
ar
X

iv
:0

80
7.

11
60

v1
  [

cs
.N

I]
  8

 J
ul

 2
00

8

Session Initiation Protocol (SIP) Server
Overload Control: Design and Evaluation

Charles Shen1, Henning Schulzrinne1, and Erich Nahum2

1 Columbia University, New York, NY 10027, USA
{charles,hgs}@cs.columbia.edu

2 IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
nahum@watson.ibm.com

Abstract. A Session Initiation Protocol (SIP) server may be overloaded
by emergency-induced call volume, “American Idol” style flash crowd ef-
fects or denial of service attacks. The SIP server overload problem is in-
teresting especially because the costs of serving or rejecting a SIP session
can be similar. For this reason, the built-in SIP overload control mech-
anism based on generating rejection messages cannot prevent the server
from entering congestion collapse under heavy load. The SIP overload
problem calls for a pushback control solution in which the potentially
overloaded receiving server may notify its upstream sending servers to
have them send only the amount of load within the receiving server’s pro-
cessing capacity. The pushback framework can be achieved by either a
rate-based feedback or a window-based feedback. The centerpiece of the
feedback mechanism is the algorithm used to generate load regulation
information. We propose three new window-based feedback algorithms
and evaluate them together with two existing rate-based feedback algo-
rithms. We compare the different algorithms in terms of the number of
tuning parameters and performance under both steady and variable load.
Furthermore, we identify two categories of fairness requirements for SIP
overload control, namely, user-centric and provider-centric fairness. With
the introduction of a new double-feed SIP overload control architecture,
we show how the algorithms can meet those fairness criteria.

1 Introduction

The Session Initiation Protocol [1] (SIP) is a signaling protocol standardized
by IETF for creating, modifying, and terminating sessions in the Internet. It
has been used for many session-oriented applications, such as calls, multimedia
distributions, video conferencing, presence service and instant messaging. Major
standards bodies including 3GPP, ITU-I, and ETSI have all adopted SIP as the
core signaling protocol for Next Generation Networks predominately based on
the Internet Multimedia Subsystem (IMS) architecture.

The widespread popularity of SIP has raised attention to its readiness of
handling overload [2]. A SIP server can be overloaded for many reasons, such as
emergency-induced call volume, flash crowds generated by TV programs (e.g.,
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American Idol), special events such as “free tickets to third caller”, or even de-
nial of service attacks. Although server overload is by no means a new problem
for the Internet, the key observation that distinguishes the SIP overload problem
from others is that the cost of rejecting a SIP session usually cannot be ignored
compared to the cost of serving a session. Consequently, when a SIP server has
to reject a large amount of arriving sessions, its performance collapses. This
explains why using the built-in SIP overload control mechanism based on gen-
erating a rejection response messages does not solve the problem. If, as is often
recommended, the rejected sessions are sent to a load-sharing SIP server, the
alternative server will soon also be generating nothing but rejection responses,
leading to a cascading failure. Another important aspect of overload in SIP is
related to SIP’s multi-hop server architecture with name-based application level
routing. This aspect creates the so-called “server to server” overload problem
that is generally not comparable to overload in other servers such as web server.

To avoid the overloaded server ending up at a state spending all its resources
rejecting sessions, Hilt et al. [3] outlined a SIP overload control framework based
on feedback from the receiving server to its upstream sending servers. The feed-
back can be in terms of a rate or a load limiting window size. However, the exact
algorithms that may be applied in this framework and the potential performance
implications are not obvious. In particular, to our best knowledge there has been
no published work on specific window-based algorithms for SIP overload control,
or comprehensive performance evaluation of rate-based feedback algorithms that
also discusses dynamic load conditions and overload control fairness issues.

In this paper, we introduce a new dynamic session estimation scheme which
plays an essential role in applying selected control algorithms to the SIP over-
load environment. We then propose three new window-based algorithms for SIP
overload. We also apply two existing load adaption algorithms for rate-based
overload control. We thus cover all three types of feedback control mechanisms
in [3]: the absolute rate feedback, relative rate feedback and window feedback.
Our simulation evaluation results show that although the algorithms differ in
their tuning parameters, most of them are able to achieve theoretical maximum
performance under steady state load conditions. The results under dynamic load
conditions with source arrival and departure are also encouraging. Furthermore,
we look at the fairness issue in the context of SIP overload and propose the
notion of user-centric fairness vs. service provider-centric fairness. We show how
different algorithms may achieve the desired type of fairness. In particular, we
found that the user-centric fairness is difficult to achieve in the absolute rate
or window-based feedback mechanisms. We solve this problem by introducing a
new double-feed SIP overload control architecture.

The rest of this paper is organized as follows: Section 2 presents background
on the SIP overload problem, and discusses related work. In Section 3 we propose
three window-based SIP overload control algorithms and describe two existing
load adaptation algorithm to be applied for rate-based SIP overload control.
Then we present the simulation model and basic SIP overload results without
feedback control in Section 4. The steady load performance evaluation of the



control algorithms are presented in Section 5, followed by dynamic load perfor-
mance with fairness consideration in Section 6. Finally Section 7 concludes the
paper and discusses future work.

2 Background and Related Work

2.1 SIP Overview

SIP is a message based protocol for managing sessions. There are two basic SIP
entities, SIP User Agents (UAs), and SIP servers. SIP servers can be further
grouped into proxy servers for session routing and registration servers for UA
registration. In this paper we focus primarily on proxy servers. In the remainder
of this document, when referring to SIP servers, we mean proxy server unless
explicitly mentioned otherwise. One of the most popular session types that SIP
is used for is call session. This is also the type of session we will consider in this
paper. In a typical SIP call session, the caller and callee have UA functionalities,
and they set up the session through the help of SIP servers along the path
between them. Figure 1 shows the SIP message flow establishing a SIP call
session. The caller starts with sending an INVITE request message towards the
SIP proxy server, which replies with a 100 Trying message and forwards the
request to the next hop determined by name-based application level routing. In
Figure 1 the next hop for the only SIP server is the callee, but in reality it could
well be another SIP server along the path. Once the INVITE request finally arrives
at the callee, the callee replies with a 180 Ringing message indicating receipt of
the call request by the callee UA, and sends a 200 OK message when the callee
picks up the phone. The 200 OK message makes its way back to the caller, who
will send an ACK message to the callee to conclude the call setup. Afterwards,
media may flow between the caller and callee without the intervention of the
SIP server. When one party wants to tear down the call, the corresponding UA
sends a BYE message to the other party, who will reply with a 200 OK message to
confirm the call hang-up. Therefore, a typical SIP call session entails processing
of five incoming messages for call setup and two incoming messages for call
teardown, a total of seven messages for the whole session.

SIP is an application level protocol on top of the transport layer. It can run
over any common transport layer protocol, such as UDP and TCP. A particular
aspect of SIP related to the overload problem is its timer mechanism. SIP defines
a large number of retransmission timers to cope with message loss, especially
when the unreliable UDP transport is used. As examples, we illustrate three of
the timers which are commonly seen causing problems under overload. The first
is timer A that causes an INVITE retransmission upon each of its expirations.
With an initial value of T1 = 500 ms, timer A increases exponentially until
its total timeout period exceeds 32 s. The second timer of interest is the timer
that controls the retransmission of 200 OK message as a response to an INVITE

request. The timer for 200 OK also starts with T1, and its value doubles until
it reaches T2 = 4 s. At that time the timer value remains at T2 until the total
timeout period exceeds 32 s. The third timer of interest is timer E, which controls
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Fig. 1. SIP call session message flow

the BYE request retransmission. Timer E follows a timeout pattern similar to the
200 OK timer. Note that the receipt of corresponding messages triggered by each
of the original messages will quench the retransmission timer. They are the 100

Trying for INVITE, ACK for 200 OK, and 200 OK for BYE. From this description,
we know that for example, if an INVITE message for some reason is dropped or
stays in the server queue longer than 500 ms without generating the 100 Trying,
the upstream SIP entity will retransmit the original INVITE. Similarly, if the
round trip time of the system is longer than 500 ms, then the 200 OK timer
and the BYE timer will fire, causing retransmission of these messages. Under
ideal network conditions without link delay and loss, retransmissions are purely
wasted messages that should be avoided.

2.2 Types of SIP Server Overload

There are many causes to SIP overload, but the resulting SIP overload cases
can usually be grouped into either of the two types: server to server overload or
client to server overload.

A typical server to server overload topology is illustrated in Figure 2. In this
figure the overloaded server (the Receiving Entity or RE) is connected with a
relatively small number of upstream servers (the Sending Entities or SEs). One
example of server to server overload is a special event such as “free tickets to the
third caller”, also referred to as flash crowds. Suppose RE is the Service Provider
(SP) for a hotline N. SE1, SE2 and SE3 are three SPs that reach the hotline
through RE. When the hotline is activated, RE is expected to receive a large
call volume to the hotline from SE1, SE2 and SE3 that far exceeds its usual
call volume, potentially putting RE into a severe overload. The second type of
overload, known as client-to-server overload is when a number of clients overload
the next hop server directly. An example is avalanche restart, which happens
when power is restored after a mass power failure in a large metropolitan area.
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Fig. 2. Server to server overload

At the time the power is restored, a very large number of SIP devices boot up
and send out SIP registration requests almost simultaneously, which could easily
overload the corresponding SIP registration server. This paper only discusses the
server-to-server overload problem. The client-to-server overload problem may
require different solutions and is out of scope of this paper.

2.3 Existing SIP Overload Control Mechanisms

Without overload control, messages that cannot be processed by the server are
simply dropped. Simple drop causes the corresponding SIP timers to fire, and
further amplifies the overload situation.

SIP has a 503 Service Unavailable response message used to reject a session
request and cancel any related outstanding retransmission timers. However, be-
cause of the relatively high cost of generating this rejection, this message cannot
solve the overload problem.

SIP also defines an optional parameter called “Retry-after” in the 503 Service

Unavailable message. The “Retry-after” value specifies the amount of time that
the receiving SE of the message should cease sending any requests to the RE.
The 503 Service Unavailable with “Retry-after” represents basically an on/off
overload control approach, which is known to be unable to fully prevent conges-
tion collapse [2]. Another related technique is to allow the SE to fail over the
rejected requests to an alternative load-sharing server. However, in many situa-
tions the load-sharing server could ultimately be overloaded as well, leading to
cascading failure.

2.4 Feedback-based Overload Control

The key to solving the SIP server overload problem is to make sure the upstream
SEs only send the amount of traffic that the RE is able to handle at all times.
In this ideal situation, there will be no message retransmission due to timeout
and no extra processing cost due to rejection. The server CPU power can be
fully utilized to deliver its maximum session service capacity.
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A feedback loop is a natural approach to achieve the ideal overload control
goal. Through the loop, RE notifies SEs the amount of load that is acceptable.

To some extent the existing SIP 503 Service Unavailable mechanism with the
“Retry-after” header is a basic form of the feedback mechanism. Unfortunately,
its on/off control nature has proven to be problematic. Therefore, the IETF
community has started looking at more sophisticated pushback mechanisms in-
cluding both rate-based and window-based feedback. A generalized model of
the feedback-based control model is shown in Figure 3. There are three main
components in the model: feedback algorithm execution at RE, feedback com-
munication from RE to SE, and feedback enforcement at the SE.

Feedback Algorithm Execution Absolute rate, relative rate and window
feedback are three main SIP feedback control mechanisms. Each mechanism
executes specific control algorithms to generate and adapt the feedback value.

In absolute rate-based feedback, the feedback generation entity RE needs
to estimate its acceptable load and allocate it among the SEs. The feedback
information is an absolute load value for the particular SE. The key element in
absolute rate feedback is an algorithm for dynamic acceptable load estimation.

In relative rate-based feedback, the feedback generation entity RE computes
an incoming load throttle percentage based on a target resource metric (e.g.,
CPU utilization). The feedback information is a dynamic percentage value indi-
cating how much proportion of the load should be accepted or rejected relative
to the original incoming load. The key element in relative rate feedback is the
dynamic relative rate adjustment algorithm and the choosing of the target met-
ric.

In window-based feedback, the feedback generation entity RE estimates a dy-
namic window size for each SE which specifies the number of acceptable sessions
from that particular SE. The feedback information is the current window size.
The key element in window-based feedback is a dynamic window adjustment
algorithm.

The feedback generation could be either time-driven or event-driven. In time-
driven mechanisms, the control is usually exercised every pre-scheduled control



interval, while in event-driven mechanisms, the control is executed upon the
occurrence of some event, such as a session service completion. We will examine
both time-driven and event-driven algorithms in this paper.

Feedback Enforcement Mechanisms The SEs may choose among many
well-known traffic regulation mechanisms to enforce feedback control, such as
percentage throttle, leaky bucket and token bucket, automatic call gapping,
and window throttle. Since our focus is on the feedback algorithms, throughout
this paper we will use percentage throttle for rate-based feedback and window-
throttle for window-based feedback mechanisms. In our percentage throttle im-
plementation we probabilistically block a given percentage of the load arrival
to make sure the actual output load conforms to the regulated load value. For
window throttle implementation, we only forward a specific session arrival when
there is window slot available.

Feedback Communication The feedback information for SIP signaling over-
load control can be communicated via an in-band or out-of-band channel. In this
paper, we have chosen to use the in-band feedback communication approach.
Specifically, any feedback information available is sent in the next immediate
message that goes to the particular target SE. This approach has an advantage
in server to server overload because there is generally no problem finding exist-
ing messages to carry feedback information under overload and it incurs minimal
overhead.

2.5 Related Work

Signaling overload itself is a well studied topic. Many of the previous work on call
signaling overload in general communication networks is believed to be usable
by the SIP overload study. For instance, Hosein [4] presented an adaptive rate
control algorithm based on estimation of message queuing delay; Cyr et al. [5]
described the Occupancy Algorithm (OCC) for load balancing and overload
control mechanism in distributed processing telecommunications systems based
on server CPU occupancy; Kasera et al. [6] proposed an improved OCC algorithm
call Acceptance-Rate Occupancy (ARO) by taking into consideration the call
acceptance ratio, and a Signaling RED algorithm which is a RED variant for
signaling overload control.

Specifically on SIP, Ohta [7] showed through simulation the congestion col-
lapse of SIP server under heavy load and explored the approach of using a prior-
ity queuing and Bang-Bang type of overload control. Nahum et al. [8] reported
empirical performance results of SIP server showing the congestion collapse be-
havior.

In addition, Whitehead [9] described a unified overload control framework
called GOCAP for next generation networks, which is supposed to cover SIP
as well. But there has been no performance results yet and it is not clear at



this time how the GOCAP framework may relate to the IETF SIP overload
framework.

In the most closely related work to this paper, Noel and Johnson [10] pre-
sented initial results comparing a SIP network without overload control, with
the built-in SIP overload control and with a rate-based overload control scheme.
However, their paper does not discuss window-based control, or present perfor-
mance results under dynamic load, and it does not address the overload fairness
problem.

3 Feedback Algorithms for SIP Server Overload Control

The previous section has introduced the main components of SIP overload feed-
back control framework. In this section we investigate its key component - the
feedback algorithm. We propose three window-based SIP overload control meth-
ods, namely win-disc, win-cont, and win-auto. We also apply two existing adap-
tive load control algorithms for rate-based control. Before discussing algorithm
details, we first introduce a dynamic SIP session estimation method which plays
an important role in applying selected rate-based or window-based algorithms
to SIP overload control.

3.1 Dynamic SIP Session Estimation

Design of SIP overload control algorithm starts with determining the control
granularity, i.e., the basic control unit. Although SIP is a message-based proto-
col, different types of SIP messages carry very different weights from admission
control perspective. For instance, in a typical call session, admitting a new IN-

VITE message starts a new call and implicitly accepts six additional messages
for the rest of the session signaling. Therefore, it is more convenient to use a SIP
session as the basic control unit.

A session oriented overload control algorithm frequently requires session re-
lated metrics as inputs such as the session service rate. In order to obtain session
related metrics a straightforward approach is to do a full session check, i.e., to
track the start and end message of all SIP signaling sessions. For example, the
server may count how many sessions have been started and then completed
within a measurement interval. In the case of a call signaling, the session is ini-
tiated by an INVITE request and terminated with a BYE request. The INVITE

and BYE are usually separated by a random session holding time. However, SIP
allows the BYE request to traverse a different server from the one for the original
INVITE. In that case, some SIP server may only see the INVITE request while
other servers only see the BYE request of a signaling session. There could also
be other types of SIP signaling sessions traversing the SIP server.These factors
make the applicability of the full session check approach complicated, if not
impossible.

We use an alternative start session check approach to estimate SIP session
service rate . The basic idea behind is that under normal working conditions,



the actual session acceptance rate is roughly equal to the session service rate.
Therefore, we can estimate the session service rate based only on the session
start messages. Specifically, the server counts the number of INVITE messages
that it accepts per measurement interval Tm. The value of the session service
rate is estimated to be µ = Naccepted

inv /Tm. Standard smoothing functions can be
applied to the periodically measured µ.

One other critical session parameter often needed in SIP overload control
algorithms is the number of sessions remaining in the server system, assuming
the server processor is preceded by a queue where jobs are waiting for service. It is
very important to recognize that the number of remaining sessions is NOT equal
to the number of INVITE messages in the queue, because the queue is shared
by all types of messages, including those non-INVITE messages which represent
sessions that had previously been accepted into the system. All messages should
be counted for the current system backlog. Hence we propose to estimate the
current number of sessions in the queue using Eq. 1:

Nsess = Ninv +
Nnoninv

Lsess − 1
(1)

where Ninv and Nnoninv are current number of INVITE and non-INVITE mes-
sages in the queue, respectively. The parameter Lsess represents the average
number of messages per-session. Ninv indicates the number of calls arrived at
the server but yet to be processed; Nnoninv/(Lsess − 1) is roughly the number
of calls already in process by the server.

Eq. 1 holds for both the full session check and the simplified start session

check estimation approaches. The difference is how the Lsess parameter is ob-
tained. When the full session check approach is used, the length of each individ-
ual session will be counted by checking the start and end of each individual SIP
sessions. With our simplified start session check approach, the session length can
be obtained by counting the actual number of messages Nproc

msg , processed during
the same period the session acceptance rate is observed. The session length is
then estimated to be Lsess = Nproc

msg /N
accepted
inv .

3.2 Active Source Estimation

In some of the overload control mechanisms, the RE may wish to explicitly
allocate its total capacity among multiple SEs. A simple approach is to get the
number of current active SEs and divide the capacity equally. We do this by
directly tracking the sources of incoming load and maintaining a table entry for
each current active SE. Each entry has an expiration timer set to one second.

3.3 The win-disc Window Control Algorithm

A window feedback algorithm executed at the RE dynamically computes a feed-
back window value for the SE. SE will forward the load to RE only if window
slots are currently available. Our first window based algorithm is win-disc, the
short name for window-discrete. The main idea is that at the end of each discrete



control interval of period Tc, RE re-evaluate the number of new session requests
it can accept for the next control interval, making sure the delays for processing
sessions already in the server and upcoming sessions are bounded. Assuming
the RE advertised window to SEi at the kth control interval T k

c is wk
i , and the

total window size for all SEs at the end of the kth control interval is wk+1, the
win-disc algorithm is described below:

w0
i := W0 where W0 > 0

wk
i := wk

i − 1 for INVITE received from SEi

wk+1 := µkTc + µkDB −Nk
sess at the end of T k

c

wk+1

i := round(wk+1/Nk
SE)

where µk is the current estimated session service rate. DB is a parameter
that reflects the allowed budget message queuing delay. Nk

sess is the estimated
current number of sessions in the system at the end of T k

c . µ
kTc gives the es-

timated number of sessions the server is able to process in the T k+1
c interval.

µkDB gives the average number of sessions that can remain in the server queue
given the budget delay. This number has to exclude the number of sessions al-
ready backlogged in the server queue, which is Nk

sess. Therefore, w
k+1 gives the

estimated total number of sessions that the server is able to accept in the next Tc

control interval giving delay budget DB. Both µk and Nk
sess are obtained with

our dynamic session estimation algorithm in Section 3.1. Nk
SE is the current

number of active sources discussed in Section 3.2. Note that the initial value W0

is not important as long as W0 > 0. An example value could be W0 = µengTc

where µeng is the server’s engineered session service rate.

3.4 The win-cont Window Control Algorithm

Our second window feedback algorithm is win-cont, the short name for window-
continuous. Unlike the time-driven win-disc algorithm, win-cont is an event
driven algorithm that continuously adjusts advertised window size when the
server has room to accept new sessions. The main idea of this algorithm is to
bound the number of sessions in the server at any time. The maximum number
of sessions allowed in the server is obtained by Nmax

sess = µtDB, whereDB is again
the allowed message queuing delay budget and µt is the current service rate. At
any time, the difference between the maximum allowed number of sessions in the
server Nmax

sess and the current number of sessions Nsess is the available window
to be sent as feedback. Depending on the responsiveness requirements and com-
putation ability, there are different design choices. First is how frequently Nsess

should be checked. It could be after any message processing, or after an INVITE

message processing, or other possibilities. The second is the threshold number of
session slots to update the feedback. There are two such thresholds, the overall
number of available slots Wovth, and the per-SE individual number of available
slots Windvth. To make the algorithm simple, we choose per-message processing
Nsess update and fix both Wovth and Windvth to 1. A general description of the
win-cont algorithm is summarized as below:



w0
i := W0 where W0 > 0

wt
i := wt

i − 1 for INVITE received from SEi

wt
left := Nmax

sess −Nsess upon msg processing

if(wt
left ≥ 1)

wt
share = wt

left/N
t
SE

wt
i′ := wt

i′ + wt
share

if(wt
i′ ≥ 1)

wt
i := (int)wt

i′

wt
i′ := (frac)wt

i′

Note that since wt
i may contain a decimal part, to improve the feedback

window accuracy when wt
i is small, we feedback the integer part of the current

wt
i and add its decimal part to the next feedback by using a temporary parameter

wt
i′ . In the algorithm description, µt, Nsess and NSE are obtained as discussed in

Section 3.1 and Section 3.2. The initial value W0 is not important and a reference
value is W0 = µengTc where µeng is the server’s engineered session service rate.

3.5 The win-auto Window Control Algorithm

Our third window feedback algorithm, win-auto stands for window-autonomous.
Like win-cont , win-auto is also an event driven algorithm. But as the term indi-
cates, the win-auto algorithm is able to make window adjustment autonomously.
The key design principal in the win-auto algorithm is to automatically keep the
pace of window increase below the pace of window decrease, which makes sure
the session arrival rate does not exceed the session service rate. The algorithm
details are as follows:

w0
i := W0 where W0 > 0

wt
i := wt

i − 1 for INVITE received from SEi

wt
i := wt

i + 1 after processing a new INVITE

The beauty of this algorithm is its extreme simplicity. The algorithm takes
advantage of the fact that retransmission starts to occur as the network gets
congested. Then the server automatically freezes its advertised window to allow
processing of backlogged sessions until situation improves. The only check the
server does is whether an INVITE message is a retransmitted one or a new one,
which is just a piece of normal SIP parsing done by any existing SIP server. There
could be many variations along the same line of thinking as this algorithm, but
the one as described here appears to be one of the most natural options.

3.6 The rate-abs Rate Control Algorithm

We implemented an absolute rate feedback control by applying the adaptive
load algorithm of Hosein [4], which is also used by Noel [10]. The main idea is
to ensure the message queuing delay does not exceed the allowed budget value.
The algorithm details are as follows.



During every control interval Tc, the RE notifies the SE of the new target
load, which is expressed by Eq. 2.

λk+1 = µk(1−
(dkq −DB)

C
) (2)

where µk is the current estimated service rate and dkq is the estimated server
queuing delay at the end of the last measurement interval. It is obtained by
dkq = Nsess/µ

k, where Nsess is the number of sessions in the server. We use our
dynamic session estimation in Section 3.1 to obtain Nsess, and we refer to this
absolute rate control implementation as rate-abs in the rest of this document.

3.7 The rate-occ Rate Control Algorithm

Our candidates of existing algorithms for relative rate based feedback control
are Occupancy Algorithm (OCC) [5], Acceptance-Rate Occupancy (ARO), and
Signaling RED (SRED) [6]. We decided to implement the basic OCC algorithm
because this mechanism already illustrates inherent properties with any occu-
pancy based approach. On the other hand, tuning of RED based algorithm is
known to be relatively complicated.

The OCC algorithm is based on a target processor occupancy, defined as
the percentage of time the processor is busy processing messages within a mea-
surement interval. So the target processor occupancy is the main parameter to
be specified. The processor occupancy is measured every measurement interval
Tm. Every control interval Tc the measured processor occupancy is compared
with the target occupancy. If the measured value is larger than the target value,
the incoming load should be reduced. Otherwise, the incoming load should be
increased. The adjustment is reflected in a parameter f which indicates the
acceptance ratio of the current incoming load. f is therefore the relative rate
feedback information and is expressed by the Eq. 3:

fk+1 =







fmin, if φ
kfk < fmin

1, if φkfk > 1
φkfk, otherwise

(3)

where fk is the current acceptance ratio and fk+1 is the estimated value for
the next control interval. φk = min(ρB/ρ

k
t , φmax). fmin exists to give none-zero

minimal acceptance ratio, thus prevents the server from completely shutting off
the SE. φmax defines the maximum multiplicative increase factor of f in two
consecutive control intervals. In this paper we choose the two OCC parameters
φ and fmin to be 5 and 0.02, respectively in all our tests.

We will refer to this algorithm as rate-occ in the rest of this paper.

4 Simulation Model

4.1 Simulation Platform

We have built a SIP simulator on the popular OPNET modeler simulation plat-
form [11]. Our SIP simulator captures both the INVITE and non-INVITE state



machines as defined in RFC3261. It is also one of the independent implementa-
tions in the IETF SIP server overload design team, and has been calibrated in
the team under common simulation scenarios.

Our general SIP server model consists of a FIFO queue followed by a SIP
processor. Depending on the control mechanisms, specific overload related pre-
queue or post-queue processing may be inserted, such as window increase and
decrease mechanisms. The feedback information is included in a new overload

header of each SIP messages, and are processed along with normal SIP message
parsing. Processing of each SIP messages creates or updates transaction states as
defined by RFC3261. The transport layer is UDP, and therefore all the various
SIP timers are in effect.

Our UA model mimics an infinite number of users. Each UA may generate
calls at any rate according to a specified distribution and may receive calls at
any rate. The processing capacity of a UA is assumed to be infinite since we are
interested in the server performance.

4.2 Simulation Topology and Configuration

We use the topology in Figure 2 for current evaluations. There are three UAs on
the left, each of which represents an infinite number of callers. Each UA is con-
nected to an SE. The three SEs all connect to the RE which is the potentially
overloaded server. The queue size is 500 messages. The core RE connects to UA0

which represents an infinite number of callees. Calls are generated with exponen-
tial interarrival times from the callers at the left to the callees on the right. Each
call signaling contains seven messages as illustrated in Figure 1. The call holding
time is assumed to be exponentially distributed with average of 30 seconds. The
normal message processing rate and the processing rate for rejecting a call at
the RE are 500 messages per second (mps) and 3000 mps, respectively.

Note that the server processor configuration, together with the call signaling
pattern, results in a nominal system service capacity of 72 cps. All our load and
goodput related values presented below are normalized to this system capac-
ity. Our main result metric is goodput, which counts the number of calls with
successful delivery of all five call setup messages from INVITE to ACK below 10 s.

For the purpose of this simulation, we also made the following assumptions.
First, we do not consider any link transmission delay or loss. However, this does
not mean feedback is instantaneous, because we assume the piggyback feedback
mechanism. The feedback will only be sent upon the next available message
to the particular next hop. Second, all the edge proxies are assumed to have
infinite processing capacity. By removing the processing limit of the edge server,
we avoid the conservative load pattern when the edge proxy server can itself be
overloaded.

These simple yet classical network configuration and assumptions allow us
to focus primarily on the algorithms themselves without being distracted by less
important factors, which may be further explored in future work.
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Fig. 4. SIP overload with no feedback control

4.3 SIP Overload Without Feedback Control

For comparison, we first look at SIP overload performance without any feedback
control. Figure 4 shows the simulation results for two basic scenarios. In the
“Simple Drop” scenario, any message arrived after the queue is full is simply
dropped. In the “Threshold Rejection” scenario, the server compares its queue
length with a high and a low threshold value. If the queue length reaches the
high threshold, new INVITE requests are rejected but other messages are still
processed. The processing of new INVITE requests will not be restored until the
queue length falls below the low threshold. As we can see, the two result goodput
curves almost overlap. Both cases display similar precipitous drops when the
offered load approximates the server capacity, a clear sign of congestion collapse.
However, the reasons for the steep collapse of the goodput are quite different in
the two scenarios. In the “Simple Drop” case, there are still around one third of
the INVITE messages arriving at the callee, but all the 180 RINGING messages
are dropped, and most of the 200 OK messages are also dropped due to queue
overflow. In the “Threshold Rejection” case, none of the INVITEmessages reaches
the callee, and the RE is only sending rejection messages.

5 Steady Load Performance

We summarize in Table 1 the parameters for all the rate-based and window-
based overload control algorithms we discussed in Section 3. In essence, most of
the algorithms have a binding parameter, three of them use the budget queuing
delay DB, and one uses the budget CPU occupancy ρB. All three discrete time
control algorithms have a control interval parameter Tc.

There is also a server metric measurement interval Tm used by four of the
five algorithms. Tm and Tc need to be separate only when Tc is relatively large
compared to Tm. The choice of the Tm value depends on how volatile the target
server metric is over time. For example, if the target metric is the server service
rate, which is relatively stable, a value of 100 ms is usually more than sufficient.
If on the other hand, the target metric is the current queue length, then smaller
or larger Tm makes clear differences. In our study, when the specific algorithm



Table 1. Parameter sets for overload algorithms

Algorithm Binding Control Measure Additional
Interval Interval

rate-abs DB Tc Tm

rate-occ ρB Tc Tm fmin and φ

win-disc DB Tc Tm

win-cont DB
∗ N/A Tm

win-auto N/A† N/A N/A

DB : budget queuing delay
ρB: CPU occupancy
Tc: discrete time feedback control interval
Tm: discrete time measurement interval for selected server metrics; Tm ≤ Tc

where applicable
fmin: minimal acceptance fraction
φ: multiplicative factor
∗ DB recommended for robustness, although a fixed binding window size can

also be used
† Optionally DB may be applied for corner cases

requires to measure the server service rate and CPU occupancy, we apply Tm;
when the algorithm requires information on the current number of packets in
the queue, we always obtain the instant value. Our results show that Tm =
min(100 ms, Tc) is a reasonable assumption, by which we basically reduce the
two interval parameters into one.

We looked at the sensitivity of DB and Tc for each applicable algorithms.
Figure 5 and Figure 6 show the results for win-disc. All the load and goodput
values have been normalized upon the theoretical maximum capacity of the
server.

We started with a Tc value of 200 ms and found that the server achieves
the unit goodput when DB is set to 200 ms. Other 0 < DB < 200 ms values
also showed similar results. This is not surprising given that both the SIP caller
INVITE and callee 200 OK timer starts at T1 = 500 ms. If the queuing delay is
smaller than 1/2 T1 or 250 ms, then there should be no timeout either on the
caller or callee side. A larger value of DB triggers retransmission timeouts which
reduce the server goodput. For example, Figure 5 shows that at DB = 500 ms,
the goodput has already degraded by 25%.

Letting D =200 ms, we then looked at the influence of Tc. As expected, the
smaller the value of Tc the more accurate the control would be. In our scenario,
we found that a Tc value smaller than 200 ms is sufficient to give the theatrical
maximum goodput. A larger Tc quickly deteriorates the results as seen from
Figure 6.

The effect of DB for win-cont and rate-abs show largely the similar shape,
with slightly different sensitivity. Generally speaking, a positive DB value cen-
tered at around 200 ms provides a good outcome for all cases.
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Fig. 5. win-disc goodput under different queuing delay budget

Figure 7 and Figure 8 compare the Tc parameter for win-disc, rate-abs and
rate-occ with DB = 200ms. For the rate-occ binding parameter ρB, we used
85% for the tests in Figure 7 and Figure 8. We will explain why this value is
chosen shortly. It can be seen that the performance of win-disc and rate-abs are
very close to maximum theoretical value in all cases except for when Tc = 1s
in the heavy load case. This shows win-disc is more sensitive to control interval
than rate-abs, which could also be caused by the more busty nature of the traffic
resulted from window throttle. It is clear that for both win-disc and rate-abs a
shorter Tc improves the results, and a value below 200 ms is sufficient. Overall,
rate-occ performs not as good as the other two. But what is interesting about
rate-occ is that from 14 ms to 100 ms control interval, the goodput increases
in light overload and decreases in heavy overload. This could be a result of
rate adjustment parameters which may have cut the rate too much at the light
overload.

To further understand the binding parameter ρB of rate-occ, we illustrate in
Figure 9 the relationship between the goodput and the value of ρB under different
load conditions. A ρB value higher than 95% easily degrades the performance
under heavy overload, because the instantaneous server occupancy could still
exceeds the healthy region and causes longer delays which result in SIP timer
expiration and message retransmissions. A tradeoff ρB value with the highest
and most stable performance across all load conditions in the given scenario is
85%, which is the reason we used it in Figure 7 and Figure 8.

Finally, for the win-auto algorithm, we have found in most cases with a rea-
sonable initial window size in the order of 10, the output matches perfectly the
theoretical maximum line. We also see some cases where the system could expe-
rience periods of suboptimal yet still stable performance. The most common case
happens when the server is started with a large initial window and the offered
load is a steep jump to a heavily loaded region. Our investigation reveals that,
this suboptimal performance is caused by the difference in the stabilized queu-
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ing delay. In most of the normal cases, when the system reaches steady state,
the queuing delay is smaller than half of the SIP timer T1 value or 250 ms. In
the suboptimal case, the system may become stable at a point where the queu-
ing delay can exceed 250 ms. The round-trip delay then exceeds 500 ms, which
triggers the 200 OK timer and the BYE timer, each of which uses 500 ms. The
two timer expirations introduce three additional messages to the system, a re-
transmitted 200 OK, the ACK to the retransmitted 200 OK, and a retransmitted
BYE. This change increases the session length from seven to ten and reduces the
maximum server goodput by 28%. A cure to this situation is to introduce an ex-
tra queuing delay parameter to the window adjustment algorithm. Specifically,
before the server increases the window size, it checks the current queuing delay.
If the queuing delay value already exceeds the desired threshold, the window
is not increased. However, we found that determining the optimal value of the
queuing delay threshold parameter is not very straightforward and makes the
algorithm much more complex. The small chance of the occurrence of the sub-
optimal performance in realistic situations may not justify the additional delay
binding check.

Having looked at various parameters for all different algorithms, we now
summarize the best goodput achieved by each algorithm in Figure10. The specific
parameters used for each algorithm is listed in Table 2.

Table 2. Parameters used for comparison

DB(ms) Tc(ms) Tm(ms)

rate-abs 200 200 100

rate-occ1
‡ N/A 200 100

rate-occ2
‡ N/A 14 14

win-disc 200 200 100
win-cont 200 N/A 100
win-auto N/A N/A N/A

‡ in addition: ρB = 0.85, φ = 5, fmin = 0.02



It is clear from Figure 10 that all algorithms except for rate-occ are able
to reach the theoretical maximum goodput. The corresponding CPU occupancy
also confirms the goodput behavior. What is important to understand is that the
reason rate-occ does not operate at the maximum theoretical goodput like the
others is not simply because of the artificial limit of setting the occupancy to 85%.
This point can be confirmed by the earlier Figure 9. The inherent issue with an
occupancy based heuristic is the fact that occupancy is not as direct a metric as
queue length or queuing delay in solving the overload problem. Figure 10 shows
one factor that really helps improve the rate-occ performance at heavy load seem
to be using extremely small Tc. But updating the current CPU occupancy every
14 ms is not straightforward in all systems. Furthermore, when this short Tc

is used, the actual server occupancy rose to 93%, which goes contrary to the
original intention of setting the 85% budget server occupancy. Yet another issue
with setting the extremely short Tc is its much poorer performance than other
algorithms under light overload, which should be linked to the tuning of OCC’s
heuristic increase and decrease parameters.

The merits of all the algorithms achieving maximum theoretical goodput is
that they ensure no retransmission ever happens, and thus the server is always
busy processing messages, with each single message being part of a successful
session.

Another metric of interest for comparison is the session setup delay, which
we define as from the time the INVITE is sent until the ACK to 200 OK message
is received. We found that the rate-occ algorithm has the lowest delay but this
is not significant considering it operates at the suboptimal region in terms of
goodput. win-cont comes next with a delay of around 3 ms. The rate-abs offers
a delay close to that of win-cont at about 3.5 ms. The remaining two win-disc

and win-auto have a delay of 5 ms and 6 ms respectively. In fact all these values
are sufficiently small and are not likely making any difference.

From the steady state load analysis so far, we conclude that the occupancy
based approach is less favorable than others because of its relatively more number
of tuning parameters and not being able to adapt to the most efficient processing
condition for the maximum goodput. win-disc and abs-rate are by definition quite
similar and they also have the same number of parameters. Their performance is
also very close, although rate-rate has shown a slight edge, possibly because of the
smoother arrival pattern resulting from the percentage throttle. win-cont has less
tuning parameter than win-disc and abs-rate, and offers equal or slightly better
performance Finally, win-auto is an extremely simple algorithm yet achieves
nearly perfect results in most situations.

6 Dynamic Load Performance and Fairness for Overload
Control

Although steady load performance is a good starting point for evaluating the
overload control algorithms, most of the regular overload scenarios are not per-
sistent steady overload. Otherwise, The issue would become a poor capacity
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Fig. 10. Goodput performance for different algorithms

planning problem. The realistic server to server overload situations are more
likely short periods of bulk loads, possibly accompanied by new sender arrivals
or departures. Therefore, in this section we extend our evaluation to the dynamic
behavior of overload control algorithms under load variations. Furthermore, we
investigate the fairness property of each of the algorithms.

6.1 Fairness for SIP Overload Control

Sending 
Entity (SE) 

Receiving
Entity (RE)

Feedback

Regulated
Load

Original
Load

Service 
Output

Feedback Enforcement
Feedforward Reporting Feedback Algorithm 

Execution
Feedforward

Fig. 11. The double feed architecture

Defining Fairness Under overload, the server may allocate its available ca-
pacity among all the upstream senders using criteria considered fair. Theoreti-
cally, fairness can be coupled with many other factors and could have an unlim-



ited number of definitions. However, we see two basic types of fairness criteria
which may be applicable in most scenarios: service provider-centric and end
user-centric.

If we consider the upstream servers representing service providers, a service-
provider centric fairness means giving all the upstream servers the same aggre-
gate success rate.

The user-centric fairness criteria aim to give each individual user who are
using the overloaded server the same chance of call success, regardless of where
the call originated from. Indeed, this end user-centric fairness may be preferred
in regular overload situation. For example, in the TV hotline “free tickets to the
third caller” case, user-centric fairness ensures that all users have equal winning
probability to call in. Otherwise, a user with a service provider who happens to
have a large call volume would have a clear disadvantage.

Achieving Fairness Technically, achieving the basic service provider-centric
fairness is easy if the number of active sources are known, because the overloaded
server simply needs to split its processing capacity equally in the feedback gen-
erated for all the active senders.

Achieving user-centric fairness means the overloaded server should split is
capacity proportionally among the senders based on the senders original incom-
ing load. For the various feedback mechanisms we have discussed, technically the
receiver in both the absolute rate-based and window-based feedback mechanisms
does not have the necessary information to do proportional capacity allocation
when the feedback loop is activated. The receiver in the relative rate-based mech-
anism does have the ability to deduce the proportion of the original load among
the senders.

To achieve user-centric fairness in absolute rate and window-based mecha-
nisms, we introduce a new feedforward loop in the existing feedback architecture.
The resulting double-feed architecture is shown in Figure 11. The feedforward
information contains the sender measured value of the current incoming load.
Like the feedback, all the feedforward information is naturally piggybacked in
existing SIP messages since SIP messages by themselves travel in both direc-
tions. This way the feedforward introduces minimal overhead as in the feedback
case. The feedforward information from all the active senders gives the receiver
global knowledge about the original sending load. It is worth noting that, this
global knowledge equips the receiver with great flexibility that also allows it to
execute any kind of more advanced user-centric or service provider-centric fair-
ness criteria. Special fairness criteria may be required, for example, when the
server is experiencing denial of service attack instead of regular overload.

6.2 Dynamic Load Performance

Figure 12 depicts the arrival pattern for our dynamic load test. We used the
step function load pattern because if the algorithm works in this extreme case,
it should work in less harsh situations. The three UAs each starts and ends at
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Fig. 13. win-cont UA1 goodput with dynamic load

different time, creating an environment of dynamic source arrival and departure.
Each source also has a different peak load value, thus allowing us to observe
proportional fairness mechanisms when necessary.

For dynamic behavior, our simulation shows that all algorithms except win-
auto adapts well to the offered dynamic load, showing little transition difference
during new source arrival and existing source departure as well as at load change
boundaries. As far as fairness is concerned, the rate-occ by default can provide
user-centric fairness; the basic rate-abs, win-disc and win-cont algorithms are
capable of basic service provider centric fairness by allocating equal amount
of capacity to each SE. After implementing our double-feed architecture with
sources reporting the original load to the RE, we are able to achieve user-centric
fairness in all rate-abs, win-disc and win-cont algorithms through a proportional
allocation of total RE capacity according to SEs’ original incoming load. In
addition, having knowledge of the incoming load proportion from each SE could
also help us refine the algorithms when necessary. For example, in the win-cont

case, we can improve the window allocation accuracy by using “weighted fair
processing”, i.e., available processing resources are probabilistically assigned to
the SEs based on their proportional share of total incoming load. The improved
algorithm is illustrated below:

w0
i := W0 where W0 > 0

w0
left′ := 0
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Fig. 15. win-cont UA3 goodput with dynamic load

wt
i := wt

i − 1 for INVITE received from SEi

wt
left := Nmax

sess −Nsess upon msg processing

wt
left := wt

left + wt
left′

if(wt
left ≥ 1)

wt
left′ = (frac)(wt

left)

wt
share = (int)(wt

left)
assuming the proportion of original load from SEi is P%

wt
i := wt

share with probability P/100

Results of the win-cont algorithm with user-centric fairness are shown in
Figure 13 through Figure 15. As can be seen, UA1 starts at the 100th second
with load 0.57 and gets a goodput of the same value. At the 400th second, UA2
is started with load 1.68, three times of UA1’s load. UA1’s goodput quickly
declines and reaches a state where it shares the capacity with UA2 at a one to
three proportion. At the 700th second, UA3 is added with a load of 3.36. The
combination of the three active sources therefore has a load of 5.6. We see that
the goodputs of both UA1 and UA2 immediately decrease. The three sources
settle at a stable situation with roughly 0.1, 0.3, and 0.6 goodput, matching the
original individual load. At the 1000th second, the bulk arrival of UA3 ends and
UA3 left the system. The allocation split between UA1 and UA2 restores to the
similar situation before UA3’s arrival at the 700th second. Finally, at the 1300th
second, UA1 departs the system, leaving UA2 with load 1.68 alone. Since the



load is still over the server capacity, UA2 gets exactly the full capacity of the
system with a goodput of 1.

The graph for service-provider centric fairness is similar, with the total allo-
cation equally shared by the current number of active sources during each load
interval.
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Fig. 16. win-auto UA2 goodput with dynamic load

We also evaluated the dynamic performance of the simplest win-auto algo-
rithm. We found that with source arrival and departure, the system still always
reaches the maximum goodput as long as the current load is larger than the
server capacity. A difference from the other algorithms is that it could take a
noticeably longer adaptation time to reach the steady state under certain load
surge. For example, we show in Figure 16 the goodput for UA2. At the 700th
second when the load increases suddenly from 2.25 to 5.6, it took over 60 s to
completely stabilize. However, the good thing is once steady state is reached,
the total goodput of all three UAs adds up to one. Moreover, performance under
source departure is good. At the 1300th second, when UA2 becomes the only UA
in the system, its goodput quickly adapts to 1. There is, however, one specific
drawback of the win-auto mechanism. Since there is basically no processing in-
tervention in this algorithm, we found it hard to enforce an explicit share of the
capacity. The outcome of the capacity split seem to be determined by the point
when the system reaches the steady state which is not easy to predict. Therefore,
win-auto may not be a good candidate when explicit fairness is required. But
because of its extreme simplicity, as well as near perfect steady state aggregate
performance, win-auto may still be a good choice in some situations.

7 Conclusions and Future Work

The SIP server overload problem is interesting for a number of reasons: first,
the cost of rejecting a request is not negligible compared to the cost of serving a
request; Second, the various SIP timers lead to many retransmissions in overload
and amplify the situation; Third, SIP has a server to server application level
routing architecture. The server to server architecture helps the deployment of a



pushback SIP overload control solution. The solution can be based on feedback
of absolute rate, relative rate, or window size.

We proposed three window adjustment algorithms win-disc, win-cont and
win-auto for window-based feedback and resorted to two existing rate adjustment
algorithms for absolute rate-based feedback rate-abs and relative rate-based feed-
back rate-occ. Among these five algorithms, win-auto is the most SIP specific,
and rate-occ is the least SIP specific. The remaining three win-disc, win-cont,
and rate-abs are generic mechanisms, and need to be linked to SIP when being
applied to the SIP environment. The common piece that linked them to SIP
is the dynamic session estimation algorithm we introduced. It is not difficult
to imagine that with the dynamic session estimation algorithm, other generic
algorithms can also be applied to SIP.

Now we summarize various aspects of the five algorithms.

The design of most of the feedback algorithms contains a binding parameter.
Algorithms binding on queue length or queuing delay such as win-disc, win-

cont and rate-abs outperform algorithms binding on processor occupancy such
as rate-occ. Indeed, all of win-disc, win-cont and rate-abs are able to achieve
theoretical maximum performance, meaning the CPU is fully utilized and every
message processed contributes to a successful session, with no wasted message
in the system at all. On the other hand, occupancy based heuristic is a much
coarser control approach. The sensitivity of control also depends on the extra
multiplicative increase and decrease parameter tuning. Therefore, from steady
load performance and parameter tuning perspective, we favor algorithms other
than rate-occ.

The adjustment performed by each algorithm can be discrete time driven
such as in win-disc and rate-abs, rate-occ or continuous event driven such as in
win-cont and win-auto. Normally the event-driven algorithm could have smaller
number of tuning parameters and also be more accurate. But with a sufficiently
short discrete time control interval the difference between discrete and continu-
ous adjustments would become small.

We found that all the algorithms except win-auto adapt well to traffic source
variations as well as bulk arrival overload. When we further look at the fairness
property, especially the user-centric fairness which may be preferable in many
practical situations, we found the rate-occ algorithm realizes it by default. All
other algorithms except win-auto can also achieve it with our introduction of the
double-feed SIP overload control architecture.

Finally, win-auto frequently needs to be singled out because it is indeed
special. With an extremely simple implementation and virtually zero parameters,
it archives a remarkable steady load aggregate output in most cases. The tradeoff
to this simplicity is a noticeable load adaptation period upon certain load surge,
and the difficulty of enforcing explicit fairness models.

Our possible work items for the next step may include adding delay and loss
property to the link, and applying other arrival patterns as well as node fail-
ure models to make the scenario more realistic. It would be interesting to see
whether and how the currently closely matched results of each algorithm may



differ in those situations. Another work item is that although we currently as-
sumed percentage-throttle for rate-based and window-throttle for window-based
control only, it may be helpful to look at more types of feedback enforcement
methods at the SE and see how different the feedback algorithms will behave.
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