¢ simulates with one, but not the other. Hence ¢; and
g2 are merely syntactical variants of each other. Then ¢; can be transformed into
g2 by consistent renaming of variables (Equation [7l), and by reordering sibling
terms within subterms of ¢ (Equation H]). Note that this would not be true for
unnormalized query terms as Example [3] shows.

The second is shown by structural induction on ¢;.

For both the induction base and the induction step, we assume that ¢; sub-
sumes ¢s, but not the other way around. Then there is a tree d, such that ¢;
simulates into d, but ¢» does not. In both the induction base and the induc-
tion step, we give a distinction of cases, enumerating all possible reasons for ¢;
simulating into d but g2 not. For each of these cases, a sequence of subsump-
tion monotone transformations ti,...%, from Definition [1 is given, such that
qy :=tpotp_10...0t1(q1) does not simulate into d. By Lemmas 2l and [¢
still subsumes ¢o. Hence by considering d and by applying the transformations,
q1 is brought “closer” to ¢o. If ¢ is still more general than g2, then one more
dataterm d’ can be found that simulates with ¢}, but not with ¢, and another

40 F. Bry, T. Furche, and B. Linse

sequence of transformations to be applied can be deduced from this theorem.
This process can be repeated until ¢; has been transformed into a simulation
equivalent version of ¢o. For the proof see the appendix of the online version [12].

5.3 Decidability and Complexity

In the previous section, we establish that, for each pair of query terms ¢1, g2 such
that g1 subsumes g2, there is a (possibly infinite) sequence of transformations
t1,...,t; by one of the rules in Section [such that t; o ...0¢1(q) = ¢a.

However, if we reconsider the proof of Theorem[] it is quite obvious that the
sequence of transformations can in fact not be infinite: Intuitively, we transform
at each step in the proof ¢; further towards ¢o, guided by a data term that
simulates in g¢; but not in ¢o. In fact, the length of a transformation sequence is
bounded by the sum of the sizes of the two query terms. As size of a query term
we consider the total number of its subterms.

Proposition 2 (Length of Transformation Sequences). Let ¢1 and g2 be
two Xcerpt query terms such that q1 subsumes gz and n the sum of the sizes
of q1 and qz. Then, there is a sequence of transformations ti,...,tx such that
tpo...ot1(q1) = g2 and k € O(n).

Proof. We show that the sequences of transformations created by the proof of
Theorem [I] can be bounded by O(n + m) if computed in a specific way: We
maintain a mapping p from subterms of g; to subterms of g» indicating how the
query terms are mapped. y is initialized with (g1, g2). In the following, we call a
data term d discriminating between ¢, and go if ¢; simulates in d but not go.

(1) For each pair (¢,q’) in p, we first choose a discriminating data term that
matches case 1 in the proof of Theorem [l If there is such a data term, we apply
Equation (8)), label replacement, once to ¢ obtaining ¢(q) and update the pair
in p by (¢(q),q’). This step is performed at most once for each pair as (¢(q), ¢')
have the same label and thus there is no more discriminating data term that
matches case 1.

(2) Otherwise, we next choose a discriminating data term that matches case
2.a. or 2.b.i. In both cases, we apply Equation (3]), variable insertion, to insert a
new variable and update the pair in u. This step is performed at most |ga| —|g1] <
n times for each pair.

(3) Otherwise, we next choose a discriminating data term that matches case
2.a.i and apply Equation (), complete term specification and update the pair
in pu. This step is performed at most once for each pair.

(4) Finally, the only type of discriminating data term that remains is one
with the same number of positive child terms as g>. We use an oracle to guess
the right mapping o from child terms of ¢; to child terms of g;. Then we remove
the pair from g and add (¢,0(c)) to p for each child term of ¢;. This step is
performed at most once for each pair in p.

Since query subterms have a single parent, we add each subterm only once to u in
a pair. Except for case 2, we perform only a constant number of transformations

Simulation Subsumption or Déja vu on the Web 41

to each pair. Case 2 allows up to n transformations for a single pair, but the
total number of transformations (over all pairs) due to case 2 is bound by the
size of go. Thus in total we perform at most 4 - n transformations where n is
the sum of the number of the sizes of ¢; and ¢o.

Though we have established that the length of a transformation sequence
is bound by O(n), we also have to consider how to find such a transforma-
tion sequence. The proof of Proposition 2] already spells out an algorithm for
finding such transformation sequences. However, it uses an oracle to guess the
right mapping between child terms of two terms that are to be transformed.
A naive deterministic algorithm needs to consider all possible such mappings
whose number is bound by O(n!). It is worth noting, however, that in most
cases the actual number of such mappings is much smaller as most query terms
have fairly low breadth and the possible mappings between their child terms
are severely reduced just by considering only mappings where the labels of child
terms simulate. However, in the worst case the O(n!) complexity for finding the
right mapping may be reached and thus we obtain:

Theorem 2 (Complexity of Subsumption by Rewriting). Let ¢1 and ¢o
be two Xcerpt query terms. Then we can test whether g1 subsumes ga2 in O(n™)
time.

Proof. By proposition 2 we can find a O(n) length transformation sequence in
O(n!™) time and by Theorem [Il ¢; subsumes g5 if and only if there is such a
sequence.

6 Conclusion

Starting out from the problem of improving termination of logic programming
based on rich kinds of simulation such as simulation unification, the problem
of deciding simulation subsumption between query terms is investigated in this
paper. A rewriting system consisting of subsumption monotone query term trans-
formations is introduced and shown to be sound and complete. By convenient
pruning of the search tree defined by this rewriting system, the decidability of
simulation subsumption is proven, and an upper bound for its complexity is
identified.

Future work includes (a) a proof of concept implementation of the rewriting
system, (b) the development of heuristics and their incorporation into the proto-
type to ensure fast termination of the algorithm in the cases when it is possible,
(c) the study of the complexity of the problem in absence of subterm negation,
descendant constructs, deep-equal, and/or injectivity, (d) the implementation of
a backward chaining algorithm with tabling, which uses subsumption checking
to avoid redundant computations and infinite branches in the resolution tree,
and (e) the adaptation of the rewriting system to XPath in order to decide sub-
sumption and to derive complexity results for the subsumption problem between
XPath queries.

42 F. Bry, T. Furche, and B. Linse
References
1. Schaffert, S., Bry, F.: Querying the Web Reconsidered: A Practical Introduction

10.

11.

12.

to Xcerpt. In: Proc. Extreme Markup Languages (Int’l. Conf. on Markup Theory
& Practice) (2004)

Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking forward. In: Chaudhri,
A.B., Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490.
Springer, Heidelberg (2002)

Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the
Web. PhD thesis, University of Munich (2004)

Tamaki, H., Sato, T.: OLD resolution with tabulation. In: Proc. Int’l. Conf. on
Logic Programming (ICLP), London, UK, pp. 84-98. Springer, Heidelberg (1986)
Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic pro-
grams. Journal of the ACM 43(1), 20-74 (1996)

Schwentick, T.: XPath query containment. SIGMOD Record 33(1), 101-109 (2004)
Wei, F., Lausen, G.: Containment of conjunctive queries with safe negation. In:
Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp.
343-357. Springer, Heidelberg (2002)

Bjorklund, H., Martens, W., Schwentick, T.: Conjunctive Query Containment over
Trees. In: Arenas, M., Schwartzbach, M.I. (eds.) DBPL 2007. LNCS, vol. 4797, pp.
66-80. Springer, Heidelberg (2007)

Klug, A.: On Conjunctive Queries containing Inequalities. Journal of the
ACM 35(1), 146-160 (1988)

Koch, C.: On the Complexity of Nonrecursive XQuery and Functional Query Lan-
guages on Complex Values. Transactions on Database Systems 31(4) (2006)

Pohl, A.: RDF Querying in Xcerpt: Language Constructs and Implementation.
Deliverable 14-Dx2, REWERSE (2008)

Bry, F., Furche, T., Linse, B.: Simulation subsumption or déja vu on the web
(extended version), http://www.pms.1fi.Ilmu.de/mitarbeiter/linse/
bry-simulation.pdf

http://www.pms.ifi.lmu.de/mitarbeiter/linse/bry-simulation.pdf
http://www.pms.ifi.lmu.de/mitarbeiter/linse/bry-simulation.pdf

	Introduction
	Xcerpt Basics: Query Terms and Simulation
	Simulation Subsumption
	Simulation Subsumption by Rewriting
	Properties of the Rewriting System
	Subsumption Monotonicity and Soundness
	Completeness
	Decidability and Complexity

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

