Skip to main content

Using Kullback-Leibler Distance in Determining the Classes for the Heart Sound Signal Classification

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2008 (IDEAL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5326))

Abstract

Many research efforts have been done on the automatic classification of heart sound signals to support clinicians in heart sound diagnosis. Recently, hidden Markov models (HMMs) have been used quite successfully in the automatic classification of the heart sound signal. However, in the classification using HMMs, there are so many heart sound signal types that it is not reasonable to assign a new class to each of them. In this paper, rather than constructing an HMM for each signal type, we propose to build an HMM for a set of acoustically-similar signal types. To define the classes, we use the KL (Kullback-Leibler) distance between different signal types to determine if they should belong to the same class. From the classification experiments on the heart sound data consisting of 25 different types of signals, the proposed method proved to be quite efficient in determining the optimal set of classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leung, T.S., White, P.R., Collis, W.B., Brown, E., Salmon, A.P.: Acoustic diagnosis of heart diseases. In: Proceedings of the 3rd international conference on acoustical and vibratory surveillance methods and diagnostic techniques, Senlis, France, pp. 389–398 (1998)

    Google Scholar 

  2. Cathers, I.: Neural Network Assisted Cardiac Asculation. Artif. Intell. Med. 7, 53–66 (1995)

    Article  Google Scholar 

  3. Bhatikar, S.R., DeGroff, C., Mahajan, R.L.: A Classifier Based on Artificial Neural Network Approach for Cardiac Auscultation in Pediatrics. Artif. Intell. Med. 33, 251–260 (2005)

    Article  Google Scholar 

  4. Lippmann, R.P.: An Introduction to Computing with Neural Nets. IEEE ASSP Magazine, 4–22 (April 1987)

    Google Scholar 

  5. DeGroff, C., Bhatikar, S., Hertzberg, J., Shandas, R., Valdes-Cruz, L., Mahajan, R.: Artificial neural network-based method of screening heart murmur in children. Circulation 103, 2711–2716 (2001)

    Article  Google Scholar 

  6. Gill, D., Intrator, N., Gavriely, N.: A Probabilistic Model for Phonocardiograms Segmentation Based on Homomorphic Filtering. In: 18th Biennial International EURASIP Conference Biosignal, pp. 87–89 (2006)

    Google Scholar 

  7. Ricke, A.D., Povinelli, R.J., Johnson, M.T.: Automatic segmentation of heart sound signals using hidden Markov models. Computers in Cardiology, 953–956 (September 2005)

    Google Scholar 

  8. Chung, Y.: A Classification Approach for the Heart Sound Signals Using Hidden Markov Models, SSPR/SPR, pp. 375–383 (2006)

    Google Scholar 

  9. Rabiner, L.R., Wilpon, J.G., Juang, B.H.: A segmental k-means training procedure for speech recognition. IEEE Trans. ASSP, 2033–2045 (December 1990)

    Google Scholar 

  10. Juang, B.H., Rabiner, L.R.: A probabilistic distance measure for hidden Markov models. AT&T Tech. J., 391–408 (1984)

    Google Scholar 

  11. Mason, D.: Listening to the Heart, Hahnemann University (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chung, YJ. (2008). Using Kullback-Leibler Distance in Determining the Classes for the Heart Sound Signal Classification. In: Fyfe, C., Kim, D., Lee, SY., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2008. IDEAL 2008. Lecture Notes in Computer Science, vol 5326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88906-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88906-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88905-2

  • Online ISBN: 978-3-540-88906-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics