
Transformation of UML Models to CSP:
A Case Study for Graph Transformation Tools

Dániel Varró1, Márk Asztalos1, Dénes Bisztray2, Artur Boronat2, Duc-Hanh
Dang3, Rubino Geiß4, Joel Greenyer5, Pieter Van Gorp6, Ole Kniemeyer7,

Anantha Narayanan8, Edgars Rencis9, and Erhard Weinell10

1 Budapest University of Technology and Economics, Hungary,
varro@mit.bme.hu,asztalos@aut.bme.hu

2 Leicester University, UK, {dab24,aboronat}@mcs.le.ac.uk
3 Universität Bremen, Germany, hanhdd@informatik.uni-bremen.de

4 Universität Karlsruhe, Germany, rubino@ipd.info.uni-karlsruhe.de
5 University of Paderborn, jgreen@uni-paderborn.de

6 University of Antwerp, Belgium, pieter.vangorp@ua.ac.be
7 BTU Cottbus, Germany, okn@informatik.tu-cottbus.de

8 Vanderbilt University, TN, USA, ananth@isis.vanderbilt.edu
9 University of Latvia, Latvia, Edgars.Rencis@lumii.lv

10 RWTH Aachen University of Technology, Germany, Weinell@cs.rwth-aachen.de

Abstract. Graph transformation provides an intuitive mechanism for
capturing model transformations. In the current paper, we investigate
and compare various graph transformation tools using a compact practi-
cal model transformation case study carried out as part of the AGTIVE
2007 Tool Contest [22]. The aim of this case study is to generate formal
CSP processes from high-level UML activity diagrams, which enables to
carry out mathematical analysis of the system under design.

1 Introduction

Graph transformation provides an intuitive graphical mechanism for capturing
model transformations. Many tools have been developed in the past which im-
plemented different graph transformation principles and introduced new exten-
sions to address specific practical requirements. For example, some tools allow to
specify a control structure over their transformation rules whereas others remain
purely declarative. Also, different tools provide a different degree of expressive
power in what kind of graph structures and attribute values they can handle. In
the AGTIVE Tool Contest [22], 17 different tools participated and competed on
problems of different nature in order to document and classify their strengths
and weaknesses.

This case study represents a typical (exogenous) model-to-model transfor-
mation from UML activity diagrams [21] to Communicating Sequential Pro-
cesses [17]. As the de-facto standard for software design, UML [21] activity di-
agrams are used to describe low level behavior of software components or to
represent business-level workflows. In both cases, verification of the behavior

can be important to guarantee the quality of service for the components. The
purpose of verification can run from a simple liveness or termination check to the
verification of refinement between model instances of different levels of abstrac-
tion. To verify any aspect of behavior, the activity diagrams have to be provided
with a formal semantics. We are using CSP as a semantic domain, defining the
mapping from activity diagram to CSP by means of graph transformation.

In this case study, the transformation tools shall support metamodel-based
transformation or any equivalent notion of type graphs. Also, support for at-
tribute handling is required, the various names and properties of elements should
be dealt with. The ability to define any kind of control structure for rule ap-
plication and attribute conditions may be an important issue to guarantee that
the transformation is deterministic or to improve its performance. However, the
transformation problem also gives space to purely declarative solutions. Due to
the large variety of solutions, these solutions will now be compared based upon
the model transformation-specific features provided by their corresponding tools.

The rest of the paper is structured as follows. Section 2 provides a brief
introduction to the model transformation problem serving as this case study.
In Sec. 3, we discuss which criteria are important for specifying and executing
transformations of UML models to CSP. Moreover, we overview what kind of
tools are used to perform the case study, and in what dimensions the solutions
differ from each other. Section 4 presents a one-page summary for each individual
solution. Finally, Section 5 provides a high-level comparison of the solutions.

2 Case Study ”UML to CSP Transformation”

2.1 Metamodels

First, we introduce the source and target metamodels of the UML2CSP problem.
A metamodel formalizes the abstract syntax of a modeling language in the form
of UML class diagrams. Classes of the metamodel capture the main concepts of
the language together with its attributes. The interrelation of such concepts are
captured by associations. Finally, classes can be arranged into a generalization
(inheritance) hierarchy.

UML Activity Metamodel. The source language is captured by a simpli-
fied metamodel for activity diagrams based on [21] (shown in Fig. 1).

Figure 2 shows a simple example activity diagram (taken from [16]) con-
taining two ActivityEdges which connect an InitialNode with an Action and
an Action with a FinalNode. The object diagram on the right shows how this
concrete syntax is represented according to the metamodel shown in Fig. 1.

CSP metamodel. The metamodel for CSP, as far as required for the case
study, is shown in Figure 3. A Process is the behavior pattern of an object
with an alphabet of a limited set of events. Processes are defined using recursive
process equations (ProcessAssignment) with guarded expressions.

The syntax of the process equations is the following.

P ::= F | event → E | E || F | E \ F | E ≮ b ≯ F | SKIP | STOP

Fig. 1. Activity Diagram Metamodel

:ActivityDiagram

:ActivityEdge
name=”MOVE”

:Action
name=”break”

:ActivityEdge
name=”HOLD”

:InitialNode

:FinalNode

break

Activity Diagram

MOVE

HOLD

source

target

source

target

Fig. 2. Simple Activity Model (Concrete and abstract syntax)

Fig. 3. CSP Metamodel

The abstract class ProcessExpression represents a guarded expression. It can
be either a simple Process P , a Prefix operator, a BinaryOperator combining
two expressions or can be associated with a set of events (ProcessWithSet).

The interpretation of the process expressions is as follows. The Prefix oper-
ator x → E performs an Event x and then behaves like expression E. If E and
F are expressions, Concurrency yields their synchronous parallel composition
E ‖ F (performing E and F simultaneously by synchronizing of shared events).
According to [17], the operator E ≮ b ≯ F is a Condition operator, which means,
if the boolean expression b is true then it behaves like E, else it behaves like
F (if b then E else F). If F is a set of Events and E is an expression, Hiding
E \ F behaves like E except that all occurrences of events in F are hidden.
Finally SKIP represents successful termination, while the STOP process is a
deadlock.

CSP Document

MOVE = break -> HOLD
HOLD = accel -> MOVE

:CSPContainer

:ProcessAssignment :ProcessAssignment

:Process
name=”MOVE”

:Prefix

:Event
name=”break”

:Process
name=”HOLD”

:Process
name=”HOLD”

:Prefix

:Event
name=”accel”

:Process
name=”MOVE”

processIdentifier process

targetProcessevent

processIdentifier process

targetProcessevent

Fig. 4. Simple CSP Model (Concrete and abstract syntax)

Figure 4 (from [16]) shows an example CSP document containing two process
assignments. The object diagram on the right shows how the abstract syntax
graph of the two statements is built up according to the CSP metamodel show
in Fig. 4. In particular, note that there is a Process object for every occurrence
of a process in the CSP text.

2.2 Overview of the transformation

In this section, we provide an overview of the transformation by showing in-
tuitive correspondences between UML and CSP models. The idea behind the
mapping is to relate an Edge in the activity diagram to a Process in CSP. The
correspondences are the followings.

1. An ActivityEdge corresponds to a ProcessIdentifier while an Action to an
Event. Without loss of generality we restrict Action nodes to have only one
incoming and one outgoing edge.

2. InitialNode corresponds to the first process assignment.

3. An FinalNode is a successful termination, thus it corresponds to a SKIP
process.

4. A DecisionNode corresponds to embedded Condition operators with the
guards as their condition expressions.

Note that this correspondence, which creates non-determinism at the syn-
tactic level, leads to semantically equivalent processes. According to [21], the
order in which guards are evaluated is undefined and the modeler should ar-
range that each token only be chosen to traverse one outgoing edge, otherwise
there will be race conditions among the outgoing edges. Hence, if guard condi-
tions are disjoint, syntactically different nestings are semantically equivalent.

5. The MergeNode is mapped to an equation identifying the processes corre-
sponding to the two incoming edges.

6. The ForkNode corresponds to the Concurrency binary operator. Since P ‖
(Q ‖ R) = (P ‖ Q) ‖ R, the different possible matches are equivalent

7. JoinNode represent the most complex cases. Before describing the mapping,
we discuss some observations. If in an activity diagram the names of Action
nodes are unique, the intersection of the alphabets of the corresponding pro-
cesses is empty. This is partly intended because in this way the processes will
not get stuck while waiting for some random other process that accidentally
has events with similarly names. On the other hand we need synchronization
points in order to implement the joining of processes. Thus we add an event
processJoin to the alphabet of every participating processes. Since events
that are in the alphabets of all participating processes require simultaneous
participation, this fact is used to join concurrent processes by blocking them
until they can perform the synchronization event.

In the concrete mapping the first edge that meets the JoinNode is chosen
to carry the continuation process, while the others terminate in a SKIP .
The choice of the first node to be processed in a JoinNode is arbitrary, thus
we can create multiple, but semantically (i.e. trace, failure and divergence)
equivalent set of CSP expressions.

A sample activity diagram and its CSP equivalent (up to process equivalence)
is presented in Fig. 5, which was used as a test case for validating the solutions.

The scenario captured by the UML activity diagram describes an autonomous
service reacting to an alert issued in case of a car accident. First the driver’s cell
phone is called to ask if any help is required. If the alert is confirmed by the
driver, then the location of the accident (and other service-specific parameters)
are sent to the appropriate service provider (e.g. ambulance or tow truck service).
This automotive case study is taken from the SENSORIA European Project [25].

2.3 Challenges for the Approach

In this case study, transformation tools should support metamodels or any equiv-
alent notion of type graphs for model management. Metamodels (or type graphs)
should also provide support for attribute handling. Control structures and con-
trol conditions may provide significant help in specifying the transformation,
although their use is not explicitly required.

While performance was not the critical aspect for this case study, it is very im-
portant from a practical point of view that a transformation should be executed
preferably in a few seconds so that transformation designers may immediately
observe and validate the result of their transformation.

S1 = serverReceiveAlert → S2

S2 = getDriverPhoneData → S3

S3 = callDriver → S4

S4 = M1 ≮ nohelp ≯ (D2 ≮ askhelp ≯ D1a)

M1 = C1

D2 = DM

D1a = assessDescription → D1b

D1b = DM

DM = D3 ≮ real ≯ M2

M2 = C1

C1 = cancelAlert → C2

C2 = SKIP

D3 = F1 || F2 || F3

F1 = getMapLocation → J1

F2 = processAlert → J2

F3 = getServiceFormat → J3

J1 = processJoin → E1

J2 = processJoin → SKIP

J3 = processJoin → SKIP

E1 = createServiceDescription → E2

E2 = SKIP

Fig. 5. Sample source and target models

Finally, the use of some validation techniques is also desirable, although not
required. More specifically, termination and determinism up to process equiva-
lence are probably the most relevant questions to be verified for this transfor-
mation.

3 Overview on Solutions

In this case study, our primary focus was put on assessing the expressiveness of
different transformation languages including the expressiveness of the rule lan-
guage itself, as well as the richness of control structures, which aim at restricting
the applicability of the transformation rules.

Furthermore, solution providers also presented those advanced features of
their tools, which significantly improved their productivity when creating the
solutions. These features included advanced graphical user interface function-
ality (e.g. graphical rule editors) as well as advanced model transformation fea-
tures (such as higher-order transformations, or bidirectionality). Various solution
providers highlighted analysis capabilities of their tools to pinpoint flaws in the
models or the transformation itself. Finally, most of the solutions relied upon an

advanced underlying metamodeling framework supporting model manipulation
and language design.

While the actual solutions were quite different, we identified common sub-
problems for all solutions. One subproblem is how different solutions prevent the
applicability of a transformation rule on the same match multiple times. This is
a typical problem in many model transformations, thus it offers some compari-
son specific to the graph transformation problem itself. Another interesting case
is the proper handling of outgoing ActivityEdges on Decision and ForkNodes,
since in the CSP domain, the outgoing ActivityEdge handled last would cause
the recursive nesting of Condition/Concurrency-expressions to be ended. In the
current paper, we will put more emphasis on the former subproblem as all the
different solutions demonstrate this issue in a compact way.

The UML2CSP case study has been solved altogether by 11 tools, which are
categorized (and then presented) below by the overall nature (strategy) of the
solution.

– Pure GT solutions. Some solutions (like Tiger/EMF in Sec. 4.1 and TGGs
in Sec. 4.2) build purely upon core graph transformation formalism with
implicit (or minimal) control structure. These solutions demonstrate how
model transformations can be formulated in a purely declarative way using
graph transformation.

– Solutions with control structures. However, most of the solutions rely upon
the use of some control structures to restrict the non-determinism of trans-
formations. The underlying tools offer either some textual language (like in
case of PROGRES in Sec. 4.3 or GrGen.NET in Sec. 4.4), or some graphi-
cal syntax, typically with a UML flavour as in case of VMTS (Sec. 4.6), USE
(Sec. 4.7), MoTMoT (Sec. 4.8), and GrTP (Sec. 4.9). In GReAT (Sec. 4.5),
the control language is mostly dataflow based.

– Solutions with a host framework / language. There are two solutions, which
rely upon a host framework not particularly designed for model / graph
transformations. In the solution developed in MOMENT2-GT (Sec. 4.10),
the transformation rules are translated into the Maude rewriting framework
[11], while XL (Sec. 4.11) uses native Java as its control language.

4 Solutions

In this section, each solution individually describes the principles of the approach
with the main settings and highlights of the used tool. Each solution is demon-
strated by an example, which gives a brief insight to the look-and-feel of the
transformation language or the tool itself.

4.1 Solution using Tiger EMF Transformer

The solution is a set of graph transformation rules on EMF [12] models, that are
designed using the Visual Editor of Tiger EMF Transformer [26], and run in the

Eclipse development platform. The production rules are defined by rule graphs,
namely a left-hand side (LHS), a right-hand side (RHS) and possible negative
application conditions (NACs).

Transformation Mechanics. As the case study is presented with a list of intuitive
correspondences between the source and target metamodels, the transformation
rules are also in groups that resemble the correspondences. These rules are the
implementation of the transformation concept introduced in [10].

Fig. 6. Correspondence Metamodel

The rules also use a third, correspondence metamodel shown in Figure 6.
For example the corresponding element between an Edge of activity diagram
and a Process of CSP is the ProcEdge. The role of this metamodel is similar to
correspondence structures used by Triple Graph Grammar [23] rules.

The benefits of using it are twofold. Firstly, it is used to mark the procession of
the nodes in the source model. This way, we refrain from deleting any nodes in our
rules. Secondly, all the possible NACs refer to elements from the correspondence
model, as these elements are created during the transformation, never deleted.
In [10] it is shown that these properties are important to make the transformation
compositional.

The transformation consists of 11 rules within 7 groups. To show the back-
ground mechanics of the transformation, we introduce one rule in detail, the
transformation of an Action.

Rule Descriptions The transformation starts with the application of the Ini-
tial rule that transforms the InitialNode. The rule processes the only outgoing
edge from the InitialNode by creating an empty process assignment, and also a
corresponding ProcEdge, to track that this edge has been processed. The NAC
guarantees that no edge has been processed in the model before.

The Action Rule depicted in Figure 7 is the essential transformation rule.
The definition of the previously processed edge A is completed, and the new
edge C is indicated as processed and an empty definition is opened for it. The
definition of process A is a prefix operator from Event B to target process C.

Fig. 7. Action Rule

Remaining Rules The Final rule processes a FinalNode and fills the previous
empty process definition with a SKIP process. Merge1 and 2 rules process
the MergeNode and connect the empty process definitions with the process that
corresponds to the outgoing edge of the MergeNode. Fork1 and 2 transform
the ForkNode to a 2-regular tree of Concurrency operators the similar way the
DecisionNode tree is built. And finally Join1 and 2 process the JoinNode by
creating the synchronization event and related processes. The entire set of rules
is available in [9].

4.2 Solution using Triple Graph Grammars

The transformation from UML Activity Diagrams to CSP given in this case
study is a typical application for Triple Graph Grammars (TGGs) [23]. Their
main advantage over other (single) graph rewriting approaches is that TGG rules
reflect the relation between model patterns. This relation can be interpreted in
different ways: To translate models in a forward or backward direction, or to
maintain their consistency.

The representation of corresponding model patterns is furthermore quite in-
tuitive. In fact, the transformation rules can often be derived from examples in
the transformation specification, such as given for this case study. Fig. 8 shows
how rules are derived from the information that an ActivityEdge corresponds
to a Process in a ProcessAssignment (i) and that an Action relates to a Prefix-
Expression (ii), compare the specification given in Sec. 2. The elements marked
green (and with ++) are those essentially related by a rule. Their relationship
holds when a certain structural context (b/w nodes) is given. This context im-
plies dependencies to other rules. For example, the second rule in Fig. 8 requires
two ActivityEdges to previously be translated by another rule, e.g. the rule in

(i). This principle of TGGs is very similar to the declarative languages specified
by the OMG’s model transformation standard QVT [20] as pointed out in [15].

AD

A

CSPCont

A=...
AD

AE

CSPCont

ProcAssign

Proc

++ ++ ++

++

AD

A

CSPCont

A=B<x>...
B[x]

AD

AE

Decision

AE

CSPCont

ProcAssign

Proc
Condition

Proc

(ii)

(i)

++ ++

++

++

++

Fig. 8. Two TGG rules derived from specification examples

Our solution is realized with a TGG interpreter plug-in for Eclipse which
transforms EMF models. The rules can be modeled in a graphical editor gener-
ated with GMF. For details of our solution, refer to [16]. For this example and
many others, the interpreter performs very well. For bigger models, the match-
ing algorithm could still be improved, or we would want to compile the rules
into executable code. This is done in other TGG transformation engines, like
implemented in Fujaba [28] or MOFLON [4].

Concluding, we see the particular advantage of our solution in the straight-
forward and declarative way of specifying a transformation. We require no addi-
tional control structure nor priorities on rules. This greatly improves the main-
tainability and comprehensibility of the transformations. Furthermore, it is pos-
sible to bidirectionally interpret the relational rules.

4.3 Solution using PROGRES

The Programmed Graph REwrite System [24] is a general-purpose graph rewrit-
ing language. Its expressive graph language and the mature environment (includ-
ing static analyzers, a debugger and code generator) encouraged its application
in the tool contest. However, PROGRES does not explicitly support model trans-
formation features like automated traceability management or bidirectionality.

The PROGRES-based solution comprises a single graph schema for both
meta-models, plus a single interconnecting edge type to store traceability links.
Model transformation rules are roughly structured as follows: The left-hand side
(LHS) queries subgraphs of both (source and target) models connected by trace-
ability edges, forming the transformation’s context. In addition, an increment of
the source model, which should be transformed by the current rule, is connected
to the LHS’s context. Non-recursive processing is guaranteed by negative ap-
plication conditions (NAC s), which ensure that no element in the target model
exists for the given source increment. On the right-hand side (RHS) of rules,
a corresponding element is created in the target model and connected to the
processed source increment.

`1:DecisionNode

`2:ActivityEdge

source

`5:Process

contains

`3:ProcAssignm

process
corr

corr

`4:Condition ::=

transformation DecisionToCondition_next =

 transfer 6'.expr := `2.guard;
end;

path contains : BinaryOp -> ProcExp =
 ((-left-> or -right->) & instance of BinaryOp)* & (-left-> or -right->) end;

1'=`1

2'=`2

source

5'=`5

3'=`3

corr

corr

4'=`4

6':Condition

process

left

right

Fig. 9. PROGRES transformation rule & textual path expression

Special handling is required for correspondences mapping n-ary source incre-
ments to binary target increments. As an example, the handling of DecisionNodes
is split into two. First, an initial transformation rule maps their respective else-
branch and an arbitrary other branch to a corresponding Condition. Afterwards,
the rule depicted in Figure 9 is applied as long as possible to remove the Condi-

tion (‘4) of ProcessAssignment from its container and to add it as right child to a
newly created Condition (6’). The termination of the transformation is guaran-
teed in this case by the negated path condition contains. This condition (depicted
textually in the figure) ensures that the candidate Process ‘5 is not reachable
from node ‘4 via left or right edges.

The PROGRES-based solution does not explicitly model control-flow, but
relies on a non-deterministic rule application following an as-long-as-possible
manner. Therefore, no dataflow passing “current” elements along with rule in-
vocations is necessary. Termination is guaranteed by the guards discussed above,
and by the fact that a traceability link is created by each rule application.

From the created specification, an executable prototype can be generated
which is able to visually present UML activity diagrams and the resulting CSP
expressions. Besides, GXL-based graph exchange and a textual output for CSP
expressions is available. Activity diagrams can be edited using a set of consistency-
preserving graph transformation rules.

4.4 Solution using GrGen.NET

The basic idea of our approach is to process the UML graph in a topological
order. The working set is determined by specially marked edges (by type) and
negative application conditions (NACs). During the transformation process each
piece of the UML graph is removed as the according CSP graph elements are
created.

As GrGen.NET provides all the necessary primitives, the UML and CSP
meta models can be expressed directly (see [13]). Especially the ActivityEdge
can be modeled by an edge type (as opposed to nodes in the given UML meta
model) because the type system allows attributed edges.

Moreover, GrGen.NET provides basic support for the transformation of
models to text (unparsing). However, more expressive support could alleviate
the user from the overhead of specifying rules and control flow for unparsing.

<<_node0>>
$F:InitialNode

$15:Action
name = getDriverPhoneData

<<tgt>>
$1B:Action

name = serverReceiveAlert

$27:Process
name = S1

<<_node1>>
$28:CspContainer

$29:Process
name = SKIP

<<pa>>
$2A:ProcessAssignment

$1C:ActivityEdge
name = S2

<<a>>
$10:ActivityEdge

name = S1

<<_edge2>>
$2B:tempProcess

<<_edge1>>
$2C:processIdentifier

<<_edge0>>
$2D:processAssignments

Fig. 10. The TFInitial rule applied to the example graph

Figure 10 shows a screenshot of the debugger of GrGen.NET during a rewrite
step, which removes UML elements and builds up the according CSP elements.
The red (dark grey) graph elements have just been created, whereas the light
grey graph elements will be deleted. The names of the rule elements are given
in angle brackets.

Using the standard settings of GrGen.NET, the transformation including
the text output only takes about 100 ms. This even includes the overhead for
just-in-time compilation, which accounts for about 99% of the execution time.

4.5 Solution using GReAT

GReAT [3] is a metamodel based transformation tool implemented within the
framework of GME [19]. GReAT offers several features that make designing
and implementing transformations intuitive and simple. The metamodels of the
source and target languages are specified using UML class diagrams, with the
additional capacity to define cross metamodel entities and temporary global
objects which can be accessed in any rule of the transformation. A data-flow
like model is used for sequencing transformation rules, added with conditional
execution of rules (using a boolean Guard condition) and conditional branching.
The GReAT solution for this case study illustrates the use of some of these
options.

An interesting part of the UML to CSP case study was the transformation of
Decision and Fork nodes. The challenge was to construct a binary tree structure
from a list of arbitrary length, such that the last Condition node has two Process
type children. The strategy adopted for transforming Decision nodes is: (1)
When encountering a Decision node, take the first outgoing edge. Create a
Condition, whose lhs is the associated Process, and the rhs is a new Condition;
(2) For the next Activity Edge, create an lhs for the associated Process on the
last Condition, and a new Condition as rhs. This is repeated for all the edges
that are not marked “else” in the Decision node; (3) Finally, when only the
edge marked “else” is left, the last remaining empty rhs Condition is replaced
with a Process corresponding to the last edge. This requires collecting all the
Decision nodes in the input model, and performing a sequence of operations for

each Decision node. The layout of the transformation rules in GReAT is shown
in Figure 11.

Fig. 11. Rule Sequencing and Rule Detail in GReAT

The rule CreateConditions is executed conditionally, for Activity Edges
that do not have an “else” guard. This creates a binary tree of Condition nodes
in the output, with each node having a Process as its lhs child, and another
Condition node as its rhs child. When the “else” edge is encountered, the last
rhs Condition node child is replaced with a Process. This is done by the rule
CreateLastCondition as shown in Figure 11. CurrItem is a global object, which
is used to track the last Condition node in the current binary tree. The rule
CreateLastCondition deletes the last rhs Condition and creates a new Process
in its place.

In addition to these features, GReAT comes with a code generator to generate
more efficient transformations in C++, and an interactive debugger. A complete
overview of the GReAT toolkit can be found in [7].

4.6 Solution using VMTS

In VMTS environment [1], we have created the metamodels of the activity di-
agrams and the CSP diagrams according to the specification of the case study.
Metamodel based modeling and validation is supported: metamodels are used
during the whole transformation process to describe models and to validate them
in each transformation step.

The transformation is defined with a control flow (using the notation of
the UML activity diagrams), which consists of separate transformation steps as
depicted in Fig. 12.

Each transformation step is a graph rewriting rule defined with a left hand
side and a right hand side graph. The transformation control flow describes
the order of the transformation steps with directed edges between the nodes; it
receives an input model (an instance of the activity diagram metamodel) and
produces a newly created output model (an instance of the CSP metamodel). The
most important properties of the transformation control flow are the following:

Fig. 12. The control flow of the transformation in VMTS

1. Some rules are exhaustive rules, which means that before we proceed to the
next rule, we apply the current rule repeatedly while the input model can
be matched.

2. By changing the value of a special attribute (IsProcessed) owned by each el-
ement belonging to the input activity diagram, we guarantee to process each
element at most once during the transformation rules, hereby the transfor-
mation process surely terminates.

3. Each branch node of the control flow is left by two edges, the processing flow
follows one of them if the previous rule was successfully applied, or the other
one if the previous rule could not be applied.

4. With internal causalities, it is possible to identify an element on the left
hand side of a rule with an element on the right hand side of the same rule.

5. With external causalities (also known as parameter passing), we can identify
an element on the right hand side of a rule with the element of the left hand
side of the next rule in the control flow.

The Traversing Processor (TP) is part of VMTS tool. In the first step, it
generates a C# API based on a chosen metamodel. Using TP we can execute
the code by providing an instance model of the current metamodel as an input.
By modifying the generated source code, any processing algorithm can be easily
realized. In this case we use TP to produce the CSP expressions in a plain text
format from a successfully created CSP model.

The result of the transformation is deterministic and the termination of the
transformation process is guaranteed, because of the special attributes that en-
sure that each rule can be applied only finite number of times during the trans-
formation.

4.7 Solution using USE

This section presents a solution with USE (UML-based Specification Environ-
ment) [14], which combines UML and OCL for specifying transformations.

For the case study, the metamodels of UML activity diagrams and CSP
processes are directly expressed in USE as class diagrams attached with OCL
invariants. The host graphs are presented as object diagrams.

action

A

B

A = action B

rule TransformAction
left
-- UML
theActivityEdgeA : ActivityEdge
theActivityEdgeB: ActivityEdge
action: Action
(theActivityEdgeA, action): ConnectsTo
(theActivityEdgeB, action): ConnectsFrom

-- CSP
theProcessA: Process

-- Preconditions
[Process.allInstances ->forAll(p|

p.name <> theActivityEdgeB.name)]
[theProcessA.name=theActivityEdgeA.name]

right
--- UML
theActivityEdgeA : ActivityEdge
theActivityEdgeB: ActivityEdge
action: Action
(theActivityEdgeA, action): ConnectsTo
(theActivityEdgeB, action): ConnectsFrom

--- CSP
theProcessA: Process
-- new
assignment: ProcessAssignment
theEvent: Event
theProcessB: Process
prefix: Prefix
(prefix, theEvent): Performs
(prefix, theProcessB): Becomes
(assignment, prefix): AssignsRight
(assignment, theProcessA): AssignsLeft
-- postconditions
[theEvent.name = action.name]
[theProcessB.name = b.name]

end

[theProcessB.name = theActivityEdgeB.name]
[theEvent.name = action.name]

[theProcessA.name=theActivityEdgeA.name]
[Process.allInstances ->forAll(p|

p.name <> theActivityEdgeB.name)]

L R

Fig. 13. Realizing the rule TransformAction with USE

The figure 13 shows a formulation of the rule TransformAction with USE.
Matching a rule is carried out by evaluating OCL queries on the source ob-
ject diagram. These queries are captured by the precondition of the operation
corresponding to the rule. In this case, we obtain objects for the nodes on the
left-hand side as the input of the operation. Applying the rule by USE com-
mands realizing the rule, we create objects and links for the right-hand side.
After each rule application, one may check the postconditions of the rule for an
on-the-fly verification of the transformation. The sequence of rule applications
can be presented by a sequence diagram.

Rules in USE are captured in a dedicated language, which are then automati-
cally translated into USE command sequences and OCL pre- and postconditions
by the OCL generator of USE.

The example transformation is always checked after each rule application.
By that, USE detects that the original metamodels from the case study had to
be adjusted: some composition relationships had to be changed to aggregation
relationships. Otherwise the object diagram representing the CSP process of the
case study is not a well-formed instance of the CSP metamodel. In addition, our
approach allows to integrate OCL invariants on the metamodels, which can be
checked after each transformation step. For example, the following OCL invariant
expressed that “the assignments have pairwise distinct left hand sides in a CSP
container ”:

context CspContainer

inv distinctProcessNames:

processAssignment->forAll(p1,p2| p1<>p2 implies p1.left.name <> p2.left.name)

4.8 Solution using MoTMoT

MoTMoT is a tool that transforms UML models of controlled graph transfor-
mations into executable Java code that can access model repositories in a JMI
or XMI standard compliant way. It has been designed to illustrate how several
model transformation problems of the Fujaba tool can be solved.

MoTMoT enables one to specify primitive graph transformation rules (so-
called Story Patterns) and control structures (so-called Story Diagrams) with
any UML 1 standard-compliant modeling tool, instead of forcing transformation
writers/maintainers to use the dedicated Fujaba editor. UML-to-CSP case study
has been solved for mapping input activity diagrams from off-the-shelf UML 2
editors such as MagicDraw 10. Note that other submissions force the use of
an ad-hoc (i.e., case-study specific) UML editor for producing input activity
diagrams [27].

Figure 14 (a) presents an example rewrite rule in MoTMoT/Fujaba syntax.
Remark that �bound� node variables either represent nodes that have already
been bound by previously executed rules (e.g., topProcess), or nodes that are
available as method parameters (e.g., fork, out). Node and edge variables marked
with �create� are created by the rewrite rule. Finally, nodes and edges without
such markers need to be matched in the host graph. With this semantics in mind,
Figure 14 (a) shows the rule for mapping an input Fork node to an output CSP
expression.

Figure 14 (b) shows how the MoTMoT transformation ensures that each
input node is transformed exactly once: the Story Diagram models that after
the creation of the output CSP container, the transformation should match each
input node exactly once (using the iterative�loop� construct). For each match,
a transform(inputElement, outputContainer) method is called. This method is
implemented for each type of activity node and is modeled by diagrams such as
Figure 14 (a).

(a) Out-place rewrite rule for Fork
nodes

(b) Control flow: transform each input
node

Fig. 14. Story Driven Modeling: Story Pattern and Story Diagram examples.

A first strength of the MoTMoT submission is the utilization of colors and
layout patterns to improve the readability of a transformation model. Secondly,
complex transformation rules are decomposed into manageable units by means
of views on such rewrite rules. For example, Figure 14 (a) only shows the core
mapping concerns for mapping a UML Fork node to a CSP Process Assigment.

More technical concerns are modeled by another view on the same rewrite
rule. A third strength of MoTMoT is its conformance with OMG’s MDA stan-
dards. For the UML-to-CSP case study specifically, we have illustrated how input
from non-standard tools can be consumed as well, using in-place transformation
rules. Finally, the submission illustrates MoTMoT’s extensibility by applying
language constructs that are realized by means of higher-order transformations.

The first drawback is the limited “out-of-the-box” usability: when only spe-
cializing a generic UML editor with the UML profile for Story Diagrams, some
domain-specific editor features (such as advanced auto-completion) are not avail-
able. In practice, one may therefore want to extend one’s favorite UML tool
with a (small) plugin for such features. As a second drawback, the submission
illustrates that some platform specific details cannot (yet) be hidden from a
MoTMoT transformation model.

4.9 Solution using GrTP

The aim of this case study is to build a model transformation which takes a UML
activity diagram as an input and gives a list of CSP processes as an output.
The initial activity diagram can be produced by means of transformation-based
Graphical Tool-building Platform called GrTP [8]. The platform (regardless of
other facilities) allows users to make an activity diagram based on the UML
activity diagram meta-model and execute the transformation called UMLtoCSP

which transforms the UML model to a CSP model and then verifies it upon
termination and determinism up to process equivalence.

The result of the transformation consists of several parts:

1. a CSP model - an instance of the CSP meta-model;
2. a text file containing the list of CSP processes together with their assign-

ments according to the textual syntax of CSP;
3. an answer to the question “Does the CSP model execution terminate?”;
4. an answer to the question “Is the CSP model deterministic?”.

For the GrTP platform to be able to work efficiently, a novel model transfor-
mation language L0 [2] has been implemented with a highly efficient compiler.
The transformation UMLtoCSP is also written in the language L0. The language
L0 is very simple and completely procedural, and it has only a textual syntax.

The solution of the problem is mainly based on rules given in Section 2. In
addition, a rule containing information about conditions without an else branch
is added (Figure 15). The termination is verified partly - it is only possible
to assure the CSP model execution terminates if it contains no cycles. The
CSP determinism in this case is defined in this manner - the CSP model is
deterministic if and only the following condition holds for each process expression
starting from the initial process:

1. every symbol of the given alphabet leads to at most one process from a given
state;

2. if some symbol of the alphabet leads to more than one process, then bisim-
ulation holds between such processes.

Fig. 15. Extra rule - a condition without an else branch.

The advantage of the tool used to solve the task is in its simplicity from the
view point of an end user: no installation is required, no complicated instructions
need to be learned, — although, obviously, a new language has to be learned.
However, since the tool allows user to make arbitrary UML activity diagrams, the
result of the UMLtoCSP transformation cannot be predicted in some (erroneous)
cases.

4.10 Solution using MOMENT2-GT

MOMENT2-GT [5] is a graph transformation tool where graphs are provided
as MOF-based models and production rules are defined in a QVT-based textual

format. In MOMENT2-GT, a graph transformation definition is compiled into a
rewrite theory in Maude [11], the input graph is represented as a term of a specific
sort that is defined in this theory, and the execution of a graph transformation
is handled by Maude’s algorithm for term rewriting modulo associativity and
commutativity. Graph transformations are performed by following the Single
Pushout approach.

In our solution, we process the objects that constitute the input activity
model generating objects in the resulting CSP model. The idea behind the
transformation definition is to delete activity nodes whenever they have been
processed. We have studied two solutions for the case study by taking into ac-
count dangling edges implicitly or explicitly. In the first case, MOMENT2-GT
takes care of possibly generated dangling edges. In the second case, the user
must avoid their generation in the transformation definition. Both solutions can
be downloaded from [5].

We provide an average of the time measurements that have been obtained
during 10 experiments11. The transformation that can produce dangling edges
was performed in an average time of 1431.2 ms by Maude. The transformation
that was designed to avoid dangling edges was performed in an average time of
885.4 ms by Maude.

MOMENT2-GT is based on a Maude algebraic specification of Essential
MOF that is provided as a plugin to EMF. This means that EMF models can
be directly used as formal entities in the algebraic framework, where they can
be treated as graphs or as terms. Therefore, we can apply Maude-based for-
mal analysis techniques [11], such as model checking of invariants or LTL model
checking, to model-based systems in a straightforward way.

A disadvantage in our approach is that it lacks of graphical concrete syntax.
Comparing a production rule in Tiger and in MOMENT2-GT (as illustrated in
Fig. 16) shows, at a first glance, that our approach is not the most appropriate
for communication purposes. However, for expert users, a textual-based syntax
may offer editing facilities that are difficult to achieve in a graphical approach:
copy & paste, text replacement, etc. In addition, MOMENT2-GT constitutes a
framework that is defined at a high level of abstraction in Maude. Therefore it
is ideal for experimenting with new model transformation features, keeping in
mind a realistic approach in terms of efficiency.

4.11 Solution using XL

The case study can be implemented easily using the textual programming lan-
guage XL on the basis of the graph of GroIMP [18]. At first, we have to translate
the meta models to a Java class hierarchy which can be done as part of the XL
code as in

abstract module ActivityNode extends Node;

11 The experiments have been performed on a Core DUO 2Ghz with 2Gb RAM, using
Ubuntu 7.04.

Fig. 16. Production rule in MOMENT2-GT and Tiger.

Secondly, we have to instantiate the meta model with the source UML graph.
Ideally, we would use a graphical editor or some common graph exchange format
which can be imported into our system. Unfortunately, this is not yet possible
so that we have to input the source graph as part of the XL code, too:

Axiom ==>> ^ InitialNode
-ActivityEdge("S1")-> Action("serverReceiveAlert") ...;

Thirdly, we have to specify the transformation rules and to control their appli-
cation. For the rules we make use of the fact that UML activity edges play the
role of CSP processes and UML actions play the role of CSP events. Thus, we
can keep these nodes in the graph as context for the gluing of the SPO approach,
perform all transformations as if these nodes were both UML and CSP nodes,
and replace them with their actual CSP nodes as a final step. As an example,
the rule for an action

a:ActivityEdge -o-> x:Action -i-> b:ActivityEdge ==>>
^ -processAssignments-> ProcessAssignment [-identifier-> a]
-process-> Prefix [-event-> x] -targetProcess-> b;

already creates some CSP nodes and edges, but keeps the UML nodes of the
left-hand side. Only after the final step we have a valid CSP graph:

a:ActivityEdge ==>> p:Process(a.getName()) moveIncoming(a, p, -1);
a:Action ==>> e:Event(a.getName()) moveIncoming(a, e, -1);

Concerning the control of rule application, we make use of XL extending Java:
a rule is executed simply when it is reached (as a statement) by the usual con-
trol flow of Java. Furthermore, we may set the mode of rule application, either

parallel or sequential. It turns out that most rules can be applied in parallel in
an initial step with the exception of the creation of binary expression trees for
UML decision and fork nodes which has to be done sequentially afterwards.

Among the three case studies of AGTIVE 2007, the UML-to-CSP case study
was least related to the principal application domain of XL. Nevertheless, it was
easily possible to implement the transformation. However, our system does not
provide means for verification.

5 Lessons Learned

According to the categories discussed in Sec. 3, we can draw the following con-
clusions, which are summarized also in Table 1.

– Modeling (metamodeling) framework: Each tool offers an underlying
model manipulation and metamodeling framework to support transforma-
tions. Supported features frequently included standards-compliant meta-
models (like EMF or GXL) well-formedness constraints for a modeling lan-
guage (typically expressed in OCL), edge attributes, etc. Several solutions
used UML diagrams for capturing metamodels and model. Furthermore,
some transformations were built above a full-fledged domain-specific model-
ing framework.

– Rule language. Solutions used either a textual or a graphical language for
capturing transformation rules. Some tools integrated relied on standards-
compliant languages in transformation design such as OCL (as in case of
USE or VMTS) or QVT (in case of MOMENT2-GT). Interestingly, none
of the tools provided both a graphical and a textual language for capturing
rules.

– Control structures. Control structures used in at least one of the solu-
tions included parameter passing (e.g. GReAT and VMTS), parallel rule
execution (e.g. XL), as long as possible rule application, topological (hierar-
chical) ordering enforced by rules and rewrite sequences (in GrGen.NET),
a dataflow-based language (in GReAT), and traditional programming con-
structs like conditional branching or loops. XL used native Java constructs
as control structures for the transformation. The TIGER, the TGG and the
MOMENT2-GT solutions were purely declarative, i.e., they did not use any
control structure.

– Handling each match once. In order to process each match only once,
different solutions used either some explicit helper data structure (such as
a reference model or a helper attribute), negative application conditions for
rules, and control structures like foreach. The TGG solution automatically
maintains all instances of the applied rules to remember the matched nodes.
Finally, some solutions (such as GrGen.NET, GReAT or XL) removed
some (or all) elements of the source model one by one to prevent multiple
application of rules on the same match.

– Advanced GUI features. Advanced features of the graphical user interface
of different tools included graphical editors (e.g. in case of TIGER, TGGs

S
o
lu

ti
o
n

M
et

a
m

o
d
el

in
g

R
u
le

la
n
g
u
a
g
e

C
o
n
tr

o
l
st

ru
ct

u
re

(i
n

th
e

so
lu

ti
o
n
)

H
a
n
d
li
n
g

ea
ch

m
a
tc

h
o
n
ce

A
n
a
ly

si
s

su
p
p
o
rt

(i
n

th
e

to
o
l)

A
d
va

n
ce

d
tr

a
n
sf

.
fe

a
tu

re
s

T
ig

er
E

M
F

g
ra

p
h
ic

a
l
G

T
ru

le
s

n
o
n
e

re
fe

re
n
ce

m
et

a
m

o
d
el

&
N

A
C

–
co

m
p
il
ed

G
T

ru
le

s

T
G

G
E

M
F

T
G

G
s

(g
ra

p
h
ic

a
l)

n
o
n
e

im
p
li
ci

tl
y

h
a
n
d
le

d
b
y

T
G

G
se

m
a
n
ti

cs
–

b
id

ir
ec

ti
o
n
a
li
ty

P
R

O
G

R
E

S
g
ra

p
h

sc
h
em

a
v
is

u
a
l
G

T
ru

le
s

n
o
n
-d

et
.

ru
le

a
p
p
l.
,

a
s

lo
n
g

a
s

p
o
ss

ib
le

N
A

C
g
ra

p
h

co
n
st

ra
in

ts
p
a
th

ex
p
re

ss
io

n
s,

b
a
ck

tr
a
ck

in
g

G
rG

en
.N

E
T

cu
st

o
m

d
o
m

a
in

-
sp

ec
ifi

c
te

x
tu

a
l
G

T
ru

le
s

se
q
u
en

ti
a
l

co
m

p
o
si

-
ti

o
n

o
f
ru

le
s

d
ec

o
n
st

ru
ct

th
e

so
u
rc

e
g
ra

p
h

co
n
n
ec

ti
o
n

a
ss

er
-

ti
o
n
s,

in
te

ra
ct

iv
e

d
eb

u
g
g
er

tr
a
n
sa

ct
io

n
s

G
R

eA
T

U
M

L
C

la
ss

D
ia

g
ra

m
s

G
ra

p
h
ic

a
l,

U
M

L
-

li
k
e

n
o
ta

ti
o
n

w
it

h
B

o
o
le

a
n

G
u
a
rd

s

E
x
p
li
ci

t
se

q
u
en

c-
in

g
o
f

ru
le

s
w

it
h

D
a
ta

fl
ow

li
k
e

sy
n
ta

x

Im
p
li
ci

t
In

te
ra

ct
iv

e
D

eb
u
g
g
er

C
lo

su
re

ov
er

m
a
tc

h
es

to
fo

rm
g
ro

u
p
s

V
M

T
S

d
o
m

a
in

in
d
ep

en
d
en

t,
n
-l
ev

el
m

et
a
m

o
d
el

in
g

fr
a
m

ew
o
rk

g
ra

p
h
ic

a
l

ru
le

s
w

it
h

O
C

L
a
ct

iv
it
y

d
ia

g
ra

m
w

it
h

p
a
ra

m
et

er
p
a
ss

in
g

h
el

p
er

a
tt

ri
b
u
te

s
a
n
d

O
C

L
co

n
st

ra
in

ts
ru

n
-t

im
e

va
li
d
a
ti

o
n

o
f
O

C
L

co
n
st

ra
in

ts
ex

p
li
ci

t
tr

a
ce

a
b
il
-

it
y

U
S
E

M
O

F
a
n
d

E
M

F
ca

n
b
e

ex
p
li
ci

tl
y

m
o
d
el

ed
te

x
tu

a
l
G

T
ru

le
s

sc
ri

p
ti

n
g

a
n
d

re
d
ex

co
m

p
u
ta

ti
o
n

w
it

h
N

A
C

s
ch

ec
k
in

g
o
f
(p

re
-

a
n
d

p
o
st

)
co

n
d
it

io
n
s

a
n
d

in
va

ri
a
n
ts

b
id

ir
ec

ti
o
n
a
li
ty

p
o
ss

ib
le

M
o
T

M
o
T

st
a
n
d
a
rd

s
co

m
p
li
a
n
t

(M
O

F
,
U

M
L
,
J
M

I)
g
ra

p
h
ic

a
l
G

T
ru

le
s

S
to

ry
d
ia

g
ra

m
s

h
el

p
er

st
ru

ct
u
re

s
–

h
ig

h
er

-o
rd

er
tr

a
n
sf

o
rm

a
ti

o
n
s

G
rT

P
U

M
L

te
x
tu

a
l

m
o
d
el

tr
a
n
s-

fo
rm

a
ti

o
n

la
n
g
u
a
g
e

L
0

te
x
tu

a
l

st
ru

ct
u
re

s
(f

o
re

a
ch

et
c.

)
u
si

n
g

fo
re

a
ch

co
n
-

st
ru

ct
v
er

if
.

o
f

te
rm

in
a
ti

o
n

a
n
d

d
et

er
m

in
is

m
(o

f
th

e
ta

rg
et

m
o
d
el

)

–

M
O

M
E

N
T

2
-G

T
E

M
F

(c
o
m

p
il
ed

to
M

a
u
d
e)

te
x
tu

a
l

Q
V

T
-b

a
se

d
G

T
ru

le
s

n
o
n
e

N
A

C
,

O
C

L
co

n
-

st
ra

in
ts

fo
rm

a
l

a
n
a
ly

si
s

p
ro

-
v
id

ed
b
y

M
a
u
d
e

–

X
L

J
av

a
cl

a
ss

h
ie

ra
rc

h
y

te
x
tu

a
l,

ex
te

n
d
s

J
av

a
p
a
ra

ll
el

,
se

q
.,

a
s

lo
n
g

a
s

p
o
ss

ib
le

,
J
av

a
re

m
ov

a
l
o
f
u
se

d
U

M
L

n
o
d
es

–
–

Table 1. Comparison of solutions and tools

or GrTP), different views of rules (e.g. in MoTMoT), and editors of the
source and target models (e.g., in PROGRES, VMTS, GrTP). Online and
interactive layout of the host graph is present in GrGen.NET.

– Underlying run-time transformation platform. Most of the tools were
implemented in Java, several of them above industrial modeling platforms
like EMF (in case of e.g TIGER or TGG) or JMI (in case of MoTMoT). The
exceptions include VMTS and GrGen.NET, which used .Net as underlying
platform. PROGRES transformations can be compiled into C, GReAT and
GrTP transformations can be compiled into C++. Finally, MOMENT2-GT
transformations are executed within the Maude rewriting framework.

– Analysis support. Some tools provided support for analyzing the models
or the transformations. OCL-based validation of models were reported in
USE and VMTS, where the latter also supports the run-time validation of
constraints during transformation. An interactive debugger is available in
GReAT and GrGen.NET. Formal analysis of transformation specifications
is available in MOMENT2-GT as provided by the underlying Maude engine.

– Advanced model transformation features. Some advanced model trans-
formation constructs have also been used in different solutions. The TGG
solution was the only solution supporting the bidirectionality of transforma-
tions. Higher-order transformations were used in MoTMoT.

As a concluding remark, let us identify some areas where existing tool support
is not as extensive. Interestingly, none of the tools supported implicit traceability
when all correspondence structures are derived automatically when applying the
transformation rules. Such a solution is present in model transformation frame-
works like ATL [6]. Instead, all solutions used some kind of explicit traceability
(i.e. manually introduced correspondence structure) information to represent the
interconnection of source and target models. Furthermore, incremental transfor-
mations were not supported by any of the tools, which is also a key issue in
the design of model transformations. Existing analysis support available in the
presented tools can only guarantee some correctness criteria for specific runs of
a transformation, while there is a lack of support for reasoning on the transfor-
mation (rule) level. Finally, solutions did not emphasize the reusability support
available in the corresponding tools, which is a critical aspect when developing
complex transformations.

References

1. Visual Modelling and Transformation System (VMTS). http://vmts.aut.bme.hu.
2. The Lx transformation language set, 2007. http://Lx.mii.lu.lv.
3. A. Agrawal, G. Karsai, and A. Ledeczi. An end-to-end domain-driven software

development framework. In 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA). Ana-
heim, California, 2003.

4. C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr. MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In A. Rensink

and J. Warmer (eds.), Model Driven Architecture - Foundations and Applications:
Second European Conference, vol. 4066 of LNCS, pp. 361–375. Springer Verlag,
Heidelberg, 2006.

5. Artur Boronat. The MOMENT2-GT web site, 2008. http://www.cs.le.ac.uk/

people/aboronat/tools/moment2-gt.
6. ATLAS Group. The ATLAS Transformation Language. Available from http:

//www.eclipse.org/gmt.
7. D. Balasubramanian, A. Narayanan, C. van Buskirk, and G. Karsai. The graph

rewriting and transformation language: GReAT. In 3rd International Workshop
on Graph Based Tools (GraBaTs 2006). Natal (Brazil), 2006.

8. J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L. Lace, R. Liepins,
and A. Sprogis. GrTP: Transformation based graphical tool building platform.
In MDDAUI 2007: Workshop on Model Driven Development of Advanced User
Interfaces (Satellite event of MODELS 2007). 2007.

9. D. Bisztray. Verification of architectural refactoring rules. Tech. rep., Department
of Computer Science, University of Leicester, 2008. http://www.cs.le.ac.uk/

people/dab24/refactoring-techrep.pdf.
10. D. Bisztray and R. Heckel. Rule-level verification of business process transforma-

tions using CSP. In Proc of 6th International Workshop on Graph Transformations
and Visual Modeling Techniques (GTVMT’07). 2007.

11. M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Mart́ı-Oliet, and C. Tal-
cott. All About Maude. Springer LNCS Vol. 4350, 2007.

12. Eclipse Consortium. Eclipse Modeling Framework (EMF) – Version 2.3, 2007.
http://www.eclipse.org/emf.

13. R. Geiß and M. Kroll. GrGen.NET: A fast, expressive, and general purpose graph
rewrite tool. In this volume.

14. M. Gogolla, F. Büttner, and M. Richters. USE: A UML-Based Specification En-
vironment for Validating UML and OCL. Science of Computer Programming,
vol. 69:pp. 27–34, 2007.

15. J. Greenyer and E. Kindler. Reconciling TGGs with QVT. In G. Engels,
B. Opdyke, D. C. Schmidt, and F. Weil (eds.), Proc. 10th International Conference
on Model Driven Engineering Languages and Systems, MoDELS 2007, Nashville,
USA, vol. 4735 of LNCS, pp. 16–30. Springer, 2007.

16. J. Greenyer, E. Kindler, J. Rieke, and O. Travkin. TGGs for Transforming
UML to CSP: Contribution to the ACTIVE 2007 Graph Transformation Tools
Contest. Tech. Rep. tr-ri-08-287, Software Engineering Group, Dept. of Com-
puter Science, Univ. of Paderborn, 2008. http://www.uni-paderborn.de/cs/

ag-schaefer/Veroeffentlichungen/Quellen/Papers/2008/tr-ri-08-287.pdf.
17. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International

Series in Computer Science. Prentice Hall, 1985.
18. O. Kniemeyer and W. Kurth. The modelling platform GroIMP and the program-

ming language XL. In this volume.
19. A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprinkle,

and G. Karsai. Composing domain-specific design environments. Computer,
vol. 34(11):pp. 44–51, 2001.

20. Object Management Group (OMG). MOF QVT Final Adopted Specification, 2007.
http://www.omg.org/cgi-bin/apps/doc?ptc/07-07-07.pdf.

21. OMG. Unified Modeling Language, version 2.1.1, 2006.
Http://www.omg.org/technology/documents/formal/uml.htm.

22. A. Rensink and G. Taentzer. AGTIVE 2007 Graph Transformation Tool Contest.
In this volume.

23. A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In
G. Tinhofer (ed.), 20th Int. Workshop on Graph-Theoretic Concepts in Computer
Science, vol. 903 of Lecture Notes in Computer Science (LNCS), pp. 151–163.
Springer Verlag, Heidelberg, 1994.

24. A. Schürr, A. J. Winter, and A. Zündorf. The PROGRES approach: Language
and environment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg
(eds.), Handbook on Graph Grammars and Computing by Graph Transformation:
Applications, Languages, and Tools, pp. 487–550. Volume 2. World Scientific, 1999.

25. SENSORIA: Software Engineering for Service-Oriented Overlay Computers. http:
//www.sensoria-ist.eu.

26. Tiger Developer Team. Tiger EMF Transformer, 2007. URL http://www.tfs.cs.

tu-berlin.de/emftrans. http://www.tfs.cs.tu-berlin.de/emftrans.
27. P. Van Gorp, O. Muliawan, A. Keller, and D. Janssens. Executing a platform

independent model of the UML-to-CSP transformation on a commercial plat-
form. In AGTIVE 2007 Tool Contest. 2007. http://gtcases.cs.utwente.nl/

wiki/UMLToCSP/MoTMoT.
28. R. Wagner. Developing Model Transformations with Fujaba. In H. Giese and

B. Westfechtel (eds.), Proc. 4th International Fujaba Days 2006, Bayreuth, Ger-
many, vol. tr-ri-06-275 of Techn. Rep., pp. 79–82. Univ. of Paderborn, 2006.

