
A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 377–393, 2008.
© Springer-Verlag Berlin Heidelberg 2008

State of the Art of QVT: A Model Transformation
Language Standard

Ivan Kurtev

Software Engineering Group, University of Twente, The Netherlands
kurtev@ewi.utwente.nl

Abstract. Query/Views/Transformation (QVT) is the OMG standard language
for specifying model transformations in the context of MDA. It is regarded as
one of the most important standards since model transformations are proposed
as major operations for manipulating models. In the first part of the paper we
briefly summarize the typical transformation scenarios that developers encoun-
ter in software development and formulate key requirements for each scenario.
This allows a comparison between the desirable and the formulated require-
ments for QVT. Such a comparison helps us to initially evaluate the adequacy
of the QVT language.The second part of the paper focuses on the current state
of the standard: the language architecture, specification, paradigm, and open is-
sues. The three QVT sublanguages Operational Mappings, Relations, and Core
are briefly described. Special attention is given to the currently available and
expected tool support.

Keywords: Model transformations, QVT, MDA, MDE.

1 Introduction

Model Driven Engineering (MDE) is an emerging approach for software development
gaining more and more attention by the industry and the academia. MDE emphasizes
the need for thorough modeling of software systems before they are implemented.
The implementation should be derived from the models by applying model transfor-
mations, possibly in a fully automated way.

MDE principles may be applied by using different modeling languages, transfor-
mation languages, and tools. One example of such an approach is Model Driven Ar-
chitecture (MDA) initiative proposed by OMG. MDA distinguishes between platform
independent models (PIMs) and platform specific models (PSMs). This classification
is motivated by the constant change in implementation technologies and the recurring
need to port software from one technology to another. Furthermore, MDA proposes
its set of modeling standards: (i) to define models and modeling languages (UML
[12], UML profiles, MOF [14]); (ii) to represent and exchange models (XMI) [11];
(iii) to define model constraints (OCL) [16]; (iv) to specify transformations on mod-
els. The last operation is proposed as the main way to manipulate models in MDA.
The important role of model transformations motivates the effort that OMG took to
define a standard language for model transformations aligned with the rest of OMG

378 I. Kurtev

standards. The result of this effort is the standard QVT MOF 2.0 language [17] which
at the time of the writing of this paper is in the final standardization phase.

Transformation technologies are not something new in software engineering. A
compiler is actually a transformer that produces an artifact at a lower level of abstrac-
tion from another artifact at a higher level of abstraction, possibly expressed in a lan-
guage that matches the problem domain better. The standardization of XML as an
exchange data format gave birth to XSLT, a standard transformation language for
XML documents. A similar effort is observed in the domain of Semantic Web. Many
more examples may be given from the domain of data engineering, a discipline that is
facing hard interoperability and data heterogeneity problems and approaches them by
applying data transformations.

In software engineering we witness a stable progress in at least two fields: program
transformations and graph transformations. This gives us a valuable insight about the
problems we need to tackle and about the advantages and disadvantages of the avail-
able techniques.

In the light of this discussion an interesting question emerges. How does OMG de-
rive the QVT standard? What are the transformation scenarios that will be addressed
and what kind of properties the language will possess? Unfortunately, a quick look at
the QVT Request for Proposals [13] (QVT RFP) document shows that the most im-
portant requirements for the language concern its alignment to the existing OMG
standards and the software engineering qualities of the language take the role of non-
mandatory requirements.

The purpose of this paper is twofold. First we would like to outline a set of trans-
formation scenarios commonly found in software and data engineering. Each scenario
naturally poses a set of requirements. They can be compared to the requirements and
rationale behind QVT. Second, we present an overview on QVT and the current tool
support for this language.

The paper is organized as follows. Section 2 gives a larger context for discussion
by considering several well-known transformation scenarios. Section 3 presents the
requirements for QVT as described in the QVT RFP. Section 4 explains the overall
architecture of the QVT language and briefly describes the three QVT sublanguages:
Relations, Core, and Operational Mappings (OM). Section 5 lists the currently available
tools for specifying and executing QVT transformations. Section 6 concludes the paper.

2 Transformation Scenarios in Software and Data Engineering

The previous section mentioned that transformations are applied to solve problems in
many domains. Those problems, however, generally differ and may pose a set of
different requirements. These requirements should be the starting point for the devel-
opment of a transformation language. In this section we analyze two domains of ap-
plication of transformations: software development based on the principles of MDE
and heterogeneous data translation.

2.1 Model Driven Software Development

Model Driven Software Development (MDSD) applies the principles of MDE in the
development of software systems. A system is specified as a set of models that are

 State of the Art of QVT: A Model Transformation Language Standard 379

repetitively refined until a model (models) with enough details to implement the sys-
tem is obtained. The implementation step should be automated as much as possible by
code generation from the models.

When applied in practice, this general scheme of MDSD processes should follow
and address some stable general principles and scenarios of software development
such as separation of concerns, iterative development, refactoring, reverse engineer-
ing, and others. These principles and scenarios take a concrete shape in the context of
MDSD and put forward requirements and open questions. In this section we focus on
the role of model transformations related to various aspects of MDSD.

Refinement Steps in MDSD. Regardless of the actual development methodology an
MDSD process can be seen as a series of refinement steps. More abstract models are
transformed into more detailed ones being closer to the actual system. The most
important requirement for this refinement process is the semantics preserving
property of transformations. Fig. 1 illustrates the process of refinement and the
relations of the models to the system.

Fig. 1. Refinement of models in MDSD and their relation to the system to be implemented

The vertical dimension denotes the refinement from more abstract to more concrete
models. Since all models are representations of the same system every transformation
step should preserve the intended meaning of the source model and eventually bring
new details. The refinement steps may encode useful design knowledge based on
design and architectural patterns, idioms related to a particular implementation tech-
nology, and standard transformations such as UML to Java or UML to J2EE. Seman-
tics preservation should ensure that the produced system will behave as it is specified
in the models.

Separation of Concerns. The principle of separation of concerns helps in managing
the complexity in development of large software systems. The application of this
principle in MDSD leads to more than one model of the system developed from
different points of interest. These models may be refined independently from each other
along a single track as shown in Fig. 2. At a certain moment these models (or code)
must be integrated to obtain a complete system.

380 I. Kurtev

Fig. 2. Refinement and composition of models representing different concerns

Fig. 2 shows an example organization of models in a two-dimensional space. The
vertical dimension indicates the level of abstraction of models. The horizontal dimen-
sion indicates that the models may be separated according to the problem they solve
or the point of interest taken to develop a model. Such points of interest are known as
concerns. Fig. 2 shows a horizontal dimension with four concerns: A, B, C, and D. At
a certain stage models of different concerns may be composed. Composition of mod-
els is treated as a transformation that takes at least two input models and generates an
output model. Both the refinement and composition transformations must be seman-
tics preserving since the resulting models represent the same system as the source
models.

Two issues arise in relation to the principle of separation of concerns. The first one
is the consistency between models belonging to various concerns. Models of different
concerns should be treated separately but ultimately they represent the same underly-
ing system. Therefore, the independent changes over the models should not produce
inconsistent results.

The second issue is the composition of models which is a special kind of transfor-
mation with at least two input models. The composition problems may expose speci-
ficities that may require a specialized language optimized for composition tasks [3].

Iterative Development and System Evolution. Contemporary software development
methods promote iterative processes to manage complexity and to deal with
identification of system inadequacy at an earlier stage of development. Every new
iteration changes (adds to) the functionality of the system. Changes may also occur
when the system evolves due to changed requirements during the maintenance phase.
The impact of a change on a system developed according to the MDE principles

 State of the Art of QVT: A Model Transformation Language Standard 381

requires changes to the existing models and integration of the newly developed
models with existing ones. Since the system is developed as a series of
transformations over models a change in one model must be propagated through the
rest. The propagation may be in two directions: to models derived from the changed
model and to models from which the changed model is derived.

Fig. 3. Evolution and change propagation in MDE

Fig. 3 shows three moments in which models sequentially evolve. After the initial
transformation is executed at moment t1, subsequent changes of the source and target
models (at moments t2 and t3) may require forward and backward change propaga-
tion. Two problems arise here: how to identify the required changes and how to apply
them on existing models at a low cost.

The first problem is known as traceability problem. A trace allows a software arti-
fact to be related to its predecessors that were developed during earlier phases of
development. For example, a Java class may be traced back to its design class, analy-
sis class, and ultimately to the requirement that motivates its presence in the system.
In the case of model transformations a trace would relate elements in the source
model to the created elements in the target model. By transitivity, traces may be de-
tected over the chain of transformations. If a model element is changed, traces help in
detecting the changes in the model elements derived from it and ultimately in the
system code. Traceability support may not be a property of a transformation language.
It may be provided by the transformation engine or the developer may take care of
creating and using traces.

The second problem is how to apply the identified changes. One naive solution is
to execute again the transformation on the modified model. However, for large mod-
els this may be time consuming, especially when there is a long chain of model re-
finements and compositions. A more efficient solution is to transform only those
elements that are modified and to do only incremental changes at the target models.

It should be noted that this scenario does not necessarily call for bidirectional
transformation programs. The two directions may be supported by two different trans-
formation programs.

382 I. Kurtev

2.2 Data Translation Problems in Data Engineering Domain

Data translation, data mapping, and data integration are among the important sub-
fields in data engineering. In this section we consider a real-life scenario that requires
solving data translation problems. The scenario is generalized and it is shown that
conceptually it exemplifies the classical data and schema translation problem.

The most important and challenging problem in data translation is the problem of
heterogeneity. Data come from various sources, they are usually autonomous (con-
trolled by different organizations) and distributed, structured according to different
data models. To illustrate the complexity of the problem we give a list of some data
formats used in practice: ER, Relational Model, Object-Relational Model, XML,
SGML, comma-separated data, Excel sheets, Latex documents, Word documents, etc.
Even relational data stored in systems coming from different vendors expose some
differences.

Consider a scenario in which geographically distributed development teams work
on a common product. Teams use different tools for bug tracking. One team uses
Mantis, the second team uses Bugzilla, and the third team uses simple Excel spread-
sheets to describe bugs. Teams are at different levels of maturity and may use differ-
ent development processes. There is a need for exchanging information about bugs
among the teams. However, every tool uses its own data format for bug description.
Moreover, the conceptual models behind every tool used to describe bugs may also
differ.

The scenario is illustrated in Fig. 4.

Fig. 4. Tool interoperability problem in bug management

Fig. 4a shows one possible way for interoperability in which there are bridges for
every couple of tools. If a new team joins the project a potential new bug tracking
system will be used. Then bridges must be built from the new tool to the existing
tools. Fig. 4b shows a second way to handle the interoperability: a pivot model is
defined that unifies the models used by the tools. Then a bridge is defined between
the pivot model and every tool.

The scenario shown above may be generalized to the well known problem of
schema and data translation [1]. It is illustrated in Fig. 5. We intentionally use termi-
nology specific to the data engineering domain. We have three levels: database,

 State of the Art of QVT: A Model Transformation Language Standard 383

conformsTo

M1

S2

M2

S1 T1

(a)

conformsTo conformsTo

ERModel

OO
schema

OOModel

ERschema T1

(b)

conformsTo

Models

Schemas

conformsTo

D2D1 T2

conformsTo conformsTo

OOdataERdata T2

conformsTo

Databases

Fig. 5. Schema and data translation problem in data engineering

schema, and model. Databases conform to schemas and schemas conform to models.
This three-level organization corresponds to the three levels of model, metamodel, and
metametamodel.

The schema and data translation problem is formulated as follows. Given two
models M1 and M2, a source schema S1 conforming to M1, and a source database D1
conforming to S1, find a translation T1 that generates a target schema S2 conforming
to the model M2, and a translation T2 that translates the database D1 to a database D2
conforming to S2. Fig. 5a diagrammatically shows the problem and Fig. 5b gives a
concrete example. An interesting question is if it is possible to automatically derive
T2 from T1.

The main observation on this problem is that it may involve a large degree of het-
erogeneity. We also have two possibilities for translations between a pair of models:
lossless and lossy transformations. This depends on the level of compatibility between
the schemas/models. In data translation we are interested in preserving the informa-
tion as much as possible across models and schemas. This requirement is known as
preservation of information capacity [7, 8].

3 QVT Requirements

After the presentation of two problem domains and the requirements they pose to
model transformation systems we present the QVT standard proposed by OMG.

The requirements for the QVT language are described in the formal QVT Request
for Proposals (QVT RFP) [13] issued by OMG. Here we briefly summarize the re-
quirements without repeating them in full. QVT requirements are divided into manda-
tory and optional requirements.

384 I. Kurtev

Mandatory requirements:

• Query language: Proposals shall define a language for querying models;
• Transformation language for MOF models: Proposals shall define a lan-

guage for transformation definitions. Definitions describe relationships be-
tween source and target MOF metamodels;

• QVT abstract syntax in MOF: The abstract syntax of the QVT languages
shall be described as MOF 2.0 metamodel;

• Declarative language: The transformation definition language shall be de-
clarative in order to apply incremental updates done on the source model im-
mediately to the target model;

• MOF 2.0 model instances: All the mechanisms defined by proposals shall
operate on models instances of MOF 2.0 metamodels;

Optional requirements:

• Bidirectional transformations: Proposals may support transformation defini-
tions that can be executed in two directions (either through a symmetric defini-
tion or through a couple of definitions);

• Traceability between source and target models: Proposals may support
traceability between source and target model elements after transformation
execution;

• Reusable transformations: Proposals may support mechanisms for reuse of
transformation definitions;

• In-place updates: Proposals may support execution of transformations where
the source and target models are the same;

It should be noted that not all the requirements are listed here. For example, the re-
quirement for view definition is skipped since it is not implemented in the proposed
standard.

We also give the definitions of the three concepts that are used in the name of the
QVT language (Query, View, and Transformation) as defined by OMG documents.

Query: A query is an expression that is evaluated over a model. The result of a query
is one or more instances of types defined in the source model, or defined by the query
language.

View: A view is a model which is completely derived from another model (the base
model). There is a ‘live’ connection between the view and the base model.

Transformation: A model transformation is a process of automatic generation of a
target model from a source model, according to a transformation definition.

An analysis of the requirements shows that main attention is paid to the alignment
of QVT to the rest of the OMG standards, most notably MOF2.0. On the base of the
mandatory requirements we may infer the following operational context of the QVT
language (Fig. 6).

The operational context is based on the three-level MOF metamodeling archi-
tecture. The QVT abstract syntax is defined as a metamodel (QVT). QVT trans-
formations are models conforming to the QVT metamodel. Fig. 6 shows an
example transformation Tab. It is based on the input and output metamodels MMa
and MMb. In general, QVT allows more than one input and output models and their

 State of the Art of QVT: A Model Transformation Language Standard 385

QVT MMb

Mb

conformsTo

conformsTo

based on

conformsTo

conformsTo

MOF

MMa

Ma

conformsTo

conformsTo

conformsTo

M1

M2

M3

Tab

based on

input output
executed

Fig. 6. QVT operational context

corresponding metamodels to be used. For simplicity, we show only single input and
output models/metamodels. QVT transformations are executed by taking input mod-
els (Ma) and producing output models (Mb).

The optional requirements correspond to some well-known software quality prop-
erties. The RFP does not give any domain analysis and in-depth coverage of possible
scenarios in which QVT will be used.

4 QVT Languages

According to Fig. 6, the abstract syntax of QVT is defined as a MOF 2.0 metamodel.
This metamodel defines three sublanguages for transforming models. They rely on
OCL 2.0 as navigation and query language for models. Creation of views on models
is not addressed in the proposal.

4.1 QVT Architecture

QVT languages are arranged in a layered architecture shown in Fig.7. The languages
Relations and Core are declarative languages at two different levels of abstraction.
The specification document defines their concrete textual syntax and abstract syntax.
In addition, Relations language has a graphical syntax. Operational Mappings is an
imperative language that extends Relations and Core languages.

Relations language provides capabilities for specifying transformations as a set of
relations among models. Core language is a declarative language that is simpler than
the Relations language. One purpose of the Core language is to provide the basis for
specifying the semantics of the Relations language. The semantics of the Relations
language is given as a transformation RelationsToCore. This transformation may be
written in the Relations language.

Sometimes it is difficult to provide a complete declarative solution to a given trans-
formation problem. To address this issue the QVT proposes two mechanisms for
extending the declarative languages Relations and Core: a third language called Op-
erational Mappings and a mechanism for invoking transformation functionality im-
plemented in an arbitrary language (Black Box implementation).

386 I. Kurtev

Fig. 7. Layered architecture of QVT languages

Operational Mappings language extends the Relations language with imperative
constructs and OCL constructs with side effects. The syntax of Operational Mappings
language provides constructs commonly found in imperative languages (loops, condi-
tions, etc.). The QVT specification indicates a relation between Operational Mappings
and Core. However, such a relation cannot be identified after inspecting the meta-
models of these languages.

Black Box mechanism allows plugging-in and executing external code during
transformation execution. This mechanism allows complex algorithms to be imple-
mented in any programming language and enables reuse of already existing libraries.
This makes some parts of the transformation opaque, which brings a potential danger
since their functionality is arbitrary and is not controlled by the transformation engine.

Fig. 7 does not suggest any particular implementation of a QVT transformation en-
gine. Tool vendors may choose different strategies. For example, the Core language
may be supported by an execution engine and the Relations transformations may be
transformed to equivalent programs written in Core language. In that way the engine
is capable of executing programs written in both languages. Another possibility is that
only the Relations and Operational Mappings are supported by a tool.

These implementation options may produce tools with different capabilities. To
denote the capabilities of tools, the QVT proposal defines a set of QVT conformance
points for tools. Conformance points are organized along two dimensions and form a
grid with 12 cells. Table 1 shows the dimensions and the possible conformance
points.

The Language Dimension defines three levels corresponding to the three QVT lan-
guages. If a tool conforms to a given level this means that it is capable of executing
transformation definitions written in the corresponding language.

Table 1. QVT conformance points for tools

 Interoperability Dimension

 Syntax
Executable

XMI
Executable

Syntax
Exportable

XMI
Exportable

Core

Relations L
an

gu
ag

e
D

im
en

si
on

Operational
Mappings

 State of the Art of QVT: A Model Transformation Language Standard 387

The Interoperability Dimension is concerned with the form in which a transforma-
tion definition is expressed. It defines four levels:

• Syntax Executable. A tool can read and execute transformation definitions writ-
ten in the concrete syntax given in the QVT proposal;

• XMI Executable. A tool can read and execute transformation definitions serial-
ized according to the XMI serialization rules (recall that transformation defini-
tions conform to the QVT metamodel and therefore are XMI serializable);

• Syntax Exportable. A tool can export transformation definitions in the concrete
syntax of the corresponding language;

• XMI Exportable. A tool can export transformation definitions in XMI format;

A requirement states that if a tool is SyntaxExecutable or XMIExecutable
for a given language level, it should also be SyntaxExportable or XMIExportable
respectively.

It should be noted that the QVT specification does not define the term “QVT com-
pliant transformation language”. This term tends to be more and more used. However,
its meaning is not clear. It is an attractive possibility to attach a standard label to an
existing transformation language. The specification gives us only the possibility to
claim compliance for tools and not for languages.

4.2 Relations Language

Transformations written in the Relations language consists of declarations of relations
among metaelements. Relations are based on an arbitrary number of domains. When a
relation is specified no execution direction is assumed. When a transformation is
executed an execution direction is chosen. This opens the possibility to specify bidi-
rectional transformations if their logic permits so. The following transformation sce-
narios are supported by the Relations language:

• Check-only: transformation execution checks if given models satisfy the re-
lations specified in the transformation definition. No new models/model
elements are created and no changes are made to the existing models. The
answer is yes or no depending if the relations hold;

• Unidirectional transformation: the transformation is executed in a given
direction. The target model is created according to the relations in the trans-
formation definition. After the transformation execution, the input and output
models satisfy the relations in the transformation definition;

• Model synchronization: the transformation engine checks if the relations in
a transformation definition hold for a given set of models. If a relation is not
satisfied the engine makes changes in the models in order to satisfy the rela-
tion. This may lead to creation of new elements, deletion, and update of ex-
isting elements. This scenario is motivated by the need for handling model
updates in an incremental fashion;

• In-place update: in this scenario there is only one model that may be
changed according to the specified relations;

388 I. Kurtev

Every relation contains a set of object patterns. These patterns can be matched
against existing model elements, instantiated to model elements in new models, and
may be used to apply changes to existing models. The language handles the manipula-
tion of traceability links automatically and hides the related details from the devel-
oper. The code snippet below gives an example relation.

1. relation AttributeToColumn {
2. checkonly domain uml c:Class {};
3. enforce domain rdbms t:Table {};
4. primitive domain prefix:String;
5.
6. where {
7. PrimitiveAttributeToColumn(c, t, prefix);
8. ComplexAttributeToColumn(c, t, prefix);
9. SuperAttributeToColumn(c, t, prefix);
10. }
11. }

In a hypothetical transformation that transforms UML class models to relational
schemas there is a relation between UML attributes and columns of relational tables.
The relation AttributeToColumn specifies this. It consists of three domains: uml (line 2),
rdbms (line 3), and one primitive domain that allows passing strings to the relation in
the form of a parameter (line 4). In order to hold, the relation must satisfy the object
patterns in the domains and to have the condition in the where clause (lines 6-10) evalu-
ated to true. The where clause illustrates the possibility for invoking one relation from
another one.

The keywords checkonly and enforce play an important role for the semantics of
the transformation. Checkonly indicates that the domain elements (in this case UML
classes) cannot be changed (i.e. they are read-only) by the transformation execution.
Enforce indicates that the engine should change the elements of the domain to ensure
the relation. On the basis of the concrete transformation scenario these keywords have
different effect on the domains. For example, if a unidirectional transformation is
executed from classes to tables then the uml domain will be used for matching and the
rdbms domain will be created. In this scenario the meaning of enforce is creation of
new elements. If two models already exist and the transformation is executed to syn-
chronize them, changes are allowed only in the enforced domains.

4.3 Core Language

Core language is a declarative language that is simpler than the Relations language.
Transformation definitions written in it tend to be longer than the equivalent defini-
tions written in Relations language. Traceability links are treated as ordinary model
elements. The developer is responsible for explicitly creating and using the links.
Both languages support the same set of transformation scenarios. The rationale behind
Core is to support bidirectional incremental transformations. An ideal execution en-
gine for Core should be event-based: every modification in one model is immediately
handled and the required modifications in the other models are performed. The fol-
lowing is a snippet taken from a Core transformation specification.

 State of the Art of QVT: A Model Transformation Language Standard 389

map attributeColumns in umlRdbms {
 check enforce rdbms (t:Table) {
 realize c:Column|
 c.owner := t;
 c.key->size()=0;
 c.foreignKey->size()=0;
 }
 where (c2t:ClassToTable| c2t.table=t;){
 realize a2c:AttributeToColumn|
 a2c.column := c;
 c2t.fromAttribute.leafs->include(a2c);
 default a2c.owner := c2t;
 }
 map{ check enforce rdbms (ct:String) {c.type := ct;}
 where (p2n:PrimitiveToName){
 a2c.type := p2n;
 p2n.typeName := ct;
 }
 }
 map {……………………………………………………………………………………}

A transformation in Core is a set of mappings. Mappings roughly correspond to re-
lations in the Relations language. Mappings can be nested. The concepts of enforced
and check domains are also available.

4.4 Operational Mappings

Operational Mappings language extends the Relations language with imperative con-
structs and OCL constructs with side effects. The basic idea in this language is that
the object patterns specified in the relations are instantiated by using imperative con-
structs. In that way the declaratively specified relations are imperatively implemented.
The syntax of Operational Mappings language provides constructs commonly found
in imperative languages (loops, conditions, etc.). Transformations are always unidi-
rectional.

1. transformation SimpleUML2FlattenSimpleUML(in source : SimpleUML,
2. out target : SimpleUML);
3. main() {}
4.
5. ...helpers...............
6. ...mapping operations....
7. mapping Class::leafClass2Class(in model : Model) : Class
8. when {not model.allInstances(Generalization)->exists(g | g.general
9. = self)}
10. {name:= self.name;
11. abstract:= self.abstract;
12. attributes:= self.derivedAttributes()->
13. map property2property(self);
14. }

A transformation in Operational Mappings always has an entry point from which
the transformation execution starts. This is the mapping called main (line 3). From
main other mappings may be invoked. The body of the transformation definition con-
tains mappings and helper operations. An example of a mapping is called leaf-
Class2Class (lines 7-14). This mapping creates an UML class from every UML class
that satisfies the guarding condition specified in the when clause (lines 8-9). The
properties of the created class are assigned with values in the body of the mapping
(lines 10-13). It is possible to invoke other mappings from the body of the current one

390 I. Kurtev

(the keyword map in line 13). In that way the execution order among the mappings is
imperatively specified.

4.5 Discussion

In section 2 we outlined several transformation scenarios. We observe a diversity of
transformation problems that may require different transformation techniques. A
logical question is if it is possible to handle these scenarios by a single transformation
language in a satisfactory way. The answer is probably no. This is implicitly sup-
ported by the fact that QVT is not a single language. It is a suite of three languages
that covers both the imperative and declarative paradigm, and addresses several trans-
formation scenarios. Here we discuss briefly every scenario and how it can be han-
dled by the QVT languages.

Regarding the semantics preservation property of model refinement, the QVT
specification and the RFP do not require support for checking this. It is not clear yet
what type of reasoning may be performed over QVT programs. We expect that a
meaningful reasoning would require a limited version of the languages.

Model composition may be regarded as a transformation from at least two input
models to a composed model. From that point of view, QVT supports model composi-
tion in general. There are proposals for model composition languages [3] specialized
in model composition only.

Performing incremental bidirectional transformations is one of the scenarios in
QVT Relations. It is somehow unclear how this scenario is implemented in the cur-
rent engines. The approach suggested in the specification is to execute the transforma-
tion afresh by performing the required pattern matching and to execute only the re-
quired changes in the models. More experience is needed to judge if this approach
provides satisfactory performance results.

QVT specification does not address data translation problems. Historically, the
language is proposed as a solution to software development-related problems. The
need for information capacity preservation is not analyzed. Due to the alignment of
QVT to the OMG standards we may claim that from the data format point of view
QVT transformations operate on XMI data. QVT is applicable in data engineering if
suitable translators from and to XMI are available.

We may speculate about the need for domain-specific transformation languages
adapted to a specific problem. From that point of view OMG proposes QVT as a
general purpose transformation language similar to the role that XSLT plays in the
XML domain. Some of the scenarios described in section 2 may require a specialized
and eventually less expressive transformation language.

5 QVT Tools

Current tool support for the QVT languages is in its infancy. This is due to several
reasons. First, the specification is not officially finalized and still unstable. Second,
providing a mature tool requires time and efforts. Most tools do not support all the
features of the languages. Once a tool is made available, the feedback from the user
community is crucial. Practically all the current tools are dealing with bug fixes and

 State of the Art of QVT: A Model Transformation Language Standard 391

are gaining experience from real life usage. Regardless the stability of the language
specification many pragmatics issues are involved ranging from syntax-highlighting
and visual syntax editors to the availability of comfortable debug facilities. All these
make the current description of the tool support valid for a limited period of time. In
this section we report on the tools available at the time of the writing of this paper.

Table 2 summarizes the currently available QVT tools. It is followed by more in-
formation on every tool.

Table 2. Tool support per QVT language

QVT Tools per Language

Core • A commercial add-on to OptimalJ

Relations

• IKV++ medini QVT

• Tata Consultancy ModelMorf

• MOMENT-QVT

• Eclipse M2M Relations2ATLVM

Operational
Mappings

• Borland Together Architect 2006

• SmartQVT

• Eclipse M2M OM2ATLVM

Core Language
The Core language is supported by an add-on to the commercial tool OptimalJ pro-
vided by Compuware. However, OptimalJ is now in maintenance phase and its future
development is questionable. It is expected that an open source implementation of a
Core engine may be provided.

Relations Language
Relations currently enjoys the largest tool support. The medini QVT [5] developed by
IKV++ is an Eclipse based interpreter with syntax highlighting editor, code comple-
tion, and debugging facilities. It is available as a part of a commercial suite and as a
free downloadable distribution for non-commercial purposes.

One of the original contributors to QVT that proposed the Relations language is
Tata Consultancy. They provide a Java-based engine known as ModelMorf [9]. Cur-
rently ModelMorf is a command line tool. The web site indicates the plan to provide a
commercial tool for Relations that implements both textual and visual syntax.

MOMENT-QVT [10] is an MDE project that is based on the term rewriting for-
malism MAUDE. It plans to provide implementation of OCL and QVT Relations.

Operational Mappings Language
Borland provides both an interpreter and a compiler to Java for one of the earlier QVT
OM specifications. It is a part of Borland Together Architect 2006 for Eclipse. 15
days trial is available for download.

SmartQVT [18] is an open source Eclipse-based compiler for QVT Operational
Mappings provided by France Telecom, the original initiator of QVT OM.

392 I. Kurtev

Both Together Architect and SmartQVT provide a front-end for Operational Map-
pings that can be used to parse transformation programs and obtain a model conform-
ing to the QVT abstract syntax.

Eclipse M2M Project
M2M [4] is an open source project under Eclipse that aims at providing implementa-
tions for QVT and ATL [6]. M2M consists of three components: Procedural QVT
(Operational Mappings), Declarative QVT (Relations and Core), and ATL. The com-
mitters in this project are: INRIA, Borland, and Compuware. The ATL Virtual Ma-
chine is adopted as a basic infrastructure for the project. Compilers from QVT OM
and Relations to ATL VM code are under development. This effort is led by Obeo
under the umbrella of the ATL industrialization project [1].

6 Conclusions

In this paper we presented QVT – the OMG standard language for model transforma-
tions in MDA. QVT is closely integrated with the existing suite of OMG standards,
most notably with MOF 2.0 and OCL 2.0.

We believe that the standardization of QVT is a step in the right direction. A soft-
ware standard has a high chance to attract the attention of a larger user community.
This should open the possibility to gain experience with the model transformation
technology in real life industrial projects. There are also risks, however. A standard
lacking formal ground (as the current QVT specification), not supported by tools with
industrial quality may compromise the whole idea behind model transformations. This
should encourage the communities working on various transformation technologies to
stress the importance of transformation problems in current software engineering
practices and to promote alternatives to QVT.

References

1. ATL Pro web site, http://www.atl-pro.com/
2. Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-Independent Schema and Data Transla-

tion. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm,
K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 368–385.
Springer, Heidelberg (2006)

3. Bézivin, J., Bouzitouna, S., Del Fabro, M.D., Gervais, M., Jouault, F., Kolovos, D., Kur-
tev, I., Paige, R.: A Canonical Scheme for Model Composition. In: Rensink, A., Warmer,
J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 346–360. Springer, Heidelberg (2006)

4. Eclipse M2M Project, http://www.eclipse.org/m2m/
5. Medini QVT, http://www.ikv.de
6. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS

2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)
7. Miller, R., Ioannidis, Y., Ramakrishnan, R.: The Use of Information Capacity in Schema

Integration and Translation. In: Agrawal, R., Baker, S. (eds.) VLDB 1993, pp. 120–133.
Morgan Kaufmann, San Francisco (2003)

 State of the Art of QVT: A Model Transformation Language Standard 393

8. Miller, R., Ioannidis, Y., Ramakrishnan, R.: Schema equivalence in heterogeneous sys-
tems: bridging theory and practice. Inf. Syst. 19(1), 3–31 (1994)

9. ModelMorf: A model transformer, http://www.tcs-trddc.com/ModelMorf/
10. MOMENT Project, http://moment.dsic.upv.es/
11. OMG/XMI XML Model Interchange (XMI) OMG document ad/98-10-05 (1998)
12. OMG. OMG Unified Modeling Language Specification v. 1.4. OMG document (2001)
13. OMG. MOF 2.0 Query/Views/Transformations RFP. OMG document ad/2002-04-10

(2002)
14. OMG. Meta Object Facility (MOF) Specification. OMG document formal/02-04-03 (2002)
15. OMG. MDA Guide version 1.0.1. OMG document omg/2003-06-01 (2003)
16. OMG. Object Constraint Language (OCL), OMG document ptc/03-10-14 (2003)
17. OMG. MOF QVT Final Adopted Specification. OMG document ptc/05-11-01 (2005)
18. SmartQVT Project, http://smartqvt.elibel.tm.fr/

	State of the Art of QVT: A Model Transformation Language Standard
	Introduction
	Transformation Scenarios in Software and Data Engineering
	Model Driven Software Development
	Data Translation Problems in Data Engineering Domain

	QVT Requirements
	QVT Languages
	QVT Architecture
	Relations Language
	Core Language
	Operational Mappings
	Discussion

	QVT Tools
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

