Skip to main content

Stochastic Calculus of Looping Sequences for the Modelling and Simulation of Cellular Pathways

  • Conference paper
Transactions on Computational Systems Biology IX

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 5121))

Abstract

The paper presents the Stochastic Calculus of Looping Sequences (SCLS) suitable to describe microbiological systems, such as cellular pathways, and their evolution. Systems are represented by terms. The terms of the calculus are constructed by basic constituent elements and operators of sequencing, looping, containment and parallel composition. The looping operator allows tying up the ends of a sequence, thus creating a circular sequence which can represent a membrane.

The evolution of a term is modelled by a set of rewrite rules enriched with stochastic rates representing the speed of the activities described by the rules, and can be simulated automatically.

As applications, we give SCLS representations of the regulation process of the lactose operon in Escherichia coli and of the quorum sensing in Pseudomonas aeruginosa.

A prototype simulator (SCLSm) has been implemented in F# and used to run the experiments. A public version of the tool is available at the url: http://www.di.unipi.it/~milazzo/biosims/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Barbuti, R., Caravagna, G., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: The Calculus of Looping Sequences. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 387–423. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P.: Extending the Calculus of Looping Sequences to Model Protein Interaction at the Domain Level. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 638–649. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A calculus of looping sequences for modelling microbiological systems. Fund. Inform. 72, 21–35 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Bisimulation congruences in the calculus of looping sequences. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 93–107. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Bisimulations in Calculi Modelling Membranes. Formal Aspects of Computing (to appear, 2008)

    Google Scholar 

  7. Cardelli, L.: Brane calculi. Interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schachter, V.: Modeling and querying biomolecular interaction networks. Theor. Comput. Sci. 325, 25–44 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. Theor. Comput. Sci. (to appear, 2008)

    Google Scholar 

  10. Curti, M., Degano, P., Priami, C., Baldari, C.T.: Modelling Biochemical Pathways through Enhanced pi-calculus. Theor. Comput. Sci. 325, 111–140 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable modelling of biological pathways. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325, 69–110 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dockery, J.D., Keener, J.P.: A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bulletin of Mathematical Biology 63, 95–116 (2001)

    Article  Google Scholar 

  14. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  15. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  16. James, S., Nilsson, P., James, G., Kjelleberg, S., Fagerstroem, T.: Luminescence Control in the Marine Bacterium Vibrio fischeri: An Analysis of the Dynamics of lux Regulation. Journal of Molecular Biology 296, 1127–1137 (2000)

    Article  Google Scholar 

  17. Krivine, J., Milner, R., Troina, A.: Stochastic Bigraphs. In: Proc. of the 24th Conference on Mathematical Foundations of Programming Semantics (MFPS 2008). ENTCS. Elsevier, Amsterdam (to appear, 2008)

    Google Scholar 

  18. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: a hybrid approach. Int. J. on Software Tools for Technology Transfer 6, 128–142 (2004)

    Google Scholar 

  19. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. In: Prooceedings of Pacific Symposium on Biocomputing, pp. 341–352. World Scientific Press, Singapore (2000)

    Google Scholar 

  20. Milazzo, P.: Qualitative and quantitative formal modeling of biological systems. Ph.D. Thesis, University of Pisa (2007)

    Google Scholar 

  21. Pǎun, G.: Membrane computing. An introduction. Springer, Heidelberg (2002)

    Google Scholar 

  22. Pérez-Jiménez, M.J., Romero-Campero, F.J.: Modelling Vibrio fischeri’s behaviour using P systems. In: Proc. of the 8th European Conference on Artificial Life, Systems Biology Workshop (2005)

    Google Scholar 

  23. Priami, C.: Stochastic π-calculus. The Computer Journal 38, 578–589 (1995)

    Article  Google Scholar 

  24. Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inform. Process. Lett. 80, 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an abstraction for biological compartments. Theor. Comput. Sci. 325, 141–167 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)

    Article  Google Scholar 

  28. Regev, A., Shapiro, E.: The π-calculus as an abstraction for biomolecular systems. In: Modelling in Molecular Biology. Natural Computing Series, pp. 219–266. Springer, Heidelberg (2004)

    Google Scholar 

  29. Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Proc. of Pacific Symposium on Biocomputing, pp. 459–470. World Scientific Press, Singapore (2001)

    Google Scholar 

  30. Stevens, A.M., Greenberg, E.P.: Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J. of Bacteriology 179, 557–562 (1997)

    Google Scholar 

  31. Van Delden, C., Iglewski, B.H.: Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4, 551–560 (1998)

    Article  Google Scholar 

  32. Ward, J.P., King, J.R., Koerber, A.J., Croft, J.M., Sockett, R.E., Williams, P.: Early development and quorum sensing in bacterial biofilms. Journal of Mathematical Biology 47, 23–55 (2003)

    MATH  MathSciNet  Google Scholar 

  33. Wilkinson, D.: Stochastic modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  34. Wong, P., Gladney, S., Keasling, J.D.: Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. Biotechnology Progress 13, 132–143 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tiberi, P., Troina, A. (2008). Stochastic Calculus of Looping Sequences for the Modelling and Simulation of Cellular Pathways. In: Priami, C. (eds) Transactions on Computational Systems Biology IX. Lecture Notes in Computer Science(), vol 5121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88765-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88765-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88764-5

  • Online ISBN: 978-3-540-88765-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics