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Abstract. We investigate various aspects of involutions of groups, i.e,
anti-automorphisms of order at most two. The emphasis is on finite
abelian groups. We count the number of involutions for the cyclic groups,
and consider the problem for direct products of groups. We also give a
characterization for the set of skewed squares of finitely generated abelian
groups with identity as the involution. The present paper is motivated
by our research into switching classes of combinatorial graphs where the
edges have skew gains.
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1 Introduction

Involutions occur naturally in biological processes especially in the base base
inversions of DNA. The material in this paper is mainly motivated not so much
by the biological applications but rather by a quest for techniques which enable
analysis of networks of processors which can be modelled by actions of groups
on finite combinatorial graphs. Such an action is presented by Seidel switching
(see [10, 11] or [3, 5, 12]), and in a more general setting by switching in the so
called skew gain graphs (see [2, 4, 6]).

In the context of Seidel switching (of ordinary graphs), the confronted involu-
tion corresponds to the inversion of the underlying group. In the general setting
of skew gain graphs more flexibility is gained by having general involutions in
the underlying group that acts on the graphs.

In the following we consider involutions in groups without the graphs which
employ them. In Section 3, we concentrate on cyclic groups, and then in Sec-
tion 4 we consider involutions of direct products of finite groups. In Section 5 we



consider a problem for infinite abelian groups concerning involutions to which
Hage [4] showed that the membership problem of switching classes can be re-
duced.

2 Preliminaries

We use Z, R and R+ to refer to the sets of integers, real numbers and positive
real numbers respectively. The cardinality of a set X is denoted by |X|. The
identity function on X is denoted by ιX , from which the subscript X is omitted
if it is clear from the context.

Let Γ be a group. For a function f , the set of its fixed points is Fix(α) = {a ∈
Γ | α(a) = a}, and the set of its inverted points is Inx(α) = {a ∈ Γ | α(a) =
a−1}.

A bijection α : Γ → Γ is an anti-automorphism, if α(ab) = α(b)α(a) for all
a, b ∈ Γ . For abelian groups an anti-automorphism is always an automorphism.
An anti-automorphism α of the group Γ is an involution, if α2 = ι, i.e., if α
has order at most two.1 Let Inv(Γ ) denote the set of all involutions of Γ . We
use #a to denote the order of a group element a ∈ Γ . The kernel of a group
homomorphism α : Γ → Γ ′ is the set ker(α) = {a | α(a) = 1Γ ′}. The image of
α is Im(α) = {b ∈ Γ ′ | b = α(a), a ∈ Γ}. For other standard group notation we
refer to Rotman [8].

Example 1. Let a ∈ Γ , and let δ ∈ Inv(Γ ) be an involution. Then δ(1Γ ) = 1Γ ,
δ(an) = δ(a)n for integers n ∈ Z, and #δ(a) = #a. The inversion a 7→ a−1 is an
involution of each group Γ .

Clearly, δ : Γ → Γ is an involution if and only if the mapping a 7→ δ(a)−1

is an automorphism of order at most two. Therefore, for instance, if Γ contains
an element g with #g = 2, then the mapping a 7→ (a−1)g (= ga−1g−1) is an
involution. This is the case among the finite groups γ of even order.

The following two results are proven, at least, in [6].

Lemma 1. Let δ be an involution of a finite group Γ .

1. Either Fix(δ) 6= {1Γ }, or δ is the inversion of Γ and Γ is of odd order.
2. Either Inx(δ) 6= {1Γ }, or δ is the identity function and Γ is an abelian group

of odd order.

Recall that the centre of a group Γ is the normal subgroup Z(Γ ) = {x ∈ Γ |
xy = yx for all y ∈ Γ}.

Theorem 1. The centre Z(Γ ) of Γ is closed under every involution of Γ . In
particular, if Γ has a nontrivial centre, then for all involutions δ either δ(z) = z
for all z ∈ Z(Γ ) or there exists an element x ∈ Z(Γ ) such that δ(x) = x−1 with
x 6= 1Γ .

1 In the literature an element of a group of order two is also called an involution.



3 Involutions of cyclic groups

Each finite cyclic group is isomorphic to Zn for some n, and by the fundamental
theorem of abelian groups, it can be written as a direct sum

Zn
∼= Zp

m1
1
⊕ Zp

m2
2
⊕ · · · ⊕ Zpmr

r

of cyclic groups Zp
mi
i

, where pi ≥ 2 are distinct prime numbers such that n =
pm1
1 pm2

2 . . . pmr
r .

Let δ ∈ Inv(Zn), and suppose δ(1) = k. Now, δ(i) ≡ ik (mod n) and so
1 = δ(k) ≡ k2 (mod n), i.e.,

k2 ≡ 1 (mod n). (1)

Example 2. Let then n = 16. If (1) holds for k then it also holds for n − k, so
k = 15 is also possible. It is easy to see that if k > 1 then k ≥

√
n + 1 and

hence k cannot be equal to 2, 3 or 4. From Example 1 we know that #1 = #k
and hence k generates Zn as well, implying (n, k) = 1. This means that other
possible values for k that have to be examined are 5 and 7. Of these only 7 works
(and thus also 9).

Let ξ : N → {−1, 0, 1} be defined by

ξ(n) =

1 if 8|n ,
−1 if 2|n and 4 6 |n ,
0 otherwise.

Lemma 2. If n = pm for a prime p and m ∈ N then (1) has exactly 21+ξ(n)

solutions k with 1 ≤ k ≤ n− 1.

Proof. The two solutions k = 1 and k = n− 1 work for any cyclic group. In the
case p = 2 and m = 1 these give the same unique solution.

Assume that (1) holds for k /∈ {1, n − 1}. Now, pm|(k − 1)(k + 1), and thus
p = 2; otherwise pm = k + 1 (because k < n) and so k = n− 1. Suppose 2i|k− 1
and 2j |k + 1 with i + j = m. We have 0 ≤ i < m.

If i = 0 and thus j = m then n = k + 1; a contradiction. Suppose then that
i > 0 in which case also j > 0. Let r = min(i, j). Then 2r|(k + 1)− (k − 1) = 2,
i.e., r = 1. If r = i, then j = m− 1, and so 2m−1|k + 1. If r = j, then i = m− 1,
and so 2m−1|k − 1. Hence, in both cases,

k ≡ ±1 mod 2m−1 . (2)

For m = 1 and m = 2, we obtain the same solutions as in the above, and for
m ≥ 3, we have two solutions.

Summarizing, we have one solution if p = 2 and m = 1, four solutions if
p = 2 and m ≥ 3 and two if p 6= 2 or p = 2 and m = 2.

In the above we have only proven half of what we need to prove, namely
indicating possible solutions. The fact that these solutions do indeed always
exist can be verified easily from (1).

Hence, for every n the number of solutions equals 21+ξ(n). ut



Theorem 2. Let n = pm1
1 pm2

2 . . . pmr
r be a prime decomposition of n with pi <

pi+1, and mi > 0 for 1 ≤ i ≤ r − 1. Then |Inv(Zn)| = 2r+ξ(n).

Proof. Lemma 2 can be applied to each p
mj

j , with 1 ≤ j ≤ r. We can then
use Theorem 122 in the book of Hardy and Wright [7] to conclude that the
total number of solutions equals the product of the numbers of solutions to the
separate equations for p

mj

j for 1 ≤ j ≤ r.
If p1 6= 2 then every prime number gives two solutions yielding a total of

2r solutions, and indeed in this case ξ(n) = 0. If p1 = 2 then we have three
possibilities: m1 = 1 and hence p1 yields only one solution and hence we have a
total of 2r−1 solutions. The other two cases, m1 = 2 and m1 > 2, follow similarly,
because now ξ(n) = ξ(pm1

1 ). ut

Note that the involutions can be found by solving two sets of equations using
the Chinese Remainder Theorem, see [7].

4 Involutions of group products

In the previous section it turned out that finding involutions of cyclic groups
is rather easy. In this section it is shown that computing the involutions of a
direct product of two groups involves taking the cartesian product of the sets of
involutions of both groups.

We remind, see, e.g., Rotman [8], that the inner and outer direct products of
groups coincide up to isomorphism, i.e., for a group Γ , if Γ1 and Γ2 are two of its
normal subgroups such that Γ = Γ1Γ2 and Γ1 ∩ Γ2 = {1Γ }, then Γ ∼= Γ1 × Γ2.
If Γ = Γ1Γ2 is a direct product, then a1a2 = a2a1 for all a1 ∈ Γ1 and a2 ∈ Γ2,
and, moreover, each element a ∈ Γ has a unique representation as a product
a = a1a2, where ai ∈ Γi.

Let Γ = Γ1Γ2 be a direct product, and let α : Γ → Γ be any function. We
define the projections α(i) : Γ → Γi for i = 1, 2 by: for each a ∈ Γ let α(a) =
α(1)(a)α(2)(a), where α(1)(a) ∈ Γ1 and α(2)(a) ∈ Γ2. By the uniqueness property
of direct products, these functions are well defined. We also write

δ[i] : Γi → Γi

for the restriction of δ(i) onto the subgroup Γi for i = 1, 2.
The following example shows that an involution of a direct product cannot

necessarily be obtained by projections of its components.

Example 3. Let Γ = Γ1 × Γ1 for a group Γ1, and let δ be the reversed inversion
on Γ , that is,

δ(a1, a2) = (a−1
2 , a−1

1 )

for all a1, a2 ∈ Γ1. Then δ is an involution of Γ . Indeed, it is clear that δ2 = ι,
and, moreover, for all ai, bi ∈ Γ1,

δ(a1, a2) · δ(b1, b2) = (a−1
2 , a−1

1 )(b−1
2 , b−1

1 ) = (a−1
2 b−1

2 , a−1
1 b−1

1 )
= ((b2a2)−1, (b1a1)−1) = δ(b1a1, b2a2)
= δ((b1, b2) · (a1, a2)).



However, δ is not of the form δ = (δ1, δ2) for any functions (let alone involutions)
δ1 and δ2 of Γ1, if Γ1 is nontrivial.

However, we do have

Theorem 3. Let Γ = Γ1Γ2 be a direct product.

1. If δi ∈ Inv(Γi) for i = 1, 2, then the function δ : Γ → Γ defined by

δ(a) = δ1(a1)δ2(a2) for a = a1a2 with ai ∈ Γi

is an involution of Γ .
2. If δ ∈ Inv(Γ ), then there are normal subgroups ∆1 and ∆2 of Γ such that

Γ = ∆1∆2 is a direct product with |∆1| = |Γ1|, |∆2| = |Γ2| for which
δ[i] : ∆i → ∆i is an involution of ∆i for i = 1, 2.

Proof. In order to prove (i), let δi be involutions as stated. Let a = a1a2 and
b = b1b2 for a1, b1 ∈ Γ1 and a2, b2 ∈ Γ2. Now, for the function δ as defined in the
claim,

δ(ab) = δ(a1a2b1b2)) = δ(a1b1a2b2) = δ1(a1b1)δ2(a2b2)
= δ1(b1)δ1(a1)δ2(b2)δ2(a2) = δ1(b1)δ2(b2)δ1(a1)δ2(a2)
= δ(b1b2)δ(a1a2) = δ(b)δ(a)

and thus δ is an anti-automorphism of Γ . Further, the condition δ2(a) = a is
easily checked.

For (ii) suppose first that δ ∈ Inv(Γ ), and define

∆1 = {δ(a) | a ∈ Γ1} and ∆2 = {δ(b) | b ∈ Γ2} .

Clearly, a ∈ ∆1 (resp. in ∆2) if and only if δ(a) ∈ Γ1 (resp. δ(a) ∈ Γ2). Since an
involution is a bijection, we have immediately that |∆i| = |Γi| for i = 1, 2.

We show then that ∆1 and ∆2 are normal subgroups of Γ . Indeed, let y =
aua−1 for some a ∈ Γ and u ∈ ∆1. Now, δ(y) = δ(a)−1

δ(u)δ(a) ∈ Γ1, since
δ(u) ∈ Γ1 and Γ1 is a normal subgroup of Γ . This shows that ∆1 is normal in
Γ . The case for ∆2 is symmetric.

Next we observe that ∆1 ∩∆2 = {1Γ } is the trivial subgroup of Γ . Further-
more, if a ∈ Γ , then a = a2a1 for some ai ∈ Γi, because Γ = Γ2Γ1. Therefore,
δ(a) = δ(a1)δ(a2), where δ(a1) ∈ ∆1 and δ(a2) ∈ ∆2. Since each element b ∈ Γ
is an image b = δ(a), we have shown that Γ = ∆1∆2 is a direct product of Γ .

It is clear that δ[i] is an involution of ∆i for both i = 1 and i = 2. ut

In particular, if Γ is an abelian group, then it is a direct product (sum)
of cyclic groups, and thus Theorem 4 states that the involutions of an abelian
group can be obtained from the cyclic groups Zpk that are its direct components.
However, counting the number of involutions of Γ is not reduced in this way to
the number of involutions of its direct components, because part (ii) of Theorem 4
uses ‘swappings’ of subgroups.



Example 4. Let Γ = Z2 ⊕ Z2. The groups Γ and Z2 have only the identity
function ι as their involution (equal to the group inversion), but in the case of
the former, it is not the only one. Indeed, the following swapping function δ is
an involution of Γ :

δ((a, b)) = (b, a) for a, b ∈ {0, 1} .

5 The set ∆2(Γ, δ)

In [4] the following set of decomposable values arose (called the skewed squares
in [5]): for a group Γ and its inversion δ, let

∆2(Γ, δ) = {a ∈ Γ | a = bδ(b) for some b ∈ Γ}.

In this section we investigate this set in more detail.
First, in the following proof, we have a connection of the above set with

decompositions of abelian p-groups.

Theorem 4. Let Γ be a finite abelian group of odd order, and let δ ∈ Inv(Γ ).
Then Γ is isomorphic to the direct sum Fix(δ)× Inx(δ).

Proof. It is well known that in each abelian group of odd order every element
a ∈ Γ has a unique “square root” x in Γ , i.e., x2 = a, when adopting the
multiplicative notation; see Rotman [9, Page 81]. Now, for each a ∈ Γ , a = xy
holds for some x ∈ Fix(δ) and y ∈ Inx(δ) if and only if a−1x = y−1 = δ(y) =
δ(a)δ(x−1) = δ(a)x−1 if and only if x2 = aδ(a) and y2 = (aδ(a))−1. This proves
the claim since Fix(δ) ∩ Inx(δ) = {1Γ }. ut

Example 5. If δ is the group inversion, then clearly ∆2(Γ, δ) = {1Γ }. Also, it
is easy to determine that ∆2(Z, ι) is the set of even numbers, ∆2(R, ι) = R for
the additive group of reals, and ∆2(R+, ι) = R+ for the multiplicative group of
positive real numbers.

Given a fixed group Γ with an involution δ, we define the function sΓ,δ by

sΓ,δ(a) = aδ(a) for a ∈ Γ

so that we have Im(sΓ,δ) = ∆2(Γ, δ). When Γ and δ are obvious from the context
we write s instead of sΓ,δ.

Lemma 3. For any group Γ , ∆2(Γ, δ) is closed under the group inversion, and
∆2(Γ, δ) ⊆ Fix(δ).

Proof. Let s(a) ∈ ∆2(Γ, δ). Then s(a)−1 = δ(a)−1
a−1 = s(δ(a)−1) ∈ ∆2(Γ, δ).

For the second part, δ(s(a)) = δ(aδ(a)) = aδ(a) = s(a). ut



Because involutions of a direct product do not always project onto the fac-
tors it is unlikely that we can determine the skewed squares of a group Γ with
involution δ from the skewed squares of the groups in a decomposition of Γ ,
see Example 3. However, we do have that involutions δ1 and δ2 of groups Γ1

and Γ2, respectively, can be used to construct an involution (δ1, δ2) for Γ1 × Γ2

by applying them componentwise. For involutions thus constructed the set of
skewed squares can be constructed from the sets of skewed squares of the factors
as proved by the following result.

Theorem 5. Let Γ = Γ1×Γ2 be a direct product of groups and let δi ∈ Inv(Γi)
for i = 1, 2. Then ∆2(Γ, (δ1, δ2)) = ∆2(Γ1, δ1)×∆2(Γ2, δ2).

Proof. It holds that

(a, b)(δ1, δ2)(a, b) = (a, b)(δ1(a), δ2(b)) = (aδ1(a), bδ2(b)),

where aδ1(a) ∈ ∆2(Γ1, δ1) and bδ2(b) ∈ ∆2(Γ2, δ2). ut

6 Example: The case of the identity involution

In the rest of the article we assume that δ is the identity function, ι. Note that
ι is an involution of every abelian group and no other, so Γ must be abelian.
Written additively, the definition of ∆2 reduces to

{a ∈ Γ | a = 2b for some b ∈ Γ}.

So in a sense ∆2 contains the “even elements” of the group Γ .

Example 6. We can easily verify that ∆2(Z2, ι) = {0}, ∆2(Z3, ι) = {0, 1, 2},
∆2(Z4, ι) = {0, 2}, and ∆2(Z6, ι) = {0, 2, 4}.

From this example it emerges that for even n, ∆2(Zn, ι) contains exactly the
even numbers and for odd n, it equals the entire Γ . The latter is not surprising
since if x ∈ Γ has order n and (m,n) = 1 then x is divisible by m.

It is plain that ∆2(Z2k , ι) = {0, 2, 4, 6, . . . , 2k−1}, for k ≥ 1, and ∆2(Zpk , ι) =
Zpk where p > 2 is prime and k ≥ 1, and ∆2(Z, ι) contains the even numbers
and so by Theorem 5 and the fundamental theorem of finitely generated abelian
groups we get the following result.

Theorem 6. Let Γ be a finitely generated abelian group with a decomposition
Γ1⊕ . . .⊕Γn (unique up to the order of the summands) into infinite cyclic groups
and cyclic p-groups. Then ∆2(Γ, ι) = ∆2(Γ1, ι)⊕ . . .⊕∆2(Γ`, ι).

The previous theorem says nothing about abelian groups that are not finitely
generated such as R+ under multiplication. To deal with R+, we recall the notion
of divisibility: a group is divisible if for every element a and n > 0, we have
a = bn for some b. Note that the set ∆2 is only concerned with divisibility by
two. Therefore, the following result is easy.



Theorem 7. If Γ is divisible then ∆2(Γ, ι) = Γ .

A result such as this suggests that it may be worthwhile to investigate other
decompositions of groups, into divisible and reduced components, or into torsion
and torsion free components.
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