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Abstract. Urge for comfort and excitement have made gadgets indispensable 
part of our life. The technology-enabled gadgets not only facilitate and enrich 
our daily lives but also are interesting tools to challenge human imagination to 
design and implement new ubiquitous applications. Pervasive gaming, in which 
human interaction and game/scenario-dependent designs are often common 
practices, has proved to be one of the areas to successfully combine technology 
and the human fantasy. By moving away from games being played by humans 
and by focusing instead on games played by robots and giving humans the lead-
ing role of defining game strategies and players’ roles, this paper aims at bridg-
ing the two fields of robotics and wireless sensor/actuator networks and 
exploring their potentials in the field of pervasive gaming. A generic game de-
velopment framework is introduced that accommodates different types of robots 
and various kinds of sensors and actuators. Being extensible and modular, the 
proposed framework can be used for a wide range of pervasive applications 
built upon sensors and actuators. To enable game development, a Wiimote-
based robot identification and localization technique is presented. The proposed 
framework and robot identification, localization, control and communication 
mechanisms are evaluated by implementing a game example. 

1   Introduction 

With no doubt technology has changed the way we perceive the world, communicate and 
interact with others and our environment, live our lives, perform our jobs and entertain 
ourselves. The great ubiquitous computing vision of Mark Weiser is not far from our 
reach and researchers and developers have already started challenging the limits of this 
vision by bringing technologies and human imaginations to the next level. Today more 
than ever, gadgets “recede into the background of our lives” [1].  The technology-enabled 
gadgets not only facilitate and enrich our daily lives and increase productivity at work but 
also are interesting tools to challenge the humans imagination to design and implement 
new ubiquitous applications. Pervasive gaming has proved to be one of the areas to suc-
cessfully combine technology and the human fantasy. Schneider et al. define pervasive 
game as “live-action roleplaying game that is augmented with computing and communi-
cation technology in a way that combines the physical and digital space together” [2]. 
Although this definition does not explicitly specifies players to be humans, the majority 
of designed pervasive games are centered around human players and have a strong focus 
on human interaction [3,4,5,6].  
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In outdoor game scenarios, human identification and localization is often based on 
large-scale localization using GPS or GSM [7]. Indoor localization on the other hand 
is generally based on beacon triangulation [8,9,10]. The accuracy of both indoor and 
outdoor localization techniques significantly varies depending on the technology and 
the environment where the technology is used and it can be anywhere between few 
meters to few centimeters.  

By moving away from games being played by humans and by focusing instead on 
games played by robots and giving humans the leading role of defining game strate-
gies and players’ roles, this paper aims at bridging the two fields of robotics and wire-
less sensor/actuator networks and exploring their potentials in the field of pervasive 
gaming.  

2   Identification and Localization 

One of the most important aspects of almost every pervasive game is the knowledge 
of own, and possibly the opponents’ location. In addition, it is highly useful to be able 
to distinguish one player from the other. In other words, the majority of pervasive 
games, if not all, require player identification and localization. Although identification 
and localization may sound like two different problems, they may both be solved 
using the same technique. One should recall that players of the pervasive games we 
have in mind are robots. Not restricting ourselves to robots that have built-in hard-
ware capable of localization, there is a need to use external sensors for localization 
and identification. The choice of external sensors depends on many factors such as 
cost, precision, and flexibility, to name but a few. Possible solutions for both identifi-
cation and localization include:  

• Beacon triangulation: By placing either infrared or ultrasound beacons on 
certain positions on the playing field, it is possible to triangulate the location 
of an object, for example a robot, using an IR detector placed on the object 
itself. The main advantage of this approach is its low cost. A disadvantage is 
that every robot should have its own detector. This technique is more suitable 
for localization than for identification. Moreover, it requires developing a 
special communication line for the framework to communicate with the IR 
detector. 

• Digital camera: Using a camera and image recognition software it is possi-
ble to locate and identify different robots, which can be distinguished by for 
example, different colored patches. This is a method often used in Robosoc-
cer [11]. The advantages are high accuracy and relatively simple communi-
cation mechanism. The main drawback may be the complexity of image 
recognition software.  

• Wiimote [12]: Wiimote is a game controller used by the Nintendo Wii game 
console. It contains accelerometers as well as an infrared camera. Communi-
cation with the Wiimote is over Bluetooth. Using a stationary Wiimote, it is 
possible to detect IR LEDs mounted on robots. The main advantages of this 
approach are its relative simple and fast implementation and reasonably good 
identification and localization accuracy. The Wiimote is also a cheap  
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solution compared to the digital camera. Disadvantages include limited pre-
cision at larger distances and also that one Wiimote can only ‘see’ up to a 
maximum of four LEDs. 

2.1   Wiimote 

Because of the relatively good identification/localization accuracy and the easy Blue-
tooth connectivity, we use the Wiimote for robot identification/localization. It can be 
placed anywhere in the playing field to locate both static and mobile robots equipped 
with IR LEDs.  

In presence of more than four IR sources, Wiimote arbitrarily chooses which LEDs 
to save in its registry and which ones to discard. The order in which the Wiimote 
passes the IR source data to the Bluetooth controller is random. In fact the Wiimote 
does not really track an IR source and rather just passes the positions of up to four IR 
sources to the recipient. Therefore, constant mapping between incoming IR data and 
one of the tracked objects is needed.  

A ‘must have’ feature of the framework is the ability to distinguish between multi-
ple robots, for example between friend and foe, or between two members of the same 
team. Using the Wimote, there are multiple possible solutions to this problem. The 
most obvious solution is to let the LEDs blink at different frequencies. However, there 
are two drawbacks to this approach. First, internal signal processing inside the Wii-
mote makes determining the exact frequency with which the LEDs blink hard. To 
solve this problem, it would be necessary to put the different LEDs very far from each 
other. This in turn would make tracking the blinking LEDs more difficult. A simpler 
solution is to determine the identity of a robot by the number of LEDs it has on top. 
For example, one LED means robot 1 (or team one) and two LEDs means robot 2 (or 
team two). However, because the Wiimote can only track up to four LEDs simultane-
ously, this approach limits number of robots the Wiimote can track at the same time. 

Communication with the Wiimote is done over Bluetooth using an open source C 
library called WiiUse [13]. Functions of this library include reading IR and acceler-
ometer data from the Wiimote and changing various internal Wiimote parameters 
such as IR-sensitivity. 

2.2   Localization Technique 

An important step in the Wiimote-based localization is transforming raw camera co-
ordinates to locations relative to the Wiimote in the 2D playing field. In order to do 
so, one constraint has to be introduced. This constraint is that all the LEDs need to be 
at the same height to convert the 3D problem to a 2D problem. Fig 1, in which various 
variables used in the transformation are shown, presents a side view of a Wiimote and 
an IR LED source. 

The transformation from raw camera coordinates to positions relative to the Wii-
mote is carried out using the equations (1) and (2), in which φFOV is the field of view 
of the camera, Xres and Yres are the resolution of the camera in x and y, xraw and yraw 

are the raw camera coordinates and hdiff is the difference in height of the LED and the 
Wiimote. Equations (1) and (2) are a function of, among other things, the pitch of the 
Wiimote. While it is of course possible to determine this pitch by hand, it is more 
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Fig. 1. The side view of the Wiimote 

accurate and more dynamic to let the Wiimote itself determine this pitch using the 
built-in accelerometers. This is done by measuring the direction in which Earth’s 
gravity points relatively to the three-axis-accelerometer. This way when the Wiimote 
changes pitch, for example because it is mounted on an actuator, it can re-determine 
its pitch and recalculate all locations automatically. 
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Equations (1) and (2) calculate the position of an IR source relative to the position 
of the Wiimote. In a game scenario it could be useful to mount the Wiimote on some 
sort of rotating actuator, which requires determining the positions independently from 
the Wiimotes own position and orientation. This can be done using the equation (3), 
in which θ

 
is the rotation of the Wiimote in the (x,y)

 
plane. 

2.3   Localization Precision  

Several measurements have been performed to test the precision of localization using 
the Wiimote. Data from these measurements is shown in Fig 2.  As it can be seen, the 
precision of the Wiimote-based localization in the x-direction is fairly constant; an 
average error of about -10mm to 10mm. In the y-direction, however, the error 
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strongly depends on the distance to the object. This error in the y-direction can be 
split into three distinct areas, i.e., short, medium and large distance.  

At very short distances from the Wiimote, error is relatively large (about 40mm). 
The reason is twofold. First, when the LED is very close to (beneath of) the Wiimote, 
only just within the Wiimotes vertical field of view, the accuracy of the IR camera is 
not very good. This effect can also be seen in the figure depicting the error in the x-
direction, where the error is the largest at the places where the Wiimote is only just 
visible (at -500mm and 500mm). This could be due to the lens distortion effect. Sec-
ondly, at short distances from the Wiimote, the error resulting from the pitch calcula-
tion has a larger effect and leads to a larger error in position determination. 

At medium distances, the Wiimote performs quite well, having an average error of 
about 12mm. This error is comparable to the error found in the x-direction. 

At large distances, the limited resolution of the IR camera together with the fact 
that the height of the Wiimote compared to the distance to the object is small, result in 
a lower accuracy and an average error of about 35mm. 

The maximum range of the Wiimote highly depends on the specific type of LED 
used. In our experiments performed with a small standard LEDs, the maximum range 
appeared to be around 2 meters when the LED was pointed directly at the Wiimote. 
So-called ultra-bright LEDs could dramatically increase this range. 

The accuracy of the proposed technique is good for distances up to three meters 
and is comparable with infrared beacon triangulation methods such as the one de-
scribed in [8]. 

One possible way to increase localization accuracy is to use two Wiimotes and to 
combine the data to form an image of the playing field with better precision. Another 
 

 

 

Fig. 2. Wiimote’s measurement data (y=1200[mm], height=420[mm]) (top), Wiimote’s meas-
urement data (x=0[mm], height=420[mm]) (bottom) 
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solution would be to hang the Wiimote from the ceiling. However, this will limit the 
size of the playing field because of limited field of view of the Wiimote. 

3   Framework  

The framework needs to accommodate various robots, different sensors and actuators 
and facilitate communication and cooperation between these devices. Not to be re-
stricted to only one or a set of games/scenarios, the framework should provide basic 
functionality for defining a game with dynamic rules and strategies. Basically, the 
framework should be: 

• Extendable, to be easy to add new robots, sensor, actuator, scenario, etc. 
• Flexible, to support creation of different type of games and support dynamic 

change of roles, game scenarios, and strategies. 
• Platform independent. 
• Modular, to be able to just use a sub set of sub-systems and certain aspects to 

make the framework useable for other games and ubiquitous computing  
applications. 

Since not all robots allow one to directly program them, designing the framework 
in a completely decentralized approach is rather restricting. On the other hand, de-
signing the framework in a completely centralized fashion is limiting its flexibility 
and extensibility. Therefore, we opt for a combination of centralized approach (for 
team strategy and game rules) and decentralized approach (for robot control). In order 
for this combination to work, in addition to “game” and “robot” layers, an extra layer 
called Role layer is required. Every team strategy defines a list of roles. Each of these 
roles defines behavior of a certain robot (e.g. defender, attacker). Every robot can be 
assigned an initial role by the team strategy. It then executes the commands defined in 
the role and reacts to sensor input as specified in the role. The robot behavior is there-
fore decentralized. A robot either changes its role by itself based on sensor input or it 
 

 

Fig. 3. Diagram presenting different layers of the framework 
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is given a new role by the team strategy. To ensure the modularity, we use the object-
oriented approach to design the framework, which will later be implemented in  
Java to also assure platform independency. Fig 3 illustrates different layers of the 
framework.  

Robot and Sensor classes assure framework’s extensibility, flexibility, dynamicity, 
and ease of adding new robots, sensors and actuators. These classes contain basic 
functionality to be used by all types of robots and sensors. This functionality includes 
communication and identification methods. Robots and sensors are easily imple-
mented by extending these basic classes. The communication protocols for different 
robots can be placed in separate classes linked to Robot class. This way it will be very 
easy to use a different form of communication without having to alter the framework. 
The framework makes a distinction between internal (built-in and embedded in ro-
bots) and external sensors (added to the robots, game field, and teams). Internal sen-
sors are integrated in the classes representing the robot, while external sensors are 
classes extending the basic Sensor class. The reason for doing so is that internal sen-
sors are often read-out by the same protocol that is used to control the robot and there-
fore it is logical to include them in the Robot class that also governs the protocol for 
communicating with a particular robot. Moreover, a sensor added to a game serves as 
a global sensor, which can be accessed by all teams and robots. In the same way a 
sensor can be added to a team, so that it can be used by all robots in that particular 
team, or to a robot so that it can only be accessed by that robot. The framework also 
allows robots to be added to a game instead of a team, so that the robot can function 
for example as a referee. Fig 4 illustrates the basic class diagram. One should note 
that actual implementations of game rules, team strategies and roles are placed in 
classes extending the basic Game, Team and Role classes. 

As previously mentioned, using Wiimote requires some form of IR tracking. The 
framework accommodates this using an object detector, which creates a new instance 
of a WiiObject class for every source of IR light. As long as the object stays within 
the field of view (FOV) of the camera, this detector ensures that the WiiObject will 
always point to the IR source it was created for. The WiiObject instance maintains 
information concerning the corresponding IR source, such as its position history, 
number of LEDs an object is represented with, and its last known orientation. Having 
 

 

 
 

Fig. 4. Simple class diagram 
 



868 R. van Brandenburg et al. 

The table below presents the main classes of the framework: 

Game Class that contains list of all teams, robots, sensors and actuators. A 
class that extends Game contains the rules of a particular game and has 
the responsibility of creating all sensors and robots.  

Team Class that maintains a list of robots, sensors and actuators belong to a 
team. Classes that extend Team contain team strategies for a particular 
game. 

Role Class that represents roles. Every Role is mapped to one robot. Classes 
that extend Role contain a role designed for a particular robot. 

RoleListener Interface that can be added to an implementation of Team so that it 
receives events created by roles. 

TeamListener Interface that can be added to an implementation of Game so that it 
receives events created by teams. 

Robot Abstract class that contains common robot functionality. 

Sensor Class used for external sensors and implements SensorInterface. 

Position Class that represents position and orientation on the playing field. 

WiimoteInterface Class that functions as a gateway between Wiimote and the rest of the 
framework. It also contains localization techniques. For every Wiimote 
one WiimoteInterface is needed. It also extends Sensor class. 

WiiListener Class that handles communication with the WiiUseJ library. 

ObjectDetector Class which handles the mapping from raw infrared data to objects on 
the playing field and creates an instance of WiiObject for every new IR 
source. It then tracks this source until it leaves the FOV of the Wiimote. 
It also implements the identification system. 

WiiObject Class which represents an object tracked by ObjectDetector. Maintains 
information concerning the IR source such as current position, position 
history and type of object. 

EventObject Every event thrown by a robot or sensor is encapsulated in an imple-
mentation of the abstract class EventObject. There are two major types 
of event objects, TeamEvents and RoleEvent. TeamEvents are handled 
by TeamListeners (in most cases the implementation of Game), while 
RoleEvents are handled by RoleListeners (in most cases the implemen-
tations of Team). 

CommandObject CommandObject is a class representing a command sent to one of the 
robots or one of the teams. Examples are StartCommand and GoTo-
StartPositionCommand. 

all this information in one place makes sharing information among other entities such 
as teams or robots easy.  

When the used identification mechanism does not provide unique identification 
properties, the following mechanism can be used. When the tracked object goes out of 
the Wiimotes’ FOV, the WiiObject is noted as not being visible. Subsequently when a 
new object comes within the FOV, this new object is checked against all objects 
which have previously been visible in order to find a mapping between objects. Pa-
rameters such as last seen position and displacement vector are taken into account for 
this mapping. This way it is possible to track an object while it is being obscured, for 
example by another robot or object, without creating new WiiObjects every time a 
robot re-appears or disappears.  
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4   Game Development 

First step to develop a game using the framework is the choice of robots. Figure be-
low illustrates the two robots we have decided to use: Nabaztag (left) and iRobot 
Roomba (right). 

 

Nabaztag is a simple non-movable gadget whose basic functionality includes read-
ing emails loud, making comments about the weather and talking with other Nabaz-
tags across the Internet. It has rotatable ears (which can only be positioned accurately 
in steps of 20 degrees in a range of 0° to 180°), several multicolored LEDs and a 
speaker used for text-to-speech functionality. It also has two sensors, i.e., microphone 
and RFID reader. Due to limited sensor/actuator capability of Nabaztag, external 
sensors/actuators need to be used. 

Roomba is a circular formed flat vacuum cleaner robot. It contains the following 
actuators: two motors enabling differential drive, vacuum cleaning brush, speaker, 
and multiple-color LED. Roomba has 19 sensors, among others, bump detector, touch 
sensor, dust detector, infrared sensor, angle, and distance sensors. 

4.1   Example Game Scenario 

Let us consider the following example game scenario. There are two teams, an attack-
ing team and a defending team. Each team consists of a Nabaztag and a Roomba. 
Each Nabaztag has a Wiimote mounted on top. The goal for the attacking team is to 
touch the defending Nabaztag with its Roomba. The goal for the defending team is to 
prevent the attacking team from succeeding. Defending can be done by touching the 
attacking Roomba. Both teams have their own Wiimotes, which they use for locating 
their own as well as the enemy Roomba. When attacking Roomba touches defending 
Nabaztag or defending Roomba touches attacking Roomba, teams switch and the 
game starts all over again. 

Due to the fact that the presented framework provides a solid base and modules, 
implementing specific games require very limited additions. For instance, for our 
example game scenario, we only need to create an extension to the Game class to 
accommodate the rules for this specific game and to create two different team strate-
gies, each containing several roles and set up the two different robots. 

4.2   Technical Problems and Solutions 

To attach the Wiimote to the Nabaztag, a Lego construction is attached in place of 
Nabaztag’s ears. The ear controller controls a gearbox (to increase the accuracy of the 
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rotatable ears) and a turntable running on bearings on top of the construct. This  
construction results in a Nabaztag which is able to turn its ‘head’ (and also the Wii-
mote) accurately with a 22.5° resolution.  

To control the Nabaztag, a communication class called NabaztagComm is created 
that, among other things, sets the position of the ear between 0° and 180°, sets LEDs 
with any given color, sends the Nabaztag to sleep and wakes it up. Moreover, the 
WiiNabaztag class is created, which represents a special case of the robot that is 
equipped with the Wiimote. This class rotates the ears and keeps track of orientation 
of the Wiimote attached to it. It also supports setting the Wiimote direction in 16 
different directions between 0° and 360°.  

Although Roomba’s angle and distance sensors are useful in determining robot’s 
position and orientation, their values seem to be incorrect. After conducting various 
experiments, it became apparent that there is neither constant factor between the ac-
tual and theoretical number nor is the error systematic. Another problem of Roomba 
is that it is not possible to program it directly as it has no internal memory that can be 
accessed.  

When the Roomba is supposed to drive a certain distance, the library sends a drive 
command to the Roomba. At this moment a timer is started. After a given time, which 
is determined by the specified distance and speed, the library sends a stop command. 
This mechanism is not very accurate because of the exact timing involved. Using the 
library in a heavily multi-threaded environment, this becomes a serious problem. In 
order to determine the magnitude of this problem a couple of tests have been  
performed.  

Table. 1 presents results of various tests in which the Roomba was driven certain 
distances. A number of observations can be made from these experiments. First, the 
average errors compared to the driven distances are very small. Secondly, the rela-
tively large gap between the average deviation and the maximum deviation shows that 
timing is indeed important. Thirdly, Roomba necessitates good calibration. Experi-
ments show that speed 110 [mm/s], which is not as well calibrated as the other two 
speeds, results in significantly larger errors.  

Table 1. Roomba distance measurements (left), Roomba Angle measurements (right) 
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Because a straight line is not the only path a Roomba is required to traverse, some 
extra tests were performed in which the Roomba was required to turn specific angels. 
The tests were performed in both clock-wise and anti clock-wise directions to see if 
there was difference between the motors driving different wheels. As the results pre-
sented in Table 1 show, the error made when rotating the robot is very small. Control 
of the Roomba’s movement after the calibration and under aforementioned circum-
stances is quite precise.  

To implement the example game scenario, we use a simple identification technique 
in which each robots of one of the teams was equipped with a single LED and each 
robot of the other team with two LEDs. In addition to this, the framework used input 
from robot’s angel and distance sensors when they were out of view of the Wiimote.  

5   Conclusion 

The generic framework presented in this paper is able to accommodate various robots, 
sensors and actuators. Its flexibility, extensibility and modularity enable developing a 
broad range of pervasive games and game scenarios based upon robots, sensors, and 
actuators. To demonstrate the framework an example game using two commonly 
available robots has been developed. Furthermore, the cheap and easily accessible 
Wiimote-based localization and identification technique presented can be used in 
variety of ubiquitous systems including pervasive games. The accuracy of the pro-
posed technique is good for distances up to three meters and is comparable with exist-
ing infrared beacon triangulation methods. At longer distances, however, accuracy 
decreases.  

To enable controlling the robots more accurately, the future work includes integrat-
ing the framework with a full feedback controller using the localization system as 
input. Another possible extension to the framework is support for more complicated 
movement patterns such as spline, which will allow more advanced strategies. 
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