
R. Meersman, Z. Tari, and P. Herrero (Eds.): OTM 2008 Workshops, LNCS 5333, pp. 861 – 872, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Game Development Framework Based Upon Sensors and
Actuators

Ray van Brandenburg, Arie Horst, Bas Burgers, and Nirvana Meratnia

Department of Computer Science, University of Twente, Enschede, The Netherlands
{r.vanbrandenburg,a.p.horst,b.j.burgers}@student.utwente.nl,

n.meratnia@ewi.utwente.nl

Abstract. Urge for comfort and excitement have made gadgets indispensable
part of our life. The technology-enabled gadgets not only facilitate and enrich
our daily lives but also are interesting tools to challenge human imagination to
design and implement new ubiquitous applications. Pervasive gaming, in which
human interaction and game/scenario-dependent designs are often common
practices, has proved to be one of the areas to successfully combine technology
and the human fantasy. By moving away from games being played by humans
and by focusing instead on games played by robots and giving humans the lead-
ing role of defining game strategies and players’ roles, this paper aims at bridg-
ing the two fields of robotics and wireless sensor/actuator networks and
exploring their potentials in the field of pervasive gaming. A generic game de-
velopment framework is introduced that accommodates different types of robots
and various kinds of sensors and actuators. Being extensible and modular, the
proposed framework can be used for a wide range of pervasive applications
built upon sensors and actuators. To enable game development, a Wiimote-
based robot identification and localization technique is presented. The proposed
framework and robot identification, localization, control and communication
mechanisms are evaluated by implementing a game example.

1 Introduction

With no doubt technology has changed the way we perceive the world, communicate and
interact with others and our environment, live our lives, perform our jobs and entertain
ourselves. The great ubiquitous computing vision of Mark Weiser is not far from our
reach and researchers and developers have already started challenging the limits of this
vision by bringing technologies and human imaginations to the next level. Today more
than ever, gadgets “recede into the background of our lives” [1]. The technology-enabled
gadgets not only facilitate and enrich our daily lives and increase productivity at work but
also are interesting tools to challenge the humans imagination to design and implement
new ubiquitous applications. Pervasive gaming has proved to be one of the areas to suc-
cessfully combine technology and the human fantasy. Schneider et al. define pervasive
game as “live-action roleplaying game that is augmented with computing and communi-
cation technology in a way that combines the physical and digital space together” [2].
Although this definition does not explicitly specifies players to be humans, the majority
of designed pervasive games are centered around human players and have a strong focus
on human interaction [3,4,5,6].

862 R. van Brandenburg et al.

In outdoor game scenarios, human identification and localization is often based on
large-scale localization using GPS or GSM [7]. Indoor localization on the other hand
is generally based on beacon triangulation [8,9,10]. The accuracy of both indoor and
outdoor localization techniques significantly varies depending on the technology and
the environment where the technology is used and it can be anywhere between few
meters to few centimeters.

By moving away from games being played by humans and by focusing instead on
games played by robots and giving humans the leading role of defining game strate-
gies and players’ roles, this paper aims at bridging the two fields of robotics and wire-
less sensor/actuator networks and exploring their potentials in the field of pervasive
gaming.

2 Identification and Localization

One of the most important aspects of almost every pervasive game is the knowledge
of own, and possibly the opponents’ location. In addition, it is highly useful to be able
to distinguish one player from the other. In other words, the majority of pervasive
games, if not all, require player identification and localization. Although identification
and localization may sound like two different problems, they may both be solved
using the same technique. One should recall that players of the pervasive games we
have in mind are robots. Not restricting ourselves to robots that have built-in hard-
ware capable of localization, there is a need to use external sensors for localization
and identification. The choice of external sensors depends on many factors such as
cost, precision, and flexibility, to name but a few. Possible solutions for both identifi-
cation and localization include:

• Beacon triangulation: By placing either infrared or ultrasound beacons on
certain positions on the playing field, it is possible to triangulate the location
of an object, for example a robot, using an IR detector placed on the object
itself. The main advantage of this approach is its low cost. A disadvantage is
that every robot should have its own detector. This technique is more suitable
for localization than for identification. Moreover, it requires developing a
special communication line for the framework to communicate with the IR
detector.

• Digital camera: Using a camera and image recognition software it is possi-
ble to locate and identify different robots, which can be distinguished by for
example, different colored patches. This is a method often used in Robosoc-
cer [11]. The advantages are high accuracy and relatively simple communi-
cation mechanism. The main drawback may be the complexity of image
recognition software.

• Wiimote [12]: Wiimote is a game controller used by the Nintendo Wii game
console. It contains accelerometers as well as an infrared camera. Communi-
cation with the Wiimote is over Bluetooth. Using a stationary Wiimote, it is
possible to detect IR LEDs mounted on robots. The main advantages of this
approach are its relative simple and fast implementation and reasonably good
identification and localization accuracy. The Wiimote is also a cheap

 Game Development Framework Based Upon Sensors and Actuators 863

solution compared to the digital camera. Disadvantages include limited pre-
cision at larger distances and also that one Wiimote can only ‘see’ up to a
maximum of four LEDs.

2.1 Wiimote

Because of the relatively good identification/localization accuracy and the easy Blue-
tooth connectivity, we use the Wiimote for robot identification/localization. It can be
placed anywhere in the playing field to locate both static and mobile robots equipped
with IR LEDs.

In presence of more than four IR sources, Wiimote arbitrarily chooses which LEDs
to save in its registry and which ones to discard. The order in which the Wiimote
passes the IR source data to the Bluetooth controller is random. In fact the Wiimote
does not really track an IR source and rather just passes the positions of up to four IR
sources to the recipient. Therefore, constant mapping between incoming IR data and
one of the tracked objects is needed.

A ‘must have’ feature of the framework is the ability to distinguish between multi-
ple robots, for example between friend and foe, or between two members of the same
team. Using the Wimote, there are multiple possible solutions to this problem. The
most obvious solution is to let the LEDs blink at different frequencies. However, there
are two drawbacks to this approach. First, internal signal processing inside the Wii-
mote makes determining the exact frequency with which the LEDs blink hard. To
solve this problem, it would be necessary to put the different LEDs very far from each
other. This in turn would make tracking the blinking LEDs more difficult. A simpler
solution is to determine the identity of a robot by the number of LEDs it has on top.
For example, one LED means robot 1 (or team one) and two LEDs means robot 2 (or
team two). However, because the Wiimote can only track up to four LEDs simultane-
ously, this approach limits number of robots the Wiimote can track at the same time.

Communication with the Wiimote is done over Bluetooth using an open source C
library called WiiUse [13]. Functions of this library include reading IR and acceler-
ometer data from the Wiimote and changing various internal Wiimote parameters
such as IR-sensitivity.

2.2 Localization Technique

An important step in the Wiimote-based localization is transforming raw camera co-
ordinates to locations relative to the Wiimote in the 2D playing field. In order to do
so, one constraint has to be introduced. This constraint is that all the LEDs need to be
at the same height to convert the 3D problem to a 2D problem. Fig 1, in which various
variables used in the transformation are shown, presents a side view of a Wiimote and
an IR LED source.

The transformation from raw camera coordinates to positions relative to the Wii-
mote is carried out using the equations (1) and (2), in which φFOV is the field of view
of the camera, Xres and Yres are the resolution of the camera in x and y, xraw and yraw

are the raw camera coordinates and hdiff is the difference in height of the LED and the
Wiimote. Equations (1) and (2) are a function of, among other things, the pitch of the
Wiimote. While it is of course possible to determine this pitch by hand, it is more

864 R. van Brandenburg et al.

Fig. 1. The side view of the Wiimote

accurate and more dynamic to let the Wiimote itself determine this pitch using the
built-in accelerometers. This is done by measuring the direction in which Earth’s
gravity points relatively to the three-axis-accelerometer. This way when the Wiimote
changes pitch, for example because it is mounted on an actuator, it can re-determine
its pitch and recalculate all locations automatically.

 (),
,

tan 90 0.5raw
relative diff pitch FOV Y

res FOV Y

y
y h

Y
θ ϕ

ϕ
⎛ ⎞

= ⋅ + − − ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

 (1)

 () ()2 2
,

,

tan 0.5 raw
relative relative diff FOV X

RES FOV X

x
x y h

X
ϕ

ϕ
⎛ ⎞

= + ⋅ ⋅ −⎜ ⎟⎜ ⎟
⎝ ⎠

 (2)

cos sin

sin cos
world relative

relativeworld

x x x

yy y

θ θ
θ θ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

 (3)

Equations (1) and (2) calculate the position of an IR source relative to the position
of the Wiimote. In a game scenario it could be useful to mount the Wiimote on some
sort of rotating actuator, which requires determining the positions independently from
the Wiimotes own position and orientation. This can be done using the equation (3),
in which θ

is the rotation of the Wiimote in the (x,y)

plane.

2.3 Localization Precision

Several measurements have been performed to test the precision of localization using
the Wiimote. Data from these measurements is shown in Fig 2. As it can be seen, the
precision of the Wiimote-based localization in the x-direction is fairly constant; an
average error of about -10mm to 10mm. In the y-direction, however, the error

 Game Development Framework Based Upon Sensors and Actuators 865

strongly depends on the distance to the object. This error in the y-direction can be
split into three distinct areas, i.e., short, medium and large distance.

At very short distances from the Wiimote, error is relatively large (about 40mm).
The reason is twofold. First, when the LED is very close to (beneath of) the Wiimote,
only just within the Wiimotes vertical field of view, the accuracy of the IR camera is
not very good. This effect can also be seen in the figure depicting the error in the x-
direction, where the error is the largest at the places where the Wiimote is only just
visible (at -500mm and 500mm). This could be due to the lens distortion effect. Sec-
ondly, at short distances from the Wiimote, the error resulting from the pitch calcula-
tion has a larger effect and leads to a larger error in position determination.

At medium distances, the Wiimote performs quite well, having an average error of
about 12mm. This error is comparable to the error found in the x-direction.

At large distances, the limited resolution of the IR camera together with the fact
that the height of the Wiimote compared to the distance to the object is small, result in
a lower accuracy and an average error of about 35mm.

The maximum range of the Wiimote highly depends on the specific type of LED
used. In our experiments performed with a small standard LEDs, the maximum range
appeared to be around 2 meters when the LED was pointed directly at the Wiimote.
So-called ultra-bright LEDs could dramatically increase this range.

The accuracy of the proposed technique is good for distances up to three meters
and is comparable with infrared beacon triangulation methods such as the one de-
scribed in [8].

One possible way to increase localization accuracy is to use two Wiimotes and to
combine the data to form an image of the playing field with better precision. Another

Fig. 2. Wiimote’s measurement data (y=1200[mm], height=420[mm]) (top), Wiimote’s meas-
urement data (x=0[mm], height=420[mm]) (bottom)

866 R. van Brandenburg et al.

solution would be to hang the Wiimote from the ceiling. However, this will limit the
size of the playing field because of limited field of view of the Wiimote.

3 Framework

The framework needs to accommodate various robots, different sensors and actuators
and facilitate communication and cooperation between these devices. Not to be re-
stricted to only one or a set of games/scenarios, the framework should provide basic
functionality for defining a game with dynamic rules and strategies. Basically, the
framework should be:

• Extendable, to be easy to add new robots, sensor, actuator, scenario, etc.
• Flexible, to support creation of different type of games and support dynamic

change of roles, game scenarios, and strategies.
• Platform independent.
• Modular, to be able to just use a sub set of sub-systems and certain aspects to

make the framework useable for other games and ubiquitous computing
applications.

Since not all robots allow one to directly program them, designing the framework
in a completely decentralized approach is rather restricting. On the other hand, de-
signing the framework in a completely centralized fashion is limiting its flexibility
and extensibility. Therefore, we opt for a combination of centralized approach (for
team strategy and game rules) and decentralized approach (for robot control). In order
for this combination to work, in addition to “game” and “robot” layers, an extra layer
called Role layer is required. Every team strategy defines a list of roles. Each of these
roles defines behavior of a certain robot (e.g. defender, attacker). Every robot can be
assigned an initial role by the team strategy. It then executes the commands defined in
the role and reacts to sensor input as specified in the role. The robot behavior is there-
fore decentralized. A robot either changes its role by itself based on sensor input or it

Fig. 3. Diagram presenting different layers of the framework

 Game Development Framework Based Upon Sensors and Actuators 867

is given a new role by the team strategy. To ensure the modularity, we use the object-
oriented approach to design the framework, which will later be implemented in
Java to also assure platform independency. Fig 3 illustrates different layers of the
framework.

Robot and Sensor classes assure framework’s extensibility, flexibility, dynamicity,
and ease of adding new robots, sensors and actuators. These classes contain basic
functionality to be used by all types of robots and sensors. This functionality includes
communication and identification methods. Robots and sensors are easily imple-
mented by extending these basic classes. The communication protocols for different
robots can be placed in separate classes linked to Robot class. This way it will be very
easy to use a different form of communication without having to alter the framework.
The framework makes a distinction between internal (built-in and embedded in ro-
bots) and external sensors (added to the robots, game field, and teams). Internal sen-
sors are integrated in the classes representing the robot, while external sensors are
classes extending the basic Sensor class. The reason for doing so is that internal sen-
sors are often read-out by the same protocol that is used to control the robot and there-
fore it is logical to include them in the Robot class that also governs the protocol for
communicating with a particular robot. Moreover, a sensor added to a game serves as
a global sensor, which can be accessed by all teams and robots. In the same way a
sensor can be added to a team, so that it can be used by all robots in that particular
team, or to a robot so that it can only be accessed by that robot. The framework also
allows robots to be added to a game instead of a team, so that the robot can function
for example as a referee. Fig 4 illustrates the basic class diagram. One should note
that actual implementations of game rules, team strategies and roles are placed in
classes extending the basic Game, Team and Role classes.

As previously mentioned, using Wiimote requires some form of IR tracking. The
framework accommodates this using an object detector, which creates a new instance
of a WiiObject class for every source of IR light. As long as the object stays within
the field of view (FOV) of the camera, this detector ensures that the WiiObject will
always point to the IR source it was created for. The WiiObject instance maintains
information concerning the corresponding IR source, such as its position history,
number of LEDs an object is represented with, and its last known orientation. Having

Fig. 4. Simple class diagram

868 R. van Brandenburg et al.

The table below presents the main classes of the framework:

Game Class that contains list of all teams, robots, sensors and actuators. A
class that extends Game contains the rules of a particular game and has
the responsibility of creating all sensors and robots.

Team Class that maintains a list of robots, sensors and actuators belong to a
team. Classes that extend Team contain team strategies for a particular
game.

Role Class that represents roles. Every Role is mapped to one robot. Classes
that extend Role contain a role designed for a particular robot.

RoleListener Interface that can be added to an implementation of Team so that it
receives events created by roles.

TeamListener Interface that can be added to an implementation of Game so that it
receives events created by teams.

Robot Abstract class that contains common robot functionality.

Sensor Class used for external sensors and implements SensorInterface.

Position Class that represents position and orientation on the playing field.

WiimoteInterface Class that functions as a gateway between Wiimote and the rest of the
framework. It also contains localization techniques. For every Wiimote
one WiimoteInterface is needed. It also extends Sensor class.

WiiListener Class that handles communication with the WiiUseJ library.

ObjectDetector Class which handles the mapping from raw infrared data to objects on
the playing field and creates an instance of WiiObject for every new IR
source. It then tracks this source until it leaves the FOV of the Wiimote.
It also implements the identification system.

WiiObject Class which represents an object tracked by ObjectDetector. Maintains
information concerning the IR source such as current position, position
history and type of object.

EventObject Every event thrown by a robot or sensor is encapsulated in an imple-
mentation of the abstract class EventObject. There are two major types
of event objects, TeamEvents and RoleEvent. TeamEvents are handled
by TeamListeners (in most cases the implementation of Game), while
RoleEvents are handled by RoleListeners (in most cases the implemen-
tations of Team).

CommandObject CommandObject is a class representing a command sent to one of the
robots or one of the teams. Examples are StartCommand and GoTo-
StartPositionCommand.

all this information in one place makes sharing information among other entities such
as teams or robots easy.

When the used identification mechanism does not provide unique identification
properties, the following mechanism can be used. When the tracked object goes out of
the Wiimotes’ FOV, the WiiObject is noted as not being visible. Subsequently when a
new object comes within the FOV, this new object is checked against all objects
which have previously been visible in order to find a mapping between objects. Pa-
rameters such as last seen position and displacement vector are taken into account for
this mapping. This way it is possible to track an object while it is being obscured, for
example by another robot or object, without creating new WiiObjects every time a
robot re-appears or disappears.

 Game Development Framework Based Upon Sensors and Actuators 869

4 Game Development

First step to develop a game using the framework is the choice of robots. Figure be-
low illustrates the two robots we have decided to use: Nabaztag (left) and iRobot
Roomba (right).

Nabaztag is a simple non-movable gadget whose basic functionality includes read-
ing emails loud, making comments about the weather and talking with other Nabaz-
tags across the Internet. It has rotatable ears (which can only be positioned accurately
in steps of 20 degrees in a range of 0° to 180°), several multicolored LEDs and a
speaker used for text-to-speech functionality. It also has two sensors, i.e., microphone
and RFID reader. Due to limited sensor/actuator capability of Nabaztag, external
sensors/actuators need to be used.

Roomba is a circular formed flat vacuum cleaner robot. It contains the following
actuators: two motors enabling differential drive, vacuum cleaning brush, speaker,
and multiple-color LED. Roomba has 19 sensors, among others, bump detector, touch
sensor, dust detector, infrared sensor, angle, and distance sensors.

4.1 Example Game Scenario

Let us consider the following example game scenario. There are two teams, an attack-
ing team and a defending team. Each team consists of a Nabaztag and a Roomba.
Each Nabaztag has a Wiimote mounted on top. The goal for the attacking team is to
touch the defending Nabaztag with its Roomba. The goal for the defending team is to
prevent the attacking team from succeeding. Defending can be done by touching the
attacking Roomba. Both teams have their own Wiimotes, which they use for locating
their own as well as the enemy Roomba. When attacking Roomba touches defending
Nabaztag or defending Roomba touches attacking Roomba, teams switch and the
game starts all over again.

Due to the fact that the presented framework provides a solid base and modules,
implementing specific games require very limited additions. For instance, for our
example game scenario, we only need to create an extension to the Game class to
accommodate the rules for this specific game and to create two different team strate-
gies, each containing several roles and set up the two different robots.

4.2 Technical Problems and Solutions

To attach the Wiimote to the Nabaztag, a Lego construction is attached in place of
Nabaztag’s ears. The ear controller controls a gearbox (to increase the accuracy of the

870 R. van Brandenburg et al.

rotatable ears) and a turntable running on bearings on top of the construct. This
construction results in a Nabaztag which is able to turn its ‘head’ (and also the Wii-
mote) accurately with a 22.5° resolution.

To control the Nabaztag, a communication class called NabaztagComm is created
that, among other things, sets the position of the ear between 0° and 180°, sets LEDs
with any given color, sends the Nabaztag to sleep and wakes it up. Moreover, the
WiiNabaztag class is created, which represents a special case of the robot that is
equipped with the Wiimote. This class rotates the ears and keeps track of orientation
of the Wiimote attached to it. It also supports setting the Wiimote direction in 16
different directions between 0° and 360°.

Although Roomba’s angle and distance sensors are useful in determining robot’s
position and orientation, their values seem to be incorrect. After conducting various
experiments, it became apparent that there is neither constant factor between the ac-
tual and theoretical number nor is the error systematic. Another problem of Roomba
is that it is not possible to program it directly as it has no internal memory that can be
accessed.

When the Roomba is supposed to drive a certain distance, the library sends a drive
command to the Roomba. At this moment a timer is started. After a given time, which
is determined by the specified distance and speed, the library sends a stop command.
This mechanism is not very accurate because of the exact timing involved. Using the
library in a heavily multi-threaded environment, this becomes a serious problem. In
order to determine the magnitude of this problem a couple of tests have been
performed.

Table. 1 presents results of various tests in which the Roomba was driven certain
distances. A number of observations can be made from these experiments. First, the
average errors compared to the driven distances are very small. Secondly, the rela-
tively large gap between the average deviation and the maximum deviation shows that
timing is indeed important. Thirdly, Roomba necessitates good calibration. Experi-
ments show that speed 110 [mm/s], which is not as well calibrated as the other two
speeds, results in significantly larger errors.

Table 1. Roomba distance measurements (left), Roomba Angle measurements (right)

 Game Development Framework Based Upon Sensors and Actuators 871

Because a straight line is not the only path a Roomba is required to traverse, some
extra tests were performed in which the Roomba was required to turn specific angels.
The tests were performed in both clock-wise and anti clock-wise directions to see if
there was difference between the motors driving different wheels. As the results pre-
sented in Table 1 show, the error made when rotating the robot is very small. Control
of the Roomba’s movement after the calibration and under aforementioned circum-
stances is quite precise.

To implement the example game scenario, we use a simple identification technique
in which each robots of one of the teams was equipped with a single LED and each
robot of the other team with two LEDs. In addition to this, the framework used input
from robot’s angel and distance sensors when they were out of view of the Wiimote.

5 Conclusion

The generic framework presented in this paper is able to accommodate various robots,
sensors and actuators. Its flexibility, extensibility and modularity enable developing a
broad range of pervasive games and game scenarios based upon robots, sensors, and
actuators. To demonstrate the framework an example game using two commonly
available robots has been developed. Furthermore, the cheap and easily accessible
Wiimote-based localization and identification technique presented can be used in
variety of ubiquitous systems including pervasive games. The accuracy of the pro-
posed technique is good for distances up to three meters and is comparable with exist-
ing infrared beacon triangulation methods. At longer distances, however, accuracy
decreases.

To enable controlling the robots more accurately, the future work includes integrat-
ing the framework with a full feedback controller using the localization system as
input. Another possible extension to the framework is support for more complicated
movement patterns such as spline, which will allow more advanced strategies.

References

1. Weiser, M.: The Computer for the Twenty-First Century. Scientific American, 94–110
(1991)

2. Schneider, J., Kortuem, G.: How to Host a Pervasive Game: Supporting Face-to-Face In-
teractions in Live-Action Roleplaying. In: Proc. Designing Ubiquitous Computing Games
(2001)

3. Magerkuth, C., Stenzel, R., Streitz, N., Neuhold, E.: A Multimodal Interaction Framework
from Pervasive Game Applications. In: Workshop for Artificial Intelligence in Mobile Sys-
tems, USA (2003)

4. Anastasi, R., Tandavanitj, N., Flintham, M., Crabtree, A., Adams, M., Row-Farr, J., Iddon,
J., Benford, S., Hemmings, T., Izadi, S., Taylor, I.: Can You See Me Now? A Citywide
Mixed-Reality Gaming Experience, Equator Technical Report, University of Nottingham
(2002)

5. Björk, S., Falk, J., Hansson, R., Ljungstrand, P.: Pirates! –Using the Physical World as a
Game Board. In: Proc. Interact 2001, IFIP TC.13 Conference on Human-Computer Interac-
tion, Tokyo, Japan (2001)

872 R. van Brandenburg et al.

6. Linner, D., Kirsch, F., Radusch, I., Steglich, S.: Context-aware Multimedia Provisioning
for Pervasive Games. In: Proc. of the 7th IEEE International Symposium on Multimedia
(2005)

7. Benford, S., Magerkuth, C., Ljungstrand, P.: Bridging the physical and digital in pervasive
gaming. Communications of the ACM, 54–75 (March 2005)

8. Brassart, E., Pegard, C., Mouadibb, M.: Localization using infrared beacons. Robotica 18
(2000)

9. Mottaghi, R., Vaughan, R.: An integrated particle filter and potential field method applied
to cooperative multi-robot target tracking. Autonomous Robots, 19–35 (July 2007)

10. Eom, D., Jang, J., Kim, T., Han, J.: A VR Game Platform Built Upon Wireless Sensor
Network. In: Advances in Visual Computing. Springer, Berlin (2006)

11. Weiss, N., Hildebrand, L.: An Examplary Robot Soccer Vision System. In: Workshop on
Robots in Entertainment, Leisure and Hobby, Austria (2004)

12. http://en.wikipedia.org/wiki/Wii_Remote
13. Laforest, M.: Wiiuse, http://www.wiiuse.net

	Game Development Framework Based Upon Sensors and Actuators
	Introduction
	Identification and Localization
	Wiimote
	Localization Technique
	Localization Precision

	Framework
	Game Development
	Example Game Scenario
	Technical Problems and Solutions

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

