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Abstract. In this paper, a new steganographic method that preserves
the first-order statistics of the cover is proposed. Suitable for the passive
warden scenario, the proposed method is not robust to any change of
the stego object. Besides the relative simplicity of both encoding and
decoding, high and adjustable information hiding rate can be achieved
with our method. In addition, the perceptual distortion caused by data
embedding can be easily minimized, such as in the mean squared error
criterion. When applied to digital images, the generic method becomes a
sort of LSB hiding, namely the LSB™ algorithm. To prevent the sample
pair analysis attack, the LSB™ algorithm is implemented on the selected
subsets of pixels to preserve some important high-order statistics as well.
The experimental results of the implementation are promising.
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1 Introduction

The art of steganography, i.e. covert communication by hiding the presence of
a message from a third party, has been studied in the community (e.g. [1]-[3]).
Although the early steganographic methods can imperceptibly embed data into
a cover object, the technique of steganalysis [4] has been developed to detect
the hidden data from the statistical characteristics of the stego object. It has
been shown by the detection-theoretic analysis (e.g. [5,6]) that several data
hiding methods are detectable. How to avoid being detected by the steganalysis
technique is a central topic of the steganography research.

Since most of the steganalytic algorithms (e.g. [7]-[16]) exploit the statistics
of the stego object for detection, quite a few steganographic algorithms (e.g.
[17]-[23]) are designed to preserve the statistics of the cover object as much as
possible. An early attempt is the F5 algorithm [17], in which some statistical
characteristics in the histogram of DCT coefficients is preserved to prevent the



X2 (chi-squared) attack [7]. In the detector designed by Fridrich et al. [8] to
break the F5 steganography, the cover histogram is estimated from the suspected
image for comparison. In Provos’ Outguess [18], part of the JPEG coefficients
are used to repair the histogram changed by data embedding. However, the
changes at the JPEG block boundaries can be exploited because the embedding
is performed in the block-wise transform domain [9]. A method attempting to
preserve the histogram after LSB hiding is further presented by Franz [19], where
a message that mimics the imbalance between the adjacent histogram bins is
embedded in the pairs of values that are independent. Despite that a message
with the unequal probabilities of 0 and 1 carries less information, the asymmetric
embedding process determined by a co-occurrence matrix can be exploited for
steganalytic attack, as shown in [10]. Similarly, Eggers et al. propose a histogram-
preserving data-mapping (HPDM) method [20] by embedding a message with
the same distribution as the cover object. Subsequently, the histograms of the
cover object and the stego object can be matched so as to reduce the probability
of being detected. However, it is shown by Tzschoppe et al. [21] that the HPDM
can be detected by Lyu and Farid’s steganalytic method [12] based on the high-
order statistics. The reason given in [21] is that the higher frequency components
have not been separately treated from the lower and direct current (DC) ones.
In [22], a histogram restoration algorithm is proposed without embedding in the
low-probability region. Within the embedding positions specified a secret key, a
portion of eligible coefficients are used for embedding while the rest are used for
compensation. In [23], the statistical restoration method is adopted to further
preserve the second-order statistics of the cover image.

The model-based method [24] provides a new perspective for steganography
by generating the stego object conforming to a given distribution model. For
the lack of a perfect model, the steganographic algorithm using the Generalized
Cauchy distribution [24] can be broken by only using the first-order statistics, i.e.
the measures without considering the inter-dependencies between observations,
such as mean and variance [25]. In this paper, a new steganographic method
is proposed to preserve the first-order statistics inherently. By dividing the dis-
tribution range of the elements in a cover object into non-overlapped bins, two
adjacent ones are utilized to form an individual embedding unit. Then the ele-
ments in the same embedding unit are bijectively mapped to each other for data
embedding. Provided that the stego object is intact, the hidden message can be
correctly extracted. Despite the relative simplicity of both encoding and decod-
ing, high and adjustable information hiding rate can be achieved. Moreover, the
distortion can be easily minimized in the minimum mean square error (MSE)
criterion. When applied to digital images, the generic method becomes a sort of
LSB hiding, namely the LSBT algorithm. To avoid being detected by the sam-
ple pair analysis (SPA) steganalysis [11], the LSBT algorithm is implemented on
the subsets of pixels with the same neighbor values (up, down, left and right) to
preserve some important high-order statistics as well.

The rest of this paper is organized as follows: In the next section, a novel
data mapping method is presented for steganography. In Section 3, we apply it
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Fig. 1. Every two adjacent bins within the range from 0 to 255 are utilized to form an
embedding unit for digital gray-scale images, respectively.

to digital images and further prevent the SPA attack by implementing it on the
selected subsets of pixels. The performance of the new approach is evaluated in
Section 4. Finally, a conclusion is drawn in Section 5.

2 A Data Mapping Method for Steganography

In this section, a novel LSB hiding algorithm named LSBT is firstly introduced,
which preserves the image histogram. Then the generic data mapping method
is further proposed, applicable to the cover object represented by integers or
floating point numbers. We further analyze the bounds of information hiding
rate and perceptual distortion with the proposed method.

2.1 LSBT Algorithm

In [3], Cachin proposes an information-theoretic model for steganography with
the relative entropy, also called the Kullback-Leibler (K-L) divergence, between
the distribution Po according to which the cover object is generated and the
distribution Pg corresponding to the stego object:

P,
D(Pc||Ps) =Y Pclog FZ‘ (1)

In general, D(P¢||Ps) is nonnegative and equal to zero if and only if Po = Pg. As
for digital images, the high-order statistics can still be exploited for steganalysis
after the cover histogram is preserved. Nevertheless, we regard it as a necessary
condition for a secure image steganography. In the following, a novel LSB hiding
algorithm named LSBT is developed to preserve the image histogram, as well as
the other first-order statistics:

Given a gray-scale image, we can easily calculate its histogram by counting
the pixels having the same value, i.e. the amount of pixels within the same bin.
As shown in Fig. 1, every two adjacent bins within the range from 0 to 255 are
utilized to form an embedding unit, respectively. We restrict the change of a
pixel value within each unit so that only the least significant bit is changeable.
For example, a pixel with the value of 4 can only be modified to 5 or remain the
same because only the two pixel values 4 and 5 are contained in the same unit.
Since the operations in one embedding unit are independent from those in the
other units, we only discuss the operations in an arbitrary unit.
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Fig. 2. Every two adjacent bins with the size A form an individual unit in the proposed
data mapping method, respectively.

In the normal LSB hiding, a string of bit values are used to replace the original
LSBs of pixel values. The histogram of the cover image is probably changed
due to the randomness of the embedded data. Obviously, the histogram can be
preserved if the amount of pixels within each bin is unchanged. In the LSBT
algorithm, the bit values are also embedded by replacement but the replacement
operations are performed conditionally. The key idea is that the number of the
embedded 0s and 1s should not exceed the original ones in the LSBs, respectively.
Suppose that there are L and M pixels originally in the left and right bins, the
time of embedding 0 should be no more than L and the time of embedding 1
should not exceed M. Once there are L 0s (or M 1s) having been embedded, all
the unprocessed LSBs will be replaced with 1s (or 0s). In this way, the amounts
of 0s and 1s in the LSBs are unchanged by data embedding. In the decoding
process, the embedded bits are extracted one by one in the same order as in the
embedding process. For each unit, the extraction process is finished once all the
LSBs in either bin have been retrieved.

Since part of the LSBs are replaced to repair the cover histogram instead
of embedding, the LSBT algorithm is a bit more complex than the normal LSB
hiding. A portion of payload is also sacrificed to preserve the image histogram, as
well as the other low-order statistics. In the following, a generic method that is
applicable to any cover object represented by floating point numbers or integers
will be further proposed.

2.2 The Generic Method

Suppose a cover object C consists of N data elements, i.e. C = {e1,e9, -+, en},
where e; is a data element with an index number i € {1,2,---, N}. We use R to
denote the distribution range of the data elements {e1,es, -+, en} and quantize

R into the non-overlapping bins with the same size A. For the sake of simplicity,
we only discuss the one-dimensional case because multiple dimensions can be
addressed one by one. As shown in Fig. 2, every two adjacent bins in the range
of R form an individual unit, within which the bit values 0 and 1 are assigned
to the left and right bins, respectively. If the value of a data element e; falls
into the left bin, it represents a bit value of 0, or 1 if it is in the right bin. To
embed a bit value of 0, the data element should be kept in the left bin if it was
originally the case, or mapped to the left bin if it originally was in the right one.
The process to embed a bit value of 1 is similar as long as we replace “left” by
“right” and vice versa. The key idea of the proposed method is that the times
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Fig. 3. The eleven data elements {e1, e2,- -, e11} in the embedding Unit n are used to

embed a string of bit values “10011010010”. Only the first nine bit values “100110100”
can be embedded until the time of embedding a bit value 0 has reached the amount
of those elements originally in the left bin. Then the bijective mapping between the
eleven elements are performed with the minimum mean square error (MSE).

of embedding 0 (1) should not exceed the amounts of elements originally in the
left (right) bins, respectively. Therefore, we need to count the numbers of data
elements in both bins before and during the embedding process. Once the time
of embedding 0 (or 1) has reached the amount of elements originally in the left
(or right) bin, no bit value can be further embedded to ensure that all elements
in an embedding unit can be bijectively mapped to each other.

The detailed data mapping process can be illustrated in Fig. 3, where there
are eleven data elements {ej, e, -, e11} with different values in the Unit n. To
embed a string of bit values “10011010010”, the data elements are processed in
the order of their indices. Since e; is in the left bin, it corresponds to the bit
value 0. Therefore, it should be mapped into the right bin to embed a bit value
1. As for eg, it should remain in the left bin to embed a bit value 0. To embed
the third bit value 0 in the string, e3 needs to be mapped from the right to the
left bin. The rest of the bit values are sequentially embedded until the ninth
one, which leads eg to remain in the left bin. Since the number of the elements
mapped to the left bin has reached 5, which is the amount of those originally
in the left bin, no bit value can be embedded in the Unit n any more due to
the randomness of data to be embedded. Therefore, only the first nine bit values
“100110100” can be embedded by mapping the data elements with the indices 2,
3, 6, 8, 9 into the left bin and the rest elements into the right bin. To minimize
the error caused by data mapping in the mean square error (MSE) criterion, the
elements mapped to the same bin should be ordered according to their original
values. In the optimal scheme, e, eg, es, €3, g are mapped to the data elements
e, €5, €9, €1, eg while the elements with the indices 5, 1, 7, 11, 4, 10 are mapped
to those with the indices 7, 3, 11, 6, 4, 10. It should be noted that the data
mapping process can be performed no matter whether several elements have the
same values (e.g. the pixels having the same value in a gray-scale image). If all
elements originally in a destination bin have the identical values, there is no need
to order the ones mapped to that bin.

The data mapping between the data elements in an embedding unit heavily
depends on the order they are processed. In Fig. 4, the same data elements as
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Fig. 4. The same data elements as shown in Fig. 3 are used to embed a string of
bit values “100110100” except that the indices of the ninth and tenth elements are
exchanged. As a result, the data mapping with the minimum MSE is greatly different
from that in Fig. 3.

shown in Fig. 3 are used to embed the bit values “100110100” except that the
indices of the ninth and tenth elements are exchanged. To embed the ninth bit
value 0, the data element eg in Fig. 4 should be mapped from the right bin to
the left one. In contrast, the data element eg in Fig. 3 remains in the left bin.
To minimize the error in the MSE criterion, the data elements es, eg, €3, €g, €9
are mapped to the elements es, €5, €19, €1, €g, while the data elements with the
indices 5, 10, 1, 7, 11, 4 are mapped to those with the indices 7, 3, 11, 6, 4, 9.

The decoding process is much simpler: Given that the order of data elements
in the stego object is the same as that in the cover object, the bit values can be
extracted from the positions of data elements (i.e. in the left or right bin) one
by one. The extracted bit value will be 0 if a data element is located in the left
bin, or 1 if it is in the right one. For each embedding unit, once all elements in
either bin (left or right) have been used up for data extraction, the extraction
process is finished. For example, the bit values that can be extracted from the
Unit n in Fig. 3 (b) and Fig. 4 (b) are not “10011010011”, but “100110100”.
Since the embedding and extraction operations within each unit do not interfere
with those performed in other units, the operations in every embedding unit can
be carried out in parallel. So both of the encoding and decoding processes are
performed in the order of all elements in a cover object. Furthermore, the order
can be scrambled with a secret key shared by the sender and receiver.

2.3 Bounds of Hiding Rate and Perceptual Distortion

For each embedding unit, the amount of bit values that can be embedded depend
on the amount of data elements in the two bins, respectively. Suppose there are
L and M data elements in the two bins. Without loss of generality, we assume
that M is always no more than L. Then the minimum and maximum amount of
bit values that can be embedded in that embedding unit are M and L + M — 1.
The upper bound of capacity is possible to be approached when M is close to L
while the low bound is likely when M is close to 0. In particular, the capacity will
be zero when M = 0. If we take digital images for instance, the proposed method



tends to embed more when the histogram of the cover image changes slowly and
the data hiding rate drops when the cover histogram fluctuates rapidly.

The data hiding rate is maximized by default because the embedding process
will not stop until the bit values have been embedded to all elements in either bin
(left or right). Alternatively, the hiding rate can be adjusted with a parameter
6 € (0,1], i.e. once the time of embedding a bit value 0 (or 1) reaches a fraction
(denoted by 6) of the amount of elements originally in the left (or right) bin, the
embedding process will be finished. Accordingly, the same policy is enforced in
the extraction process. So the low and upper bounds of the data hiding capacity
in the aforementioned embedding unit are [M#] and [(L + M — 1)8] bits, where
[-] represents the ceil function. In this way, the data hiding rate can be adjusted
with the parameter 6, which should be shared by the sender and the receiver.

By performing the bijective mapping between the data elements within two
adjacent bins, the perceptual distortion caused by data embedding is bounded.
Given a bin size A, the maximum change of a data element is always less than
2A. So the perceptual distortion of the stego object can be tuned by adjusting the
bin size A. The proposed method can be applied to the cover object represented
by integers or floating point numbers. As for the floating point numbers, there
is no need to deal with the truncation error as no new value is generated in the
stego object. In this paper, we concentrate on image steganography by applying
the LSBT algorithm, which is a specific case of the proposed method applied to
images with the bin size set to 1.

3 Image Steganography with the LSBT Algorithm

Since there is only one pixel value in each bin as shown in Fig. 1, there is no
need to order the pixels mapped to the same bin. We perform the LSBT algo-
rithm on all pixels within a cover image in the raster order, i.e. by rows from
top to bottom and within each row from left to right. By setting the parameter
0 to 1, the stego image is generated with the hiding rate at 0.9688 bit/pixel and
PSNR = 51.14dB, as shown in Fig. 5 (a). Since the LSBT algorithm preserves
the histogram, the steganalytic algorithms based on histogram are no longer
efficient. Furthermore, it is performed in the spatial domain without differen-
tiating the pixels at the block boundaries and those within the blocks. So the
steganalytic algorithms designed to detect the message in a specific transform
domain (e.g. JPEG) or a block structure are incapable of detection. Nevertheless,
readers may argue that the hidden message may be detected by the steganalytic
algorithms using high-order statistics (e.g. [6], [11]-[16]). In the following, we fur-
ther take the SPA attack in [11] for instance and explore the inter-dependencies
between pixels to prevent it.

Dumitrescu et at. develop the technique of SPA in [11] to detect the random
LSB hiding in digital images. The key assumption for the SPA steganalysis can
be summarized as follow: For the sampled pairs of pixels whose values differ
by an odd number, the chances that the greater pixel value is odd or even are
equal. The closed multi-set C,,, under the LSB hiding is defined as the set of



0.2

0.15)

0.1

0.05

0
0 20 40 60 80 100 120 140

(a) The stego image of “lena” with (b) The relative errors calculated from the
the hiding rate at 0.9688 bit/pixel and original and stego images of “lena” as shown
PSNR = 51.14dB. by the solid and dash-dot curves, respectively.
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Fig. 5. The relative error

is greatly increased for 0 < j <

pixel pairs whose values differ by m in all the bits except the least significant
one (i.e. by right shifting one bit to get rid of the LSB). But its submultisets
Do, (the set of pixel pairs whose value differ by 2m), Xs,,—1 (the set of pixel
pairs whose values differ by 2m — 1 and the greater value is even), and Ya,,41
(the set of pixel pairs whose values differ by 2m + 1 and the greater value is
odd), are not close under the LSB hiding. As shown in Fig. 5 (b), the relative
I Upu—o Yemt1] =1 Upy—o Xama ]
[Ul—o Yam+1l+ U —o X2m1]
LSBT algorithm on all pixels in the cover image of “lena” with # = 1, where
| X2m—1| and [Yam,+1| denote the amount of pixel pairs in Xo,,—1 and Y241,
respectively. The phenomenon is modeled by a finite-state machine in [11]. To
further estimate the length of message embedded by the random LSB hiding, the
fraction of the pixels modified in the embedding process is assumed to be equal
to § when the data hiding rate is p bit/pixel. However, the same conclusion
cannot be drawn from the LSB™ algorithm because part of the pixel values are
modified not for data embedding purpose but to preserve the histogram of the
cover. So we directly use a to denote the fraction of the pixels modified in the
embedding process. Then the fraction of the pixels that are unchanged is 1 — a.
For m =1,2,...,127, (2) and (3) in [11] become

error is greatly increased after implementing the

[ Xom-1](1 = 20)% = a®|Crn| = a(|Diyn| + 2X50 1) + X5 ], (2)

Yoms1|(1 = 20)* = &®|Cra| — (| D5, | + 2|5, 1) + 1Yo i1l (3)



where |C,,| denotes the amount of pixel pairs in Cy,. [ X3, ;| and |Y3,, | denote
the amount of pixel pairs whose values differ by 2m — 1 while the greater value is
even and odd in the samples from the stego image, respectively. |Dj, .| denotes
the amount of pixel pairs whose values differ by 2m in the samples from the
stego image. When m = 0, the (4) in [11] becomes

V1](1 = 20)* = 207|Col — 20(| D + Y1) + [Y7]. (4)

In [11], | Xomm41] is assumed to be equal to |Ya,, 41| for m = 0,1,...,127. With
this assumption, we can obtain the following quadratic equation to estimate the
length of the hidden message

(Cm||Cm+1|)a2(|D/2m||Dém+2|+2gm+l|2|Xém+1|)a+gm+l||Xém—i(-1£ =0
5

for m > 1 and for m = 0,
(2|Co| — |Cr])a? — (2|Dg| — [Dy| + 2Y{| = 2|X o+ [Y{| = | X{| =0.  (6)

It has been shown in [11] that the length of the hidden message is the smaller
root of (5) provided that |Cy,| > |Crt1] (or 2|Cy| > |Cy| for (6)). However, if
Xoms1] = [Xbyyar| and [Yomt] = [Vl [Xbyar| = Y| in (5) is equal to
0 so that the estimated length will be zero. In the following, we will show how to
prevent the SPA attack by implementing the LSB™ algorithm on every special
set of pixels.

For the better estimation, the SPA steganalysis is usually performed on the
neighboring pixels to utilize the inter-dependencies between them. Since every
sampled pixel pair are two neighboring pixels, we choose to implement the LSB™
algorithm on the subset of pixels having the same neighbor values, i.e. the up,
down, left, and right neighbor values (denoted by 4-N in short) of all pixels in the
subset are the same. To generate a special subset, half of the pixel values, which
are the neighbor values of the other pixels in a gray-scale image, are fixed during
the embedding process. For each combination of the four neighbor values that
appears, we count its occurrence in the first half pixel values and those pixels
within them are grouped to a subset. Then the LSB™ algorithm is implemented
on every generated subset. By this means, the stego image of “lena” is generated
with 5564 bits embedded and PSNR = 65.17dB, as shown in Fig. 6 (a). It should
be noted that the subsets of pixels with the same neighbor values can exactly
be generated from the stego image.

The effects of data embedding on the sampled pixel pairs are compensated by
each other after implementing the LSB¥ algorithm on every subset of pixels hav-
ing the same neighbor values. Consider a pixel P; whose LSB has been changed
from 0 to 1, its value is changed from 2n to 2n + 1 with n € {0,1,...,127}.
As the histogram is unchanged by the LSBT algorithm, there exists a corre-
sponding pixel P; whose neighbor values are the same as P;’s and its value has
been changed from 2n + 1 to 2n. Given a neighbor value Vj, of P; and P, it is
unchanged during the embedding process. So the difference between the value of
P; and Vj, will increase by 1 after the value of P; is changed from 2n to 2n + 1 if
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(a) By applying the LSB™ algorithm (b) Solid curve: Relative error of the cover im-
on every subset of pixels having the age “lena”, which is the same as the solid
same four neighbor values (up, down, curve in Fig. 5 (b); Lines at the bottom:

left, and right), the stego image is gen- | Xo,,11] — [Xom+1| and Yo, 01| — [Yam41],

erated with 5564 bits embedded and which are zeros for 0 < m < 127 so that the

PSNR = 65.17dB. relative error of stego image is the same as the
cover one.

Fig. 6. By implementing the LSB™ algorithm in the 4-N way, the relative error
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: : of the cover image is unchanged.
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Vi € [0, 2n], and the difference between the value of P; and Vj, will decrease by
1 after the value of P; is changed from 2n + 1 to 2n. When Vj, € [2n + 1,255],
the difference between the value of P; and Vj will decrease by 1 after the value
of P; is changed from 2n to 2n + 1, and the difference between the value of P;
and Vi will increase by 1 after the value of P; is changed from 2n 4 1 to 2n.
As a result, | Xon41| and |Y2,,41| will be unchanged by the embedding process
for m = 0,1,...,127. As shown in Fig. 6 (b), the values of | X35, 1| — [ X2m1]
and |Yy,, 1| = [Y2m41] are zeros if we perform the SPA steganalysis on the stego
U Yoma1| =1 Up o Xoma|

| Uu—o Yam [+ U —o Xam 1
changed. Under the assumption that | X, 41| = |Y2m+1|, which can be taken for

the most natural images, the length of the hidden message that can be estimated
from (5) or (6) is zero because |Xopm41| = [X9,,41| and |[Yormq1| = [Y3,,41]- As
a matter of fact, we can directly generate the following equations from (2) and
(3) 3 [Xomrt] = [Xbppa| and [Vopa] = Y,

image so that the relative error of cover image is un-

a?(|C| = 41X 30, 1]) = (| Dy | = 2 X5, 4 1), (7)

(|G| = 41¥3p14]) = (| Dyl = 2[5 4] (®)



Table 1. THE EXPERIMENTAL RESULTS ON DISTORTION AND HIDING RATE

LSB*: 0 =1 LSB*: 4-N, 6 = 1
PSNR (dB)|Rate (bpp)| PSNR Bits Rate

airfield 512x512 53.9397 0.5064 75.1562 574 0.0021
boats 720x576 51.1656 0.9628 60.1683 | 33264 | 0.0802
columbia 480x480 51.1480 0.9660 61.8852 | 12591 | 0.0546
crowd 512x512 51.9641 0.6430 62.4494 | 12474 | 0.0476
lena 512x512 51.1466 0.9688 65.1796 5564 0.0212
lighthouse | 512x512 51.3676 0.8056 67.1048 3746 0.0143
peppers 512x512 51.1552 0.9641 67.9355 2857 0.0109
tank 512x512 57.7708 0.2045 74.1208 668 0.0025
truck 512x512 54.4157 0.4428 66.8681 4379 0.0167

Images Size

One root of (7) and (8) is zero, and the other root is

o — |Dl2m| - 2|‘Xvém71| o |D/2m| - 2|Y2/m+1|
|Cm| — 4] X35 Con| — 4|Y 3 41]

(9)

m—l‘ B

which implies that (|Cp,| = 2|D5,, ) (|2, 411 — [ X5, _1]) = 0. Because | X2, —1] is
unequal to |Ya,,41| for the cover image, we can conclude from (9) that |C,,| =
2| Dy, |. Combined with |Cp,| = [ X3, 1|+ [Dj,,| + |Y3,,41], it can be seen that
|Dbnl = [ X5_1] + [Ygpy1], which indicates that o = . Similarly, we can
generate the following equation from (4) given that |Y;| = |Y{|:

a®(|Col = 2Y{[) = a(| Dg| — Y. (10)

Since |Cy| = |D}|+Y{| and |D{| # |Y{|, the two roots of (10) are 0 and 1. As the
value of « (i.e. the fraction of the pixels modified in the embedding process) is
zero, the length of the hidden message that is estimated by the SPA steganalysis
is also zero. Whether | Xop, 11| = [Yam1| for m = 0,1,...,127 or not, the image
histogram as well as the values of | Xop,—1], |Yam+1| and |C,y,| can be preserved
by implementing the LSB™ algorithm on every subset of pixels having the same
neighbor values. As a result, the SPA steganalysis is prevented.

4 Evaluation

In the experiments, the LSBT algorithm was implemented on the gray-scale
images ! listed in Table 1 with the parameter § = 1. In Table 1, we list the
data hiding rates when the LSB* algorithm was implemented on all pixels in
an image and on subsets of pixels having the same up, down, left, and right
neighbor values (as denoted by 4-N), respectively.

! The images are downloaded from http://www.hlevkin.com/TestImages/
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Fig. 7. The PSNR of the stego image “lena” at different hiding rate.

4.1 Distortion

The peak signal-to-noise ratio (PSNR) of the stego image is used to represent
the distortion caused by data hiding. As shown in Table 1, the PSNRs of the
stego images are all above 51(dB) when the LSB™ algorithm was implemented
on all pixels in a gray-scale image with # = 1. When the LSBT algorithm was
implemented only on every subset of pixels surrounded by the same neighbor
values, the PSNRs of all the stego images were above 60(dB).

4.2 Hiding Rate

The information hiding rate using the generic method depends on both of the
marginal distribution of the cover and the bin size A. In the LSBY algorithm
where A is fixed at 1, the data hiding rate lies on the histogram of the cover
image. As we can see in Table 1, less information can be hidden in the image
“tank” (about 0.2045 bit/pixel if applied to all pixels) than in the image “lena”
(about 0.9688 bit/pixel if applied to all pixels). This is due to that the histogram
of “lena” changes slowly while the histogram of “tank” fluctuates rapidly.

Not surprisingly, the distortion of the stego image “tank” is less than that of
the stego image “lena”. Moreover, we can use the parameter 6 to adjust the data
hiding rate so as to tune the perceptual distortion caused by data embedding.
As shown in Fig. 7, there is a trade-off between the distortion and the data
hiding rate for the stego image of “lena”. When implemented on subsets of
pixels having the same neighbor values in the 4-N way, the amount of bits that
can be embedded is affected by the histogram of the pixels in every subset. It
can be seen from Table 1 that the hiding rate has been significantly reduced
after restricting the embedding positions to prevent the SPA attack.



4.3 The Prevented Steganalytic Algorithms

The LSBT algorithm is consistent with the model-based steganography, in which
two distinct parts are separated from the cover with one part unperturbed and
the other replaced with the encoded message. Different from the algorithm of
generating the encoded message following a given distribution as in [24], we
directly use the cover histogram to generate the stego image so that the hidden
message cannot be detected by using the first-order statistics (e.g. [7,25]). Since
the LSBT algorithm is performed in the spatial domain without differentiating
the pixels at the block boundaries and those within the blocks, the steganalysis
designed for a block structure (e.g. [5], [9]) or a specific transform domain (e.g.
[8], [10]) cannot detect the hidden message either. To further prevent the SPA
attack [11], we implement it on the selected subsets of pixels having the same
neighbor values. The experimental results show that some important high-order
statistics have been well preserved.

4.4 Other Steganalysis Using the High-order Statistics

How to prevent the other steganalytic algorithms using the high-order statistics
(e.g. [6], [13]-[16]) from detecting the message hidden by the LSBT algorithm
should be further investigated. In principle, it is possible to evade the two attacks
against the LSB matching steganography as shown in [13]. The first algorithm
calculates the histogram characteristic function (HCF) to calibrate the suspected
image with the one down-sampled from it. In the second algorithm, the adjacency
histogram is used for steganalysis instead of the usual one. By implementing the
LSBT algorithm on every subset of pixels having the same neighbor values,
both the usual and adjacency histograms of the cover image can be preserved.
Therefore, the inequality relation between the center of mass (COM) of the
stego HCF before and after down-sampling is probably broken. The experimental
results on large image database are expected to justify our arguments.

5 Conclusion

In this paper, a new steganographic method has been presented for the passive
warden scenario. By bijectively mapping the data elements within two adja-
cent bins to embed a secret message, the first-order statistics of the cover has
been preserved inherently. Compared with the previous work in the domain,
our method is relative simple and easy to implement. Furthermore, high and
adjustable hiding rate can be achieved while the distortion (e.g. in the MSE
criterion) can be easily minimized.

The generic method becomes a sort of LSB hiding when applied to digital
gray-scale images, namely the LSBT algorithm. The SPA steganalysis [11] has
been prevented by implementing the LSB™ algorithm on the subsets of pixels
having the same neighbor values. As a cost, the hiding rate has been significantly
reduced by restricting the embedding operations to the selected positions. Our



future work is to investigate how to preserve the high-order statistics so as to
prevent the steganalytic attacks as shown in [6], [13]-[16]. We will also try to
apply the generic method to some other covers such as 3D objects.
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