Skip to main content

A New Mathematical Model for the Heat Shock Response

  • Chapter
  • First Online:
Book cover Algorithmic Bioprocesses

Abstract

We present in this paper a novel molecular model for the gene regulatory network responsible for the eukaryotic heat shock response. Our model includes the temperature-induced protein misfolding, the chaperone activity of the heat shock proteins, and the backregulation of their gene transcription. We then build a mathematical model for it, based on ordinary differential equations. Finally, we discuss the parameter fit and the implications of the sensitivity analysis for our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2004) Essential cell biology, 2nd edn. Garland Science, London

    Google Scholar 

  2. Burden RL, Douglas Faires J (1996) Numerical analysis. Thomson Brooks/Cole, Pacific Grove

    Google Scholar 

  3. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103

    Article  Google Scholar 

  4. El-Samad H, Kurata H, Doyle J, Gross CA, Khamash M (2005) Surviving heat shock: control strategies for robustness and performance. Proc Natl Acad Sci 102(8):2736–2741

    Article  Google Scholar 

  5. El-Samad H, Prajna S, Papachristodoulu A, Khamash M, Doyle J (2003) Model validation and robust stability analysis of the bacterial heat shock response using sostools. In: Proceedings of the 42nd IEEE conference on decision and control, pp 3766–3741

    Google Scholar 

  6. Guldberg CM, Waage P (1864) Studies concerning affinity. In: Forhandlinger CM (ed) Videnskabs-Selskabet i Christiana, p. 35

    Google Scholar 

  7. Guldberg CM, Waage P (1879) Concerning chemical affinity. Erdmann’s J Pract Chem 127:69–114

    Article  Google Scholar 

  8. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) Copasi—a complex pathway simulator. Bioinformatics 22(24):3067–3074

    Article  Google Scholar 

  9. Kampinga HK (1993) Thermotolerance in mammalian cells: protein denaturation and aggregation, and stress proteins. J Cell Sci 104:11–17

    Google Scholar 

  10. Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17(4):2107–2115

    Google Scholar 

  11. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2006) Systems biology in practice. Wiley–VCH, New York

    Google Scholar 

  12. Kurata H, El-Samad H, Yi TM, Khamash M, Doyle J (2001) Feedback regulation of the heat shock response in e.coli. In: Proceedings of the 40th IEEE conference on decision and control, pp 837–842

    Google Scholar 

  13. Lepock JR, Frey HE, Ritchie KP (1993) Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock. J Cell Biol 122(6):1267–1276

    Article  Google Scholar 

  14. Lepock JR, Frey HE, Rodahl AM, Kruuv J (1988) Thermal analysis of chl v79 cells using differential scanning calorimetry: Implications for hyperthermic cell killing and the heat shock response. J Cell Physiol 137(1):14–24

    Article  Google Scholar 

  15. Liu B, DeFilippo AM, Li Z (2002) Overcomming immune tolerance to cancer by heat shock protein vaccines. Mol Cancer Ther 1:1147–1151

    Google Scholar 

  16. Lukacs KV, Pardo OE, Colston MJ, Geddes DM, Alton EWFW (2000) Heat shock proteins in cancer therapy. In: Habib (ed) Cancer gene therapy: past achievements and future challenges. Kluwer, Dordrecht, pp 363–368

    Google Scholar 

  17. Nelson DL, Cox MM (2000) Principles of biochemistry, 3rd edn. Worth Publishers, New York

    Google Scholar 

  18. Peper A, Grimbergent CA, Spaan JAE, Souren JEM, van Wijk R (1997) A mathematical model of the hsp70 regulation in the cell. Int J Hyperthermia 14:97–124

    Article  Google Scholar 

  19. Petre I, Hyder CL, Mizera A, Mikhailov A, Eriksson JE, Sistonen L, Back R-J (2008) Two metabolites are enough to drive the eukaryotic heat shock response. Manuscript

    Google Scholar 

  20. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362(9382):469–476

    Article  Google Scholar 

  21. Press WH, Teukolsky SA, Vetterling WT, Flammery BP (2007) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  22. Rieger TR, Morimoto RI, Hatzimanikatis V (2005) Mathematical modeling of the eukaryotic heat shock response: dynamics of the hsp70 promoter. Biophys J 88(3):1646–1658

    Article  Google Scholar 

  23. Srivastava R, Peterson MS, Bentley WE (2001) Stochastic kinetic analysis of the escherichia coli stres circuit using σ 32-targeted antisense. Biotechnol Bioeng 75(1):120–129

    Article  Google Scholar 

  24. Taubes CH (2001) Modeling differential equations in biology. Cambridge University Press, Cambridge

    Google Scholar 

  25. Tomlin CJ, Axelrod JD (2005) Understanding biology by reverse engineering the control. Proc Natl Acad Sci 102(12):4219–4220

    Article  Google Scholar 

  26. Turányi T (1990) Sensitivity analysis of complex kinetic systems. Tools and applications. J Math Chem 5:203–248

    Article  MathSciNet  Google Scholar 

  27. Workman P, de Billy E (2007) Putting the heat on cancer. Nat Med 13(12):1415–1417

    Article  Google Scholar 

  28. Zill DG (2001) A first course in differential equations. Thomson, Tompa

    Google Scholar 

  29. Zill DG (2005) A first course in differential equations with modeling applications. Thomson, Tompa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion Petre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petre, I. et al. (2009). A New Mathematical Model for the Heat Shock Response. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds) Algorithmic Bioprocesses. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88869-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88869-7_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88868-0

  • Online ISBN: 978-3-540-88869-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics