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ABSTRACT
The Session Initiation Protocol (SIP) has been chosen as the stan-
dard signaling protocol for the IP Multimedia Subsystem (IMS).
SIP is a text-based protocol with messages often exceeding 1000
bytes in size, thus causing high call set-up delays on low bit-rate
links.

Signaling Compression (SigComp) is currently the only option
cellular operators have for the compression of signaling messages.
We study the performance of SigComp, showing that SigComp
cannot achieve the level of compression required by Push-To-Talk
over Cellular (PoC) services in the IMS. Furthermore, we propose
an alternative compression mechanism, namely Template Based
Compression (TBC), and show through measurements how we can
achieve higher compression ratios than SigComp, satisfying the re-
quirements for PoC on low bit-rate links.

Keywords
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1. INTRODUCTION
Push-To-Talk over Cellular (PoC) has seen a rapid growth in re-

cent years. Various cellular carriers such as Nextel and Sprint of-
fer PoC solutions usually combined with rich presence. PoC is
a half-duplex technology that allows users to communicate with
each other in a walkie-talkie fashion. Such communication can be
point-to-point and point-to-multipoint.

The IP Multimedia Subsystem (IMS) represents the next evolu-
tion in fixed and mobile network access and it is currently being
deployed in many cellular networks. In the IMS, different access
technologies converge under one single architecture based on the
Internet Protocol (IP). This convergence allows for the delivery of
Internet services regardless of the access network used. We can
think of the IMS as an abstraction layer between the service layer
and the transport layer.

The IMS introduces many new network elements. For the pur-
pose of this paper, however, we focus only on the User Equipment
(UE) and the Proxy-Call Session Control Function (P-CSCF). The
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UE is the IMS end-point, while the P-CSCF represents the first
point of attachment the UE has with the IMS. Once the UE connects
to the IMS, its P-CSCF will remain the same for the whole duration
of the IMS registration. The path between UE and P-CSCF usually
includes a wireless link called the air link.

In order to facilitate the integration between IMS and the In-
ternet, the protocols used in the IMS were chosen from protocols
standardized by the Internet Engineering Task Force (IETF). In par-
ticular, the Session Initiation Protocol (SIP) [10] was chosen as the
signaling protocol for the IMS and it has been mandatory since re-
lease 5. Using SIP terminology, the UE is the equivalent of a SIP
user agent (UA) and the P-CSCF is the equivalent of a SIP proxy
server.

SIP was designed as a text-based protocol to simplify building
new SIP-based services, create new SIP extensions and debug im-
plementations. Since SIP was designed for high bit-rate links, the
size of SIP messages did not really matter. For high bit-rate links,
the size of SIP messages does not introduce a significant delay in
the call set-up process. Things, however, change when we con-
sider IMS. In the IMS we have different access technologies such
as UMTS and GPRS that have significantly lower bit-rates than, for
example, IEEE 802.11 and IEEE 802.16. In such cases, the large
size of SIP messages significantly contributes to the call set-up de-
lay, making the call set-up time too big for real-time applications
such as voice and PoC.

In order to address the large size of SIP messages and make SIP
more “friendly” for low bit-rate links, the IETF standardized a gen-
eral compression framework called Signaling Compression (Sig-
Comp) [9]. SigComp provides a high degree of flexibility in that
it can support any type of dictionary-based compression algorithm,
but it does so by sacrificing performance (see Section 4). By us-
ing SigComp, SIP messages are in many cases significantly shorter
than their uncompressed version. This, however, is still not enough
for applications such as PoC where the Post Dial Delay (PDD) has
to be on the order of one second or less (see Section 6).

The main contributions of this paper are listed below.

• We study and evaluate SigComp performance for different
SIP flows and show the call set-up delay for each.

• We show how SIP introduces the largest contribution to the
call setup delay. In particular, in our measurements, the ex-
change of SIP messages took several seconds to complete.

• SIP affects only one component of the total call set-up delay,
that is, the air-link delay. Because of this, a SigComp-based
solution is limited since it does not improve on other compo-
nents of the call set-up delay such as the air-link setup delay.

• SigComp has intrinsic limitations due to its architecture in
order to achieve a high degree of flexibility. We analyze such



limitations and show why SigComp is not suitable for achiev-
ing very high compression for smaller packets.

• We analyze compression techniques based on text substitu-
tion such as those of the Lempel-Ziv (LZ) family, pointing
out limitations and shortcomings relevant to the present con-
text.

• We introduce a new compression mechanism based on the
concept of templates called Template Based Compression
(TBC) that cellular operators can use in their network. We
show how such mechanism makes it possible to achieve the
delay requirements of the most time-critical applications such
as PoC in the IMS. We compare the performance of the pro-
posed compression mechanism with those of SigComp and
show how the proposed compression mechanism always out-
performs SigComp.

• Finally, we show how including our compression mechanism
within the SigComp architecture is not desirable since Sig-
Comp becomes counter-productive as the size of messages
becomes smaller.

The rest of the paper is organized as follows. In Section 2 we
present current approaches for compressing signaling messages and
Section 3 describes the delays in the IMS for call setup. In Section
4 we describe SigComp operations, pointing out advantages and
disadvantages and in Section 5 we introduce TBC. Section 6 shows
and compares performance of SigComp and TBC. Finally, Section
7 concludes the paper.

2. RELATED WORK
The use of compression in network protocols is not new. Header

compression such as Robust Header Compression (ROHC) [2] is
used for the compression of protocol headers; Transport Layer Se-
curity (TLS) [3] and File Transfer Protocol (FTP) [8] have a com-
pressed transmission mode and IP compression (IPComp) [11] is
used to compress IP datagrams. All of these compression proto-
cols, however, are not suitable for compression of application layer
messages and while they can complement a compression mecha-
nism at the application layer, they cannot replace it. In particular,
TLS and IPComp use LZ-based compression for messages at the
transport and IP layer respectively, without discerning between ap-
plications. This makes LZ-based compression less efficient since
application-specific redundancy cannot be fully exploited.

Signaling compression, is relatively new and has attracted more
interest in recent years, especially after SIP became the signaling
protocol for the IMS. SigComp [9], a general framework for sig-
naling compression, was standardized by the IETF in 2005. We
present the SigComp architecture in Section 4 and compare it with
our approach throughout the paper.

In [1], Akhtar et al. introduce a new entity called Encoding As-
sistant (EA) on both the UE and the P-CSCF. The EA is placed be-
tween the application layer and the SigComp layer and takes care
of compressing some of the dynamic content of SIP messages such
as SIP Uniform Resource Identifiers (URIs). Together with the EA,
new SIP option tags and new SIP headers are introduced. The EA
inserts new headers in the SIP message to be compressed. These
new headers contain an index value that points to a particular en-
try in the Identity List. The Identity List is a list of maximum 16
entries containing identity information for a specific user. This list
is used for indexing the content of the Via, From, Contact and
P-Preferred-Identity headers. The use of an indexed list aims to
reduce the size of the message by replacing a string with a number.

This advantage, however, is not significant since the new headers
added to contain this index are 14 bytes long or more. The per-
formance of such mechanism have not been proven. Furthermore,
SigComp Extended Operations [7] introduces the concept of User
Specific Dictionary (USD) which offers similar functionalities to
the ones of the EA in that it allows for a better compression of the
dynamic content specific to each user, and this without the intro-
duction of any new header or tag. Because of this, we see little or
no use in adopting the proposal in [1].

Viamonte et al. in [13] introduce the concept of Session Descrip-
tion Protocol (SDP) template for reducing the session setup de-
lay for streaming services using the Real-Time Streaming Protocol
(RTSP). Here, the streaming server builds a template for the SDP
part of the RTSP packet. This template contains all the SDP fields
present in the packet and their values. Those SDP fields whose
value is not known when the template is built, are still present in
the template although empty. For those SDP fields that are empty
in the template, their value is sent in the 200 OK answering the
RTSP DESCRIBE request. In such case the order of the variables
in the 200 OK has to be the same as in the template. Each field is
not split in a variable part and a fixed part; it is either completely
present in the template or it is sent later. The server sends to the
client a URL where to download the template. When the template
is no longer applicable because some parameters have changed, the
server will send the client a new URL where to find the updated
template.

The approach proposed in [13] can be seen as a specific case of
our TBC, although with some important differences.

In [13] the way the template is built and used is specific to the
characteristics of streaming sessions and it addresses only SDP
content for RTSP messages. Many parameters that we consider as
variable such as codecs and port numbers, are considered as con-
stant and therefore part of the SDP template. Furthermore, new
headers advertising the support of SDP templates and the URLs
where to download such templates are included in packets exchanged
during time-critical operations. This introduces the possibility of
SDP templates negatively affecting the session setup delay. In TBC,
information regarding templates is never sent during time-critical
operations, hence TBC always improves the setup delay. Finally,
the variable fields not included in the SDP template are sent in the
200 OK without any encoding. In TBC we encode variable content
that is not included in the template to further improve compression.

3. DELAYS IN THE IMS
In terms of delay we look at the call setup delay and PDD. The

call setup delay is the time between the INVITE request and the
200 OK. The PDD is the time from when users press the “call”
button to when they receive the ring-back, that is, the 180 Ringing
(see Fig. 1).

Generally speaking, users do not embrace a new service when
this new service offers performance inferior to the service it re-
places. This is the case of a GSM network and an IMS-based wire-
less network, for example. In a GSM network the typical call set-
up delay is 2 seconds for a mobile-to-PSTN call, 2.2 seconds for
a PSTN-to-mobile call and about 4 seconds for a mobile-to-mobile
call1 [4]. As we show in Section 6, in the IMS, the air-link delay
alone can be as high as 7 seconds. SigComp reduces air-link delay
down to about 2 seconds. SigComp, however, improves only on the
air-link delay, leaving other causes of delay unaffected. This makes
a SigComp-only approach not sufficient for real-time applications

1GSM uses Signaling System No.7 (SS7), a bit-field-encoded sig-
naling protocol.
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Figure 1: SIP flow for call set-up

such as PoC where PDD has to be on the order of one second or
less.

Fig. 1 shows a typical call set-up flow for a SIP UA in the IMS.
For each packet we have to consider the following delays: air-link
setup delay, node processing delay, long distance and back-hauls
delay, and air-link delay. The one-way end-to-end delay is given
by:

δ = N · (T up
AD + T down

AD + Tnode + TBH) + Tsetup (1)

with

T up
AD ≡ T down

AD =
L

R
+

RTT

2
(2)

where N is the number of packets transmitted, T up
AD is the air-link

delay for the uplink, T down
AD is the air-link delay for the downlink,

Tnode is the node processing delay, and TBH is the back-hauls de-
lay. Finally, Tsetup is the air-link setup delay which is the time
needed to setup the air-link before the first message can be sent
and/or received on the data channel. Tsetup is usually 1400 ms,
that is 700 ms on the sender side and 700 ms on the receiver side
(see Fig. 1). In Eq. (2), L is the message size, R is the link bit-rate
and RTT is the Round-Trip Time. Throughout our calculations we
assume the RTT to equal 140 ms [6].

SigComp helps in reducing the overall call set-up delay by re-
ducing T up

AD and T down
AD . Other delays and in particular Tsetup are

not affected. We focus our attention on Tsetup because Tsetup is
responsible for a significant part of the total delay. In particular,
Tsetup can be removed if at call set-up time the control channel
can be used instead of the data channel. This, however, means that,
for 1xEV−DO rev. A, the first INVITE and subsequent packets
need to be no larger than 211 bytes for the uplink and no larger
than 113 bytes for the downlink [1].

As we show in Section 6.2, SigComp cannot compress the IN-
VITE down to the required sizes, while TBC can.

4. SIGNALING COMPRESSION (SIGCOMP)
Figure 2 shows the architecture of a SigComp end-point. We can

consider SigComp as a new layer between application layer and
transport layer. In particular, resources in SigComp are assigned
based on compartments. A compartment is a particular grouping
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Figure 2: Architecture of a SigComp end-point
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Figure 3: Format of a SigComp message

of messages that is specific to a particular application. In SIP, a
compartment can be identified with a dialog. When an application
wants to use SigComp, it has to provide the application message
to compress and a unique compartment identifier. Messages be-
longing to the same SIP dialog have the same compartment identi-
fier. This unique identifier is used by the SigComp layer to allocate
resources such as state memory, Universal Decompressor Virtual
Machine (UDVM) memory and compressor and also to access pre-
vious state.

The main component of the SigComp architecture is the UDVM
which is a normal virtual machine, like the Java virtual machine,
but optimized for decompression operations. The UDVM machine
language is called bytecode and it is used to implement decompres-
sion algorithms that the UDVM has to run in order to decompress
messages. Other components of the SigComp architecture are the
Compressor Dispatcher, Decompressor Dispatcher, and the State
Handler.

4.1 Overhead
SigComp was designed so that it would not be tied to a specific

compression algorithm. This flexibility, however, introduces a cost
in terms of complexity and packet size.

Aside from the performance of the particular compression algo-
rithm used, SigComp has some significant drawbacks that do not
make it the best choice when the size of the compressed packets
needs to be very small. Fig. 3 shows the structure of a SigComp
packet. All the fields other than the remaining SigComp message



Figure 4: Compression based on text substitution

field form the packet header. Fig. 3(a) shows a SigComp message
when a previous saved state is accessed on the remote end-point.
Fig. 3(b) shows a SigComp message that does not point to a pre-
vious saved state but rather contains the UDVM bytecode. Also,
SigComp uses a feedback mechanism to facilitate the exchange of
state-related information and other parameters between compressor
and UDVM.

As we can see, SigComp introduces various headers, adding to
the total packet size. The feedback item can have a size of up to
128 bytes and the UDVM bytecode can be of variable length as
specified in the code_len field. Its size can be anywhere between 0
and 4095 bytes.

All of this clearly shows how even one single feedback item may
compromise any compression effort aimed to reach the size require-
ments specified in Section 3.

4.2 Compression
SigComp uses compression based on text substitution such as

Lempel-Ziv 77 (LZ77) and Deflate2. Figure 4 shows the basic idea
behind this family of compression algorithms. As we can see, the
compression is based on the construction of an adaptive dictionary
containing a number of unique strings. Every time a new string that
is not present in the dictionary is found in the look-ahead buffer, it
is added to the dictionary. Any occurrence of any string already
present in the dictionary is replaced with an {offset, length} pair
which points to the same string in the adaptive dictionary. In this
way, string repetitions are replaced by {offset, length} pairs. The
longer the string replaced and the more frequent the repetitions, the
higher the compression.

Unfortunately, this kind of compression has several drawbacks.

• The initial compression is low. At the beginning of a se-
quence, the adaptive dictionary has yet to be built and the fre-
quency of string repetitions is low. Static dictionaries such as
the SIP static dictionary [5], can help in reducing this prob-
lem. Their use is however very limited due to the fact that
the information they provide helps only for the very first
stages of the compression process while consuming a signifi-
cant amount of resources. Many SigComp implementations,
such as Open SigComp [12], do not use static dictionaries for
compression.

• It is inefficient for smaller sequences. Usually, short sequences
have fewer string duplicates. The longer the sequence to
compress, the higher the probability of finding string dupli-
cates.

• It is inefficient for short strings. For very short strings, the
pair {offset, length} can take more bytes than the actual string
it is replacing. In Deflate, for example, string duplicates that
are shorter than four bytes are ignored.

2Deflate uses LZ77 for the elimination of duplicate strings and
Huffman coding for bit reduction.

Table 1: First phase of LZ compression for the first INVITE
request (All values in Bytes)

Short Flow Long Flow
Original size 1350 1253
From previous messages 790 989
From itself 577 596
Not found 395 212

In order to find out the best possible compression achievable
with compressors of the LZ family, we performed some prelimi-
nary measurements on two types of IMS flows, a short flow and
a long flow. The short flow follows the basic SIP call setup flow
(REGISTER→200→ INVITE→180→200→ACK), while the long
flow is similar to the one shown in Fig. 1, but with multiple mes-
sages exchanged also before the INVITE request. We implemented
the first phase of LZ-based compression, that is, identify if a string
or sub-string had ever been encountered before in either the same
packet or previous packets. In our implementation we use the same
convention as in Deflate, that is, strings of three bytes or shorter are
considered as not found in the adaptive dictionary. Furthermore, we
do not limit the size of the adaptive dictionary, so that older state is
not discarded because of newer state.

As we can see from Table 1, for the short flow we found that
for the first INVITE request, 395 bytes out of 1350 bytes were not
found in both previous lines of the same packet and in previous
packets. For the long flow more repetitions were found and only
212 bytes out of 1253 bytes were not found. This shows that if we
apply LZ to the first INVITE, in theory, we have at best a com-
pressed size of 395 bytes for the short flow and 212 bytes for the
long flow. In reality, the compressed size is bigger for both flows
since we have to consider the extra bytes that each {offset, length}
pair takes, plus the size of the adaptive dictionary which is included
in the compressed packet. Furthermore, in reality the adaptive dic-
tionary is limited in size, eventually causing loss of older state, thus
increasing the overall number of bytes not found.

Although Huffman coding might help to push compression a lit-
tle further, it is clear that compressing a message that is 1300 bytes
long to about 100 bytes or less is not possible with LZ-based com-
pression.

4.3 SIP Static Dictionary
The use of the static dictionary improves the compression ratio

for the initial messages by providing some initial content for the
adaptive dictionary that would otherwise be empty. As we will see
in Section 6.2, not using a static dictionary leads to a compression
ratio above 100% for the initial messages. This happens until suf-
ficient state is built. A compression ratio above 100% means that
the size of the compressed messages is larger than the one of the
original messages. Typically, however, this happens only for the
initial REGISTER−200 OK handshake.

The SIP static dictionary has a size of 3468 bytes. After a few
messages have been exchanged within the same dialog, most or part
of the static dictionary is replaced in the state memory by more
recent state and compression is performed according to the new
state.

The added complexity and the fast aging of state based on the
static dictionary make the use of static dictionaries very limited,
with many implementations not supporting them at all. Further-
more, static dictionaries improve the compression of only the very
first messages of a flow, typically the initial REGISTER−200 OK



handshake, leaving time-critical messages unaffected. Because of
all of these reasons, static dictionaries are not used in our experi-
ments.

4.4 Extended Operations
SigComp Extended Operations are defined in RFC 3321 [7]. New

mechanisms are proposed in order to further improve compression.
All the proposed mechanisms try to improve on how state is created
and destroyed so that unnecessary state deletions are avoided and
new state is created more efficiently. Some of the mechanisms pro-
posed in [7] are dynamic compression, shared compression, User
Specific Dictionary (USD) and implicit deletion for dictionary up-
date. Of all the proposed mechanisms, USD is the most relevant to
the present context.

USD is a dictionary built on the assumption that a {user, device}
pair produces, over time, the same content for those headers in a
SIP message related to the capabilities of the device or to the user.
USD, however, still uses the typical conventions of LZ-based com-
pression algorithms. It just represents a different dictionary used
in the LZ-based compression. Because of this, although USD im-
proves on the compression of dynamic content, it still suffers from
all the drawbacks previously discussed for LZ-based compression.
This limits the improvements achievable with USD. Moreover, the
way the USD is built and how it is exchanged between SIP entities
is not standardized and as of the writing of this paper, SigComp im-
plementations supporting Extended Operations are not available.

For all of these reasons, and because of the limited improvements
that USD would introduce, we do not consider USD or any of the
mechanisms proposed in [7] in the rest of the paper.

4.5 Advantages and Disadvantages
To summarize, the advantages in using SigComp are that it has

already been standardized by the IETF, is mandatory in the IMS
and there are already implementations available such as Open Sig-
Comp [12].

The disadvantages are that it is very complex and heavy, LZ-
based compression is not enough for many delay sensitive appli-
cations such as PoC. Furthermore, SigComp introduces significant
overhead regardless of the compression algorithm used.

5. TEMPLATE-BASED COMPRESSION (TBC)
As we have explained in Section 3, in order to significantly re-

duce the call setup time and PDD, we need to compress the mes-
sages so to achieve a maximum size of 211 bytes for the uplink and
113 bytes for the downlink. This is because we do not only want
to reduce the air-link delay, but we also want to remove the air-link
setup delay (see Eq. (1)) and in order to remove the air-link setup
delay, we need to send the Data Over the Signaling channel (DOS).

As we show in Section 6, SigComp cannot satisfy the message
size requirements for DOS while TBC can. In this section we de-
scribe how TBC works.

5.1 Overview
The basic idea behind TBC is that the content of many headers

and SDP parameters in a SIP message does not significantly change
over time. There are headers that do not change at all throughout
different sessions, there are headers that do not change within a
session and there are headers whose value changes on a per-call
basis.

By using these characteristics of SIP headers and SDP lines, we
build templates for SIP messages. A template contains the part of
a message that is likely not going to change. In doing so, UE and
P-CSCF need to exchange only the variable parts of a message so

that the template can be “filled in” and the whole SIP message can
be correctly re-constructed at both the UE and P-CSCF. By using
templates we reduce the amount of information that needs to be
exchanged between UE and P-CSCF. Also, in order to minimize
the message size as much as possible, we encode such information.

Templates can be exchanged ahead of time-sensitive operations
such as during registration. When the P-CSCF has to send an IN-
VITE to a UE, it checks its outgoing-INVITE template for that
particular UE. The P-CSCF extracts from the INVITE the variable
content that is not present in the template and encodes it. The en-
coded values are then put in the final packet following a specific
order and the final packet is sent to the UE. The ordering of the
encoded values is very important since it allows the UE to know
which value belongs to which header in the template. After receiv-
ing the encoded packet, the UE extracts the encoded values from
the packet, decodes them and matches them to the corresponding
headers in the incoming-INVITE template. In doing so, the IN-
VITE has been successfully re-constructed.

The same process is performed in the other direction, from the
UE to the P-CSCF.

TBC compresses a message in the following steps:

1. Header Stripping. Unnecessary headers are stripped from
the message.

2. Template. The message is filtered according to a template so
that only the dynamic content not present in the template is
extracted from the message and eventually sent to the remote
end-point.

3. Shared Dictionary. The Shared Dictionary (SD) is searched
for matching strings among the ones present in the dynamic
content extracted at step 2. If a match is found, the string is
replaced by the corresponding index in the dictionary.

4. Encoding. The dynamic content is encoded so to occupy the
minimum number of bytes.

Only after all of the above steps have been completed, the message
is ready to be sent.

We now look in more detail at each one of the previous steps.

5.2 Header Stripping
Some SIP headers are present only in incoming messages while

others are present only in outgoing messages. For example, head-
ers such as Route, Security-Verify, P-Preferred-Identity, Proxy-
Require are present in outgoing INVITE requests but not in incom-
ing INVITE requests. On the other hand, headers such as Record-
Route and P-Asserted-Identity are present in incoming INVITE
requests but not in outgoing ones. This classification helps us in
knowing what headers to expect when building a template for an
outgoing or incoming SIP message. Furthermore, there are headers
whose value is relevant only to SIP proxies and not to SIP UAs.
If we assume SIP end-points to act as a SIP UA, for packets sent
by the P-CSCF to the SIP UA we can safely ignore such headers.
In order to exploit this behavior, before building a template, SIP
headers that are not relevant to a SIP UA are removed from the
message by the P-CSCF. Some of the headers that we strip from a
SIP message are shown in Table 2.

Let us consider, for example, the case of the Via header for an
incoming SIP INVITE. The Via header in this case is populated
with all the SIP proxies the message has traversed in order to reach
its destination. This is done so that the response to the SIP INVITE
can follow the same path of the SIP INVITE itself. However, all the
information the UA really needs is the first hop where to send its



response, that is, the IP address of the P-CSCF the UA is currently
attached to. The UA already has this information, therefore the P-
CSCF does not need to send the content of the Via header to the
UA. The response to the incoming INVITE sent by the UA will
have a Via header containing only the address of its P-CSCF. The
P-CSCF will then make sure to re-insert all the missing entries from
the Via header received in the initial incoming INVITE into the UA
response when re-constructing the packet for such response.

5.3 Templates
Generally speaking, we can classify SIP headers into four cate-

gories:

• Variable: headers that can change between calls.

• Semi-variable: headers that are session or registration depen-
dent.

• Semi-constant: headers that are device dependent in either
hardware, software or both.

• Other: all those headers that do not belong to any of the pre-
vious groups such as headers that change within a dialog.

Furthermore, there are headers that occur more frequently than oth-
ers and there are headers that are present only in requests and head-
ers that are present only in responses. All of these factors need to
be taken into consideration when defining a TBC mechanism for
SIP messages.

The construction of a template for a particular SIP message is
based on the header classification that we have just introduced.
In particular, headers belonging to the group of semi-constant and
semi-variable are included in the template together with their value.
Headers belonging to the group of variable and other are included
in the template without any value. The content of those headers
whose value is not included in the template represents the dynamic
information that has to be sent on the air. Mixed situations are also
possible where a semi-variable header, for example, can have a sin-
gle parameter whose value is part of the dynamic content.

For semi-variable headers, templates can be updated between
registrations to reflect a change in their value. Semi-constant head-
ers allow us to tailor templates according to a particular hardware
device or piece of software. In this last case, we can build tem-
plates specific to particular brands since order and header fields do
not change for devices of the same brand. For example, if a de-
vice is running the Columbia University SIP client, we know to use
the templates for Columbia University or if a device is a Linksys
device, we know to use the templates for the Linksys brand.

Without the notion of software/hardware-dependent headers we
would not be able to consider as constant many headers that indeed
can be considered as such.

Table 3 lists a sample number of SIP headers and their classifi-
cation as discussed above. Their frequency of use is also shown.

Templates for outgoing messages and incoming messages are
different even though the type of message is the same. This is be-
cause for an outgoing INVITE request, for example, the number of
headers whose value is known is much higher than for an incom-
ing INVITE request. An incoming INVITE request can come from
anywhere and anyone, therefore the a priori knowledge we have on
such INVITE request is small.

5.4 Shared Dictionary (SD)
A dictionary is an ordered collection of strings. The use of a

dictionary is very convenient for compression because by using a
dictionary we can replace a string with its corresponding index in

Table 2: Actions on SIP headers
Header Stripped SW/HW Token Typical

(UA as receiver) dependent values
Max−Forwards X
Via X
User−Agent X
P−Alerting−Mode X
Record−Route X
Session−Expires X X 1800, 3600
Supported X X 100rel, timer
Privacy X None, id
Require X Precondition

Allow X X REGISTER, BYE,
INVITE, . . .

Accept−Contact X *;+g.poc.talkburst;
require;explicit

Content−Type X Application/sdp,
mulitpart/mixed

Accept X Application/sdp,
text/html

the dictionary. Naturally, for things to work correctly at decom-
pression time, the dictionary used for decompression needs to be
an exact copy of the one used for compression so that the same in-
dex corresponds to the same string. If this does not happen, we have
a decompression failure. Decompression failures are discussed in
Section 5.7.

As we can see from Table 3, many of the SIP headers belong
to the group of variable headers. Many of these contain a URI.
This URI can be related to one of the UA public identities (i.e.,
P-Called-Party-ID) or to another user. Other sources of variable
headers comprise the codecs included in the SDP part of the SIP
message together with rtpmap lines and the codecs’ fmtp param-
eters. Here, we use a dictionary in order to reduce the amount of
bytes that URIs and codec-related parameters take.

As we said earlier, a dictionary is simply an ordered list of strings
containing all the URIs known to the UA or P-CSCF (i.e., own
URIs and URIs of other SIP entities), the list of codecs with both
static and dynamic payload types and all known rtpmap and fmtp
lines.

If a match is found in the dictionary, the corresponding string is
replaced by its index in the dictionary; if no match is found then
the string is left as is. In the latter case, such string would be added
to the dictionary by both UA and P-CSCF, as the last entry in the
dictionary. In this way, this new entry can be used for future pack-
ets.

There are many possible ways to build such an SD. In a typical
scenario, users want to start a PoC session with contacts present
in their presence “buddy list”, that is, people they already know.
In order to build a dictionary containing URIs of other end-points,
such as a shared address book, we could think of the following.
When the P-CSCF has an INVITE request to send whose URI in
the From header is not present in the dictionary, it adds the URI to
its dictionary and replaces it with its index. When the UA receives
such INVITE, it does not find that particular index in its dictionary,
so it associates the index received in the From header to that SIP
dialog. When the P-CSCF sends the ACK in response to the 200
OK, the UA extracts the URI from the From header of the ACK
and associates it to the index previously saved for that dialog. In
doing so, the UA has added a new entry to its dictionary.

Further details on how to build synchronized dictionaries is re-
served for future study.

5.5 Encoding
By using templates, UA and P-CSCF need to exchange only the



content of those headers that are without a value in the template,
that is, the dynamic content of a SIP message. However, as we
show in Section 5.6, even exchanging only the dynamic content of
a message is not enough to achieve the requirements for DOS. In
order to achieve such requirements the dynamic content needs to be
encoded to further reduce the size of messages exchanged between
UA and P-CSCF.

Variable content can be encoded using integer and bitwise rep-
resentations. We can apply the latter to all those headers whose
values belong to a finite set of known elements (see Token column
in Table 2). In order to encode strings such as IP addresses, port
numbers, and clock rates, we encode these as fixed and variable
length integers. For example, an IP address can be encoded as a
four byte integer and a port number can be encoded as a two byte
integer. Dictionary indexes can be encoded as variable-length inte-
gers depending on the cardinality of the number to encode.

One other important aspect to take into consideration is the struc-
ture of the final packet. Once all the content has been encoded, the
way such content is organized in the final packet also affects the
size of the packet. In particular, we divide the packet in two parts.
In one part we put all the encoded content of variable length and
in another part we put all the encoded content of fixed length. The
fixed-length content forms the last line of the packet. Each line in
the packet has the first byte representing its length. The byte repre-
senting the length is also encoded. In particular, only 7 bits are used
to represent the length of a line which limits the maximum length
to 127 bytes. The most significant bit (MSB) is used to indicate if
the following line is of the same type of the current line. This, for
example, is useful if we have a SIP message with two or more c=
lines in the SDP part.

Since the order of variables in the packet has to be preserved, we
need to explicitly mark those variables not present in the message
but whose header is present in the template, as empty. In order to
do this, we reserve one value of the byte representing the length of
the line to indicate a length value of zero. Such value is given by
the MSB set to one and all the remaining 7 bits representing the
length, set to zero.

5.6 Contributions to Compression
Table 4 shows how each of the mechanisms described above con-

tributes to the overall compression. As we can see, each one of
them has a significant role in the overall compression. In partic-
ular, the table shows the results for an incoming INVITE request.
In the experiments all heuristics were applied so that, for example,
the size shown for Template reflects the size of the packet after both
Stripped Headers and Template have been applied. The Removed
row shows how many bytes were removed from the message after
applying the corresponding technique.

In conclusion, from Table 4 we can see that with TBC, we can
satisfy the requirements for DOS, but in order to do this all the
proposed techniques need to be applied.

5.7 Decompression Failures
TBC relies on the use of a shared dictionary in order to achieve

maximum compression. In order for this to work, it is important
that UE and P-CSCF keep their dictionaries synchronized at all
times. A loss in dictionary synchronization almost certainly trans-
lates in a decompression failure at either end-point. A decompres-
sion failure is a very expensive event. When it happens, it requires
the packet to be re-transmitted uncompressed and subsequent pack-
ets to be transmitted without compression until the cause for the
decompression failure has been resolved. Because of this, a san-
ity check should be performed periodically in order to validate the

Table 3: Classification of SIP headers

Header
Variable Semi−var Semi−const Other Occurrence

(call (session or (HW/SW (variable
dependent) registration dependent) within

dependent) dialogue)
Accept X medium
Accept−Contact X high (PoC)
Accept−Encoding X low
Accept−Language X low
Alert−Info X low
Allow X high
Authorization X low
Call−ID X high
Call−Info X low
Contact X high
Content−Disposition X low
Content−Encoding X low
Content−Language X medium
Content−Length X high
Content−Type X high
CSeq X high
Date X low
Expires X medium
From X high
In−Reply−To X low
Max−Forwards X high
Record−Route X high
Route X high
Session−Expires X high
Supported X high
To X high
User−Agent X high
Via X high

Table 4: Contributions to TBC for an INVITE request

Original Stripped Template SD Encoding Packet
Packet Headers Order

Packet size [Bytes] 1182 1008 343 284 137 81
Removed [Bytes] − 174 665 59 147 56

synchronization of the dictionary. In any event, if a loss in synchro-
nization happens, it has to be detected in a timely manner so that it
can be quickly resolved.

Loss in synchronization between dictionaries can happen for var-
ious reasons. For example, when using non-reliable transport, we
have to be careful to the way the shared dictionary is built. If pack-
ets used to build the dictionary are lost or end up out of sequence,
we might end up with dictionaries that are not synchronized. It is
important to notice that this problem is not present when we use the
INVITE−ACK procedure described earlier for building the dictio-
nary. In such a case, if an ACK is lost, the 200 OK would be re-
transmitted thus triggering another ACK.

In order to verify the synchronization of the shared dictionary
we can use a short checksum such as Cyclic Redundancy Check 16
(CRC−16). This checksum is calculated on the message to send,
after stripping the unnecessary headers but before applying the tem-
plate. Once the message is received and re-constructed at the other
end-point, the UE or P-CSCF can re-calculate the checksum and
see if it matches with the checksum received with the message. If
there is a mismatch it means that the reconstructed message is dif-
ferent from the original message, which means that the dictionaries
have lost synchronization.

Another way to verify the synchronization of the shared dic-
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Figure 5: SigComp performance for an MO call (long flow)
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Figure 6: SigComp performance for an MT call (short flow)

tionary is to compute an hash of the dictionary and have UE and
P-CSCF periodically exchange it during non-time-sensitive opera-
tions. If the two hash values do not match, the shared dictionaries
are not synchronized. In order to identify which part of the dic-
tionary is out of sync, a binary search can be performed on the
dictionary, recursively hashing smaller parts of it until the one or
more entries responsible for the mismatch are found.

Once a loss in synchronization has been detected and the non-
aligned entries have been identified, the dictionaries can be re-
synchronized by having UE and P-CSCF exchange such non-aligned
entries.

6. EXPERIMENTS
In this section we present the results of our experiments for Sig-

Comp and TBC. We consider both Mobile Originated (MO) calls
and Mobile Terminated (MT) calls. An MO call is a call initiated
by the mobile node, that is, by a mobile SIP UA. For such call, the
first INVITE request is sent by the mobile SIP UA to the P-CSCF
and then forwarded to the remote SIP UA. An MT call is a call
initiated by a remote SIP end-point. In this case, the first INVITE

request is sent by remote SIP UA and forwarded to the appropriate
P-CSCF which sends it to the mobile SIP UA.

6.1 Experimental Setup
For our experiments, we used an IBM T42 Thinkpad laptop with

a 1.7 GHz Pentium Mobile processor and 1 GB of RAM and an
eRack server with a 3 GHz Pentium 4 processor and 1 GB of RAM.
The T42 runs Linux kernel version 2.6.3-25 and the eRack runs
Linux kernel version 2.6.9-42. The T42 behaves as an UE and the
eRack as a P-CSCF. Both, UE and P-CSCF, read a SIP flow from
a text file and exchange the compressed messages respecting the
order of the packets in the flow. In order to test TBC and SigComp
in realistic scenarios, all the IMS SIP flows used in the experiments
were captured from a real IMS testbed and provided to us by Nortel.
We used Open SigComp [12], an open-source SigComp stack and
implemented a TBC compressor and decompressor. Compression
for both MO and MT calls was measured and delays were later
calculated according to Eq. (1).

6.2 Measurement Results
In the following measurements we focus our attention only on



SIP messages and do not consider lower-layer protocol headers
(e.g., UDP, IP). Such headers are not really relevant for PoC pur-
poses and protocols like ROHC can help in their compression.

6.2.1 SigComp
As explained in Sections 4.3 and 4.4, in analyzing SigComp per-

formance we do not use the SIP static dictionary and also, do not
consider any of the mechanisms specified in [7]. Furthermore, we
perform measurements for the most common values of state mem-
ory size (SMS), CPU cycles (CC) and UDVM memory size (UMS).
Figs. 5 and 6 show the compression ratio that SigComp can achieve
for an MO call and an MT call, respectively. Figs. 5(a) and 6(a)
show the results for SMS, CC and UMS equal to 4096 bytes, 64 cy-
cles and 4096 bytes, respectively. Figs. 5(b) and 6(b) show results
for SMS, CC and UMS equal to 8192 bytes, 64 cycles and 8192
bytes, respectively.

The compression ratio is calculated as:

ρ =
size of compressed packet [bytes]

size of uncompressed packet [bytes]
(3)

so that the smaller the compression ratio, the better. As we can see
from Figs. 5 and 6, ρ for the first two messages is above 100%.
This happens because the size of the compressed packet is larger
than the size of the original uncompressed packet. Such a behavior
is expected since for the first packets there is no previous state to
compress against, that is, the adaptive dictionary is empty (see Sec-
tion 4.3). As the number of compressed messages grows, so does
the adaptive dictionary, allowing for a better compression ratio as
more messages are exchanged.

In Fig. 5(a) we can see that the first INVITE request is com-
pressed from 1350 bytes to 483 bytes, while the second INVITE
is compressed from a size of 1387 bytes to a size of 626 bytes.
This is the case when using SMS and UMS of 4096 bytes each.
On the other hand, when we increase SMS and UMS to 8192 bytes
(see Fig. 5(b)), the first INVITE is compressed to 476 bytes and
the second INVITE is compressed to 402 bytes. This improvement
in compression is due to the fact that we have increased SMS and
UMS, which means that the adaptive dictionary is larger. In doing
so, when the second INVITE has to be compressed, the adaptive
dictionary still contains some information relative to the first IN-
VITE, thus allowing for higher compression. If we further increase
SMS and UMS, the second INVITE can be further compressed to
a size of 193 bytes. This, however, is the maximum compression
that can be achieved since, at this point, all available state has been
used and increasing SMS and UMS even more, would not provide
more state.

In Fig. 6 we show SigComp performance for an MT call when
using a shorter call flow than the one used for the MO call. Shorter
call flows have been proposed in the past in order to reduce the
call setup delay. As we can see, in Fig. 6(a) the first INVITE
is compressed from 1899 bytes to 974 bytes and the second IN-
VITE from 1889 bytes to 963 bytes. As before, when we increase
SMS and UMS from 4096 bytes to 8192 bytes (see Fig. 6(b)),
the first INVITE is about the same while the second INVITE is
compressed from 1889 bytes to 137 bytes. The reason for this big
improvement in the compression of the second INVITE is that not
only have we increased SMS and UMS but we are also exchanging
fewer messages which means that new states created after the first
INVITE are not enough to expunge state information regarding the
first INVITE from the adaptive dictionary. In other words, when
the second INVITE needs to be compressed, the adaptive dictio-
nary still contains all the information regarding the first INVITE,
hence achieving higher compression. If we further increase SMS

Table 5: Parameters used in delay calculation (source Nortel)
Tsetup 1400 ms
Tnode 150 ms
TBH 100 ms
RTT 140 ms

and UMS, the compression of the second INVITE does not im-
prove. This is because all available state has already been used and
larger SMS and UMS do not correspond to an increase of state for
that INVITE.

To summarize, SigComp can achieve significant compression ra-
tios only for INVITE requests following the first one and only if
enough state is available. The size of the first INVITE request re-
mains significantly high also after compression. Furthermore, it is
important to notice that in Fig. 6, the first and second INVITE are
extremely similar, with the second INVITE having only 91 bytes
that differ from the first INVITE. Still, we can see that the best
compression achievable with SigComp, gives us a final size of 137
bytes which still does not satisfy the DOS requirements. In par-
ticular, since Open SigComp uses Deflate, the 137 bytes are an
Huffman representation of the {offset, length} pairs plus strings
not found in the dictionary.

Fig. 7 shows the call setup delay only in terms of one-way air-
link delay for bit-rates typical of a control channel. As we can
see, for the uncompressed flow the one-way air-link delay alone is
significantly larger than the whole call setup delay for a GSM call
(see Section 3). Such delay decreases below 2 seconds if we either
use higher bit-rates or if we compress the flow. By using SigComp,
the one-way air-link delay is below 2 seconds also for lower bit-
rates. We have to keep in mind, however, that the air-link delay
is only one of the many components of delay contributing to PDD
and call setup delay (see Eq. (1)). Unfortunately, the air-link delay
is the only component of the overall delay that can be improved
by SigComp. Any other component of delay remains completely
unaffected.

A more realistic scenario in terms of PDD and call setup delay
is shown in Figs. 8 and 9, respectively. Here we consider all the
contributions to the overall delay. Table 5 shows typical values for
all the other components of delay that need to be added to the air-
link delay (see Eq. (1)). These values are for 1xEV−DO rev. A
networks. As we can see, when we consider both wireless links at
each end-point and all the contributions to the overall delay, PDD
and call setup delay are above 2 seconds, regardless of SigComp.
This is still too high for delay-sensitive applications.

The delays shown in Figs. 8 and 9 represent the best-case sce-
nario for the higher bit-rates. In Figs. 8 and 9 we are assuming that
the bit-rates shown on the x-axis are fully available to each user, in-
cluding the highest ones. In reality, the available bit-rate decreases
as users move further away from their Base Station (BS) and also,
it has to be divided between all users belonging to the same sec-
tor. So, for example, if a client is far from its BS, then the max-
imum available bit-rate is more likely 1.2 Mb/s for download and
0.9 Mb/s for upload. This is a drastic reduction from a download
bit-rate of 3.2 Mb/s and an upload bit-rate of 1.8 Mb/s. Further-
more, this maximum available bit-rate has to be divided among all
the users in the same sector. So, if each user uses 0.12 Mb/s, for
example, only 10 users can be supported in the same sector.

Although the higher bit-rates in Figs. 8 and 9 represent the best
possible scenario, the call setup delay is still too high, above two
seconds. This clearly shows how SigComp is not sufficient in sat-
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Figure 8: PDD for mobile-to-mobile call (short flow)

isfying the necessary requirements.

6.2.2 Templates
In order to achieve a PDD of less than two seconds and PoC

delays below one second, we need to reduce the air-link delay as
much as possible and we need to completely remove the air-link
setup delay. The latter can be achieved by using DOS for the call
setup. As explained earlier, for 1xEV−DO rev. A, DOS requires a
maximum packet size of 113 bytes for the downlink and 211 bytes
for the uplink.

Table 6 shows the performance of TBC in terms of compression
and compares it to SigComp. In particular, we show the perfor-
mance of TBC and SigComp in the worst case scenario, that is,
the first INVITE request of an MT call flow. This message is usu-
ally the most difficult to compress because of its large size and
because it is the first message of the call-setup handshake. Being
the first message of the handshake means that prior state is limited
and therefore, SigComp, and in general any LZ-based compression
mechanism, cannot compress it much (see Figs. 5 and 6). Further-
more, as explained in Section 5.3, an MT call represents the worst
case for TBC with most of the content sent over-the-air encoded,
rather than being included in the template. This is because the a
priori knowledge that we have on an incoming message is very
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Figure 9: Call setup delay for mobile-to-mobile call (short flow)

Table 6: Size in bytes of first INVITE for different MT calls

Flow
Entries TBC

PoC found Original SigComp TBC +
in SD SigComp

1
all 1244 629 100 110

Y few 1244 629 168 138
none 1244 629 210 177

2
all 1181 591 94 104

Y few 1181 591 162 132
none 1181 591 187 156

3
all 795 934 110 449

N few 795 934 139 466
none 795 934 163 488

4
all 900 535 87 93

N few 900 535 127 114
none 900 535 157 140

small since such message can come from anywhere and anyone.
Also for TBC experiments we consider two types of flows, a long

flow and a short flow. In particular, flows 1 and 2 are long and flows
3 and 4 are short (see Table 6). The flows used here are extremely
similar to the ones shown in Figs. 5 and 6.

As we can see from Table 6, when all entries are found in the SD,
with TBC we achieve the packet size requirements of DOS for both
PoC calls and normal SIP calls. Furthermore, SigComp performs
consistently worst than TBC and if we try to apply SigComp com-
pression on top of TBC, the size of the final packet is larger than if
only TBC is used (see Section 4.2). From this we can conclude that
TBC can satisfy the requirements for DOS and therefore satisfy the
requirements for SIP calls and PoC. Also, it is clear how incorpo-
rating TBC in the SigComp framework would affect compression
negatively.

In Table 6, flow 3 represents the particular case in which no pack-
ets are exchanged previous to the first INVITE. This can simulate,
for example, a decompression failure or loss of state in SigComp.
In such case, with SigComp, the compressed packet has a size
larger than its uncompressed size (see Section 4.2). TBC, however,
has performance that are consistent with the compression of other
flows since it does not rely on state saved from previous messages.
The compressed packet size with TBC in flow 3 is significantly
larger than in flow 4 because in flow 3 the Call−ID header alone
was 46 bytes long.

When only few entries or none at all are found in SD (see Table



6), TBC still outperforms SigComp although it might not achieve
the requirements for DOS any longer. This depends very much on
the particular packet to compress and the values of its SIP head-
ers and SDP lines. In particular, headers whose value is a random
string such as the content of Call−ID3 or the content of the tag pa-
rameter, significantly affect the size of the compressed packet since
templates and other forms of compression cannot help much.

All of this shows that a well synchronized and up-to-date Shared
Dictionary is crucial for TBC to achieve the required packet sizes.

For MO calls, TBC can significantly reduce the packet size since
most of the parameters are known by the UE and P-CSCF prior to
the establishment of a call. For example, the first INVITE request
of an MO call can be compressed from 1253 bytes to about 20 bytes
when all entries are found in the SD and to about 40 bytes when no
entries are found in the SD. With SigComp the same INVITE is
compressed to 639 bytes. TBC satisfies the size requirements of
DOS for MO calls and consistently outperforms SigComp.

The extremely large compression achieved for MO calls is pos-
sible because the only information we need to send is the content of
the request line, To header, Call-ID and the value of the utran-cell-
id-3gpp parameter in the P-Access-Network-Info header. Every-
thing else is included in the template.

7. CONCLUSIONS
We have examined the performance of SigComp for IMS call

flows and shown through measurements that although SigComp
can achieve significant compression ratios, it cannot satisfy the re-
quirements for DOS and therefore cannot be used for PoC in the
IMS. SigComp is based on text-substitution compressions. Be-
cause of this, it becomes counter-productive when the size of the
packets becomes smaller. Furthermore, SigComp adds its own
overhead to compressed packets and such overhead can signifi-
cantly limit the benefits of its compression.

In order to satisfy the delay requirements for PoC in the IMS, SIP
messages need to be sent over the control channel. This imposes
a limit to the size of such messages. In particular, for 1xEV−DO
rev. A, messages on the downlink cannot be larger than 113 bytes
and messages on the uplink cannot be larger than 211 bytes. We
have shown how SigComp cannot satisfy such requirements. At
the same time, we have introduced a novel compression technique,
namely TBC, based on the concept of templates. TBC can be used
by cellular operators to deploy voice and PoC services in the IMS
instead of SigComp. By using templates we can satisfy the require-
ments for data over signaling and send SIP messages on the control
channel. In particular, TBC can reduce the size of the first INVITE
in the flow, for an MT call, to about 100 bytes and can reduce the
size of the first INVITE in the flow, for an MO call, to about 20
bytes. By doing so, we can satisfy the delay requirements for PoC,
voice and any other delay-sensitive application.

We will look at ways to further improve compression with TBC.
In particular, we will study the use of pointers as a way to avoid
string duplication in the encoded content sent over the air. Also,
other options will be studied in order to improve compression. In
order to address the problem of headers containing long random
numbers, the P-CSCF could substitute long random numbers with
shorter ones for the downlink (P-CSCF→UE) since the P-CSCF
has a clear view of all ongoing sessions and can therefore provide
shorter unique identifiers. Replacing long random strings such as
the ones used for Call-ID with shorter ones would further improve
the overall compression.

3Call-ID is usually in the form name@host where name is a ran-
dom string.
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