Skip to main content

Compensation for Speed-of-Processing Effects in EEG-Data Analysis

  • Conference paper
Book cover Intelligent Data Engineering and Automated Learning – IDEAL 2008 (IDEAL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5326))

Abstract

We study averaging schemes that are specifically adapted to the analysis of electroencephalographic data for the purpose of interpreting temporal information from single trials. We find that a natural assumption about processing speed in the subjects yields a complex but nevertheless robust algorithm for the analysis of electrophysiological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flexer, A.: Data mining and electroencephalography. Stat. Meth. Medical Res. 9, 395 (2000)

    Article  MATH  Google Scholar 

  2. Woody, C.D.: Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals. Medical and Biological Engineering and Computing 5, 539–553 (1967)

    Article  Google Scholar 

  3. Picton, T.W., Lins, O.G., Scherg, M.: The recording and analysis of event-related potentials. In: Boller, F., Grafman, J. (eds.) Handbook of Neuropsychology, pp. 3–73. Elsevier, Amsterdam (1995)

    Google Scholar 

  4. Gibbons, H., Stahl, J.: Response-time corrected averaging of event-related potentials. Clinical Neurophysiology 118, 197–208 (2007)

    Article  Google Scholar 

  5. Schrobsdorff, H., Ihrke, M., Kabisch, B., Behrendt, J., Hasselhorn, M., Herrmann, J.M.: A Computational Approach to Negative Priming. Connection Science 19(3), 203–221 (2007)

    Article  Google Scholar 

  6. Ihrke, M.: Negative priming and response-relation: Behavioral and electroencephalographic correlates. Master’s thesis, U. Göttingen (2007), http://www.psych.uni-goettingen.de/home/ihrke

  7. Haig, A.R., Gordon, E., Rogers, G., Anderson, J.: Classification of single-trial ERP sub-types. Electroencephalogry Clinical Neurophysiology 94(4), 288–297 (1995)

    Article  Google Scholar 

  8. Truccolo, W.A., Ding, M., Knuth, K.H., Nakamura, R., Bressler, S.L.: Trial-to-trial variability of cortical evoked responses. Clinical Neurophysiology 113(2), 206–226 (2002)

    Article  Google Scholar 

  9. de Weerd, J.P.: A posteriori time-varying filtering of averaged evoked potentials. I. Introduction and conceptual basis. Biological Cybernetics 41(3), 211–222 (1981)

    Article  MATH  Google Scholar 

  10. Nagelkerke, N.J.D., Strackee, J.: Some notes on the statistical properties of a posteriori Wiener filtering. Biological Cybernetics 33(2), 121–123 (1979)

    Article  MATH  Google Scholar 

  11. Truccolo, W.A., Ding, M., Bressler, S.L.: Variability and interdependence of local field potentials. Neurocomputing 38(40), 983–992 (2001)

    Article  Google Scholar 

  12. Ciganek, L.: Variability of the human visual evoked potential: normative data. Electroencephalogr. Clin Neurophysiol. 27(1), 35–42 (1969)

    Article  Google Scholar 

  13. Basar, E., Gonder, A., Ozesmi, C., Ungan, P.: Dynamics of brain rhythmic and evoked potentials. Biological Cybernetics 20(3-4), 137–143 (1975)

    Article  Google Scholar 

  14. Lange, D.H., Siegelmann, H.T., Pratt, H., Inbar, G.F.: Overcoming selective ensemble averaging: unsupervised identification of event-related brain potentials. IEEE Transactions on Biomedical Engineering 47(6), 822–826 (2000)

    Article  Google Scholar 

  15. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B 63(2), 411–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Woldorff, M.G.: Distortion of erp averages due to overlap from temporally adjacent erps: Analysis and correction. Psychophysiology 30, 98–119 (1993)

    Article  Google Scholar 

  17. Myers, C., Rabiner, L.: A level building dynamic time warping algorithm for connected word recognition. IEEE Transact. Acoustics, Speech, and Signal Proc. 29, 284–297 (1981)

    Article  MATH  Google Scholar 

  18. Keogh, E.J., Pazzani, M.J.: Derivative Dynamic Time Warping. In: First SIAM International Conference on Data Mining (SDM 2001) (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ihrke, M., Schrobsdorff, H., Herrmann, J.M. (2008). Compensation for Speed-of-Processing Effects in EEG-Data Analysis. In: Fyfe, C., Kim, D., Lee, SY., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2008. IDEAL 2008. Lecture Notes in Computer Science, vol 5326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88906-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88906-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88905-2

  • Online ISBN: 978-3-540-88906-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics