Skip to main content

Mechanisms for Memory-Guided Behavior Involving Persistent Firing and Theta Rhythm Oscillations in the Entorhinal Cortex

  • Chapter
  • 1243 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5286))

Abstract

Interactions of hippocampal and parahippocampal regions are important for memory-guided behavior. Understanding the role of these structures requires understanding the interaction of populations of neurons, including the cellular properties of neurons in structures such as the entorhinal cortex. Recent data and modeling suggest an important role for cellular mechanisms of persistent spiking and membrane potential oscillations in medial entorhinal cortex, both in mechanisms for spatial navigation and for episodic memory function. Both persistent firing and membrane potential oscillations may provide mechanisms for path integration at a cellular level based on speed-modulated head direction as a velocity signal. This path integration process thereby provides a potential mechanism for grid cell firing properties in medial entorhinal cortex. Incorporation of these processes into a larger scale model allows simulation of mechanisms for sequence encoding and episodic memory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agster, K.L., Fortin, N.J., Eichenbaum, H.: The hippocampus and disambiguation of overlapping sequences. J. Neurosci. 22, 5760–5768 (2002)

    Google Scholar 

  2. Kesner, R.P., Gilbert, P.E., Barua, L.A.: The role of the hippocampus in memory for the temporal order of a sequence of odors. Behav. Neurosci. 116, 286–290 (2002)

    Article  Google Scholar 

  3. Fortin, N.J., Agster, K.L., Eichenbaum, H.B.: Critical role of the hippocampus in memory for sequences of events. Nature Neuroscience 5, 458–462 (2002)

    Google Scholar 

  4. Kesner, R.P., Novak, J.M.: Serial position curve in rats: role of the dorsal hippocampus. Science 218, 173–175 (1982)

    Article  Google Scholar 

  5. M’Harzi, M., Palacios, A., Monmaur, P., Willig, F., Houcine, O., Delacour, J.: Effects of selective lesions of fimbria-fornix on learning set in the rat. Physiol. Behav. 40, 181–188 (1987)

    Article  Google Scholar 

  6. Hasselmo, M.E., Eichenbaum, H.: Hippocampal mechanisms for the context-dependent retrieval of episodes. Neural Netw. 18, 1172–1190 (2005)

    Article  MATH  Google Scholar 

  7. Lee, I., Jerman, T.S., Kesner, R.P.: Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus. Neurobiol. Learn. Mem. 84, 138–147 (2005)

    Article  Google Scholar 

  8. Eichenbaum, H., Cohen, N.J.: From conditioning to conscious recollection: Memory systems of the brain. Oxford University Press, New York (2001)

    Google Scholar 

  9. Steffenach, H.A., Witter, M., Moser, M.B., Moser, E.I.: Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45, 301–313 (2005)

    Article  Google Scholar 

  10. Bunsey, M., Eichenbaum, H.: Critical role of the parahippocampal region for paired-associate learning in rats. Behavioral Neuroscience 107, 740–747 (1993)

    Article  Google Scholar 

  11. McGaughy, J., Koene, R.A., Eichenbaum, H., Hasselmo, M.E.: Cholinergic deafferentation of the entorhinal cortex in rats impairs encoding of novel but not familiar stimuli in a delayed nonmatch-to-sample task. J. Neurosci. 25, 10273–10281 (2005)

    Article  Google Scholar 

  12. Buckmaster, C.A., Eichenbaum, H., Amaral, D.G., Suzuki, W.A., Rapp, P.R.: Entorhinal cortex lesions disrupt the relational organization of memory in monkeys. J. Neurosci. 24, 9811–9825 (2004)

    Article  Google Scholar 

  13. Zola-Morgan, S., Squire, L.R., Amaral, D.G., Suzuki, W.A.: Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J. Neurosci. 9, 4255–4270 (1989)

    Google Scholar 

  14. Fyhn, M., Hafting, T., Treves, A., Moser, M.B., Moser, E.I.: Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446, 190–194 (2007)

    Article  Google Scholar 

  15. Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005)

    Article  Google Scholar 

  16. Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B.L., Witter, M.P., Moser, M.B., Moser, E.I.: Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758–762 (2006)

    Article  Google Scholar 

  17. Fuhs, M.C., Touretzky, D.S.: A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26, 4266–4276 (2006)

    Article  Google Scholar 

  18. Trullier, O., Meyer, J.A.: Animat navigation using a cognitive graph. Biol. Cybern. 83, 271–285 (2000)

    Article  MATH  Google Scholar 

  19. Burgess, N., Donnett, J.G., Jeffery, K.J., O’Keefe, J.: Robotic and neuronal simulation of the hippocampus and rat navigation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1535–1543 (1997)

    Article  Google Scholar 

  20. Foster, D.J., Morris, R.G., Dayan, P.: A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10, 1–16 (2000)

    Article  Google Scholar 

  21. Touretzky, D.S., Redish, A.D.: Theory of rodent navigation based on interacting representations of space. Hippocampus 6, 247–270 (1996)

    Article  Google Scholar 

  22. Bunce, J.G., Sabolek, H.R., Chrobak, J.J.: Intraseptal infusion of the cholinergic aganist carbachol impairs delayed-non-match-to-sample radial arm maze performance in the rat. Hippocampus 14, 450–459 (2004)

    Article  Google Scholar 

  23. Ennaceur, A., Neave, N., Aggleton, J.P.: Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat. Behav. Brain Res. 80, 9–25 (1996)

    Article  Google Scholar 

  24. Buresova, O., Bolhuis, J.J., Bures, J.: Differential effects of cholinergic blockade on performance of rats in the water tank navigation task and in a radial water maze. Behav. Neuro-sci. 100, 476–482 (1986)

    Article  Google Scholar 

  25. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., Tanila, H.: The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226 (1999)

    Article  Google Scholar 

  26. Redish, A.D., Touretzky, D.S.: The role of the hippocampus in solving the Morris water maze. Neural Comput. 10, 73–111 (1998)

    Article  Google Scholar 

  27. Jensen, O., Lisman, J.E.: Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learning and Memory 3, 279–287 (1996)

    Article  Google Scholar 

  28. Levy, W.B.: A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus 6, 579–590 (1996)

    Article  Google Scholar 

  29. Wallenstein, G.V., Hasselmo, M.E.: GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J. Neurophysiol. 78, 393–408 (1997)

    Google Scholar 

  30. Jensen, O., Lisman, J.E.: Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall. Learning and Memory 3, 264–278 (1996)

    Article  Google Scholar 

  31. Zilli, E.A., Hasselmo, M.E.: Modeling the role of working memory and episodic memory in behavioral tasks. Hippocampus 18(2), 193–209 (2008)

    Article  Google Scholar 

  32. Klink, R., Alonso, A.: Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. J. Neurophysiol. 77, 1813–1828 (1997)

    Google Scholar 

  33. Tahvildari, B., Fransen, E., Alonso, A.A., Hasselmo, M.E.: Switching between "On" and "Off" states of persistent activity in lateral entorhinal layer III neurons. Hippocampus 17, 257–263 (2007)

    Article  Google Scholar 

  34. Egorov, A.V., Hamam, B.N., Fransen, E., Hasselmo, M.E., Alonso, A.A.: Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002)

    Article  Google Scholar 

  35. Fransén, E., Tahvildari, B., Egorov, A.V., Hasselmo, M.E., Alonso, A.A.: Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron 49, 735–746 (2006)

    Article  Google Scholar 

  36. Shalinsky, M.H., Magistretti, J., Ma, L., Alonso, A.A.: Muscarinic activation of a cation current and associated current noise in entorhinal-cortex layer-II neurons. J. Neuro. physiol. 88, 1197–1211 (2002)

    Google Scholar 

  37. Yoshida, M., Fransen, E., Hasselmo, M.E.: mGlur-dependent persistent firing in entorhinal cortex layer III neurons. Eur. J. Neurosci (in press, 2008)

    Google Scholar 

  38. Alonso, A., Llinas, R.R.: Subthreshold Na-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342, 175–177 (1989)

    Article  Google Scholar 

  39. Alonso, A., Klink, R.: Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J. Neurophysiol. 70, 128–143 (1993)

    Google Scholar 

  40. Fransen, E., Alonso, A.A., Dickson, C.T., Magistretti, J., Hasselmo, M.E.: Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Hippocampus 14, 368–384 (2004)

    Article  Google Scholar 

  41. Acker, C.D., Kopell, N., White, J.A.: Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. J. Comput. Neurosci. 15, 71–90 (2003)

    Article  Google Scholar 

  42. Alonso, A., Garcia-Austt, E.: Neuronal sources of theta rhythm in the entorhinal cortex of the rat. I. Laminar distribution of theta field potentials. Experimental Brain Research 67, 493–501 (1987)

    Article  Google Scholar 

  43. Dickson, C.T., Magistretti, J., Shalinsky, M.H., Fransen, E., Hasselmo, M.E., Alonso, A.: Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J. Neurophysiol. 83, 2562–2579 (2000)

    Google Scholar 

  44. Giocomo, L.M., Hasselmo, M.E.: Time constant of I(h) differs along dorsal to ventral axis of medial entorhinal cortex. Journal of Neuroscience (in press)

    Google Scholar 

  45. Yoshida, M., Alonso, A.: Cell-type specific modulation of intrinsic firing properties and subthreshold membrane oscillations by the m(kv7)-current in neurons of the entorhinal cortex. J. Neurophysiol. 98, 2779–2794 (2007)

    Article  Google Scholar 

  46. Tahvildari, B., Alonso, A.: Morphological and electrophysiological properties of lateral entorhinal cortex layers II and III principal neurons. J Comp. Neurol. 491, 123–140 (2005)

    Article  Google Scholar 

  47. Giocomo, L.M., Zilli, E.A., Fransen, E., Hasselmo, M.E.: Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315, 1719–1722 (2007)

    Article  Google Scholar 

  48. Hasselmo, M.E., Giocomo, L.M., Zilli, E.A.: Grid cell firing arise from interfer-ence of theta frequency membrane potential oscillations in single neurons. Hippocampus 17, 1252–1271 (2007)

    Article  Google Scholar 

  49. Burgess, N., Barry, C., O’Keefe, J.: An oscillatory interference model of grid cell firing. Hippocampus 17, 801–812 (2007)

    Article  Google Scholar 

  50. Burgess, N., Barry, C., Jeffery, K.J., O’Keefe, J.: A grid and place cell model of path integration utilizing phase precession versus theta, Computational Cognitive Neuroscience Meeting, Computational Cognitive Neuroscience Meeting, Washington, D.C (2005)

    Google Scholar 

  51. McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.B.: Path integration and the neural basis of the ’cognitive map’. Nat. Rev. Neurosci. 7, 663–678 (2006)

    Article  Google Scholar 

  52. Blair, H.T., Welday, A.C., Zhang, K.: Scale-invariant memory representations emerge from moire interference between grid fields that produce theta oscillations: a computational model. J. Neurosci. 27, 3211–3229 (2007)

    Article  Google Scholar 

  53. O’Keefe, J., Burgess, N.: Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15, 853–866 (2005)

    Article  Google Scholar 

  54. Caballero-Bleda, M., Witter, M.P.: Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: an anterograde tracing study in the rat. J. Comp. Neurol. 328, 115–129 (1993)

    Article  Google Scholar 

  55. Hasselmo, M.E.: Arc length coding by interference of theta frequency oscillations underlie context-dependent hippocampal unit data and episodic memory function. Learn Mem. 14, 782–794 (2007)

    Article  Google Scholar 

  56. van Groen, T., Wyss, J.M.: The postsubicular cortex in the rat: characterization of the fourth region of the subicular cortex and its connections. Brain Res. 529, 165–177 (1990)

    Article  Google Scholar 

  57. Kohler, C.: Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J. Comp. Neurol. 236, 504–522 (1985)

    Article  Google Scholar 

  58. Amaral, D.G., Witter, M.P.: The 3-dimensional organization of the hippocampal formation - A review of anatomical data. Neurosci. 31, 571–591 (1989)

    Article  Google Scholar 

  59. Solstad, T., Moser, E.I., Einevoll, G.T.: From grid cells to place cells: a mathematical model. Hippocampus 16, 1026–1031 (2006)

    Article  Google Scholar 

  60. Swanson, L.W., Wyss, J.M., Cowan, W.M.: An autoradiographic study of the organi-zation of intrahippocampal association pathways in the rat. J. Comp. Neurol. 181, 681–716 (1978)

    Article  Google Scholar 

  61. Naber, P.A., Witter, M.P.: Subicular efferents are organized mostly as parallel projec-tions: a double-labeling, retrograde-tracing study in the rat. J. Comp. Neurol. 393, 284–297 (1998)

    Article  Google Scholar 

  62. Louie, K., Wilson, M.A.: Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29, 145–156 (2001)

    Article  Google Scholar 

  63. Cacucci, F., Lever, C., Wills, T.J., Burgess, N., O’Keefe, J.: Theta-modulated place-by-direction cells in the hippocampal formation in the rat. J. Neurosci. 24, 8265–8277 (2004)

    Article  Google Scholar 

  64. Hasselmo, M.E., Bodelon, C., Wyble, B.P.: A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 793–817 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hasselmo, M.E., Giocomo, L.M., Brandon, M.P., Yoshida, M. (2008). Mechanisms for Memory-Guided Behavior Involving Persistent Firing and Theta Rhythm Oscillations in the Entorhinal Cortex. In: Marinaro, M., Scarpetta, S., Yamaguchi, Y. (eds) Dynamic Brain - from Neural Spikes to Behaviors. NN 2007. Lecture Notes in Computer Science, vol 5286. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88853-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88853-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88852-9

  • Online ISBN: 978-3-540-88853-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics