Skip to main content

The Experimental Robotics Framework

  • Conference paper
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5325))

  • 1548 Accesses

Abstract

In this article is introduced a framework for the development of reusable software components for Human Robot Interaction (HRI): the Experimental Robotics Framework. Normally human-robot interfaces are discarded as they stop being useful and because of that lots of work put into those architectures is lost. Our software plans to change that, and provide a platform that will enable interfaces to be reused. We explain the architecture and design rationale of the framework, and demonstrate it with some use cases. The developed framework is available on-line with a LGPL license.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinfeld, A.: Interface lessons for fully and semi-autonomous mobile robots. In: IEEE Conference on Robotics and Automation (2004), citeseer.ist.psu.edu/steinfeld04interface.html

  2. Steinfeld, A.M., Fong, T.W., Kaber, D., Lewis, M., Scholtz, J., Schultz, A., Goodrich, M.: Common metrics for human-robot interaction. In: Human-Robot Interaction Conference. ACM Press, New York (2006)

    Google Scholar 

  3. Scholtz, J., Antonishek, B., Young, J.: Evaluation of a human-robot interface: Development of a situational awareness methodology. In: International Conference on System Sciences (HICSS), vol. 05 (2004)

    Google Scholar 

  4. McDonald, M.J.: Active research topics in human machine interfaces. Intelligent Systems and Robotics Center Sandia National Laboratories, Tech. Rep. (2000)

    Google Scholar 

  5. Lakshmi, S.S.: Graphical user interfaces for mobile robots. University of Kansas, Tech. Rep. (2002), citeseer.ist.psu.edu/612670.html

  6. Persson, A.: Multi-robot operator interface for rescue operations. Master’s thesis, Orebro University (2005)

    Google Scholar 

  7. Fong, T.W., Thorpe, C.: Vehicle teleoperation interfaces. Autonomous Robots 11(1), 9–18 (2001), citeseer.ist.psu.edu/fong01vehicle.html

    Article  MATH  Google Scholar 

  8. Song, D.: Systems and algorithms for collaborative teleoperation. Ph.D. dissertation, Department of Industrial Engineering and Operations Research, University of California, Berkeley (2004)

    Google Scholar 

  9. Lin, I.-S., Wallner, F., Dillmann, R.: Interactive control and environment modelling for a mobile robot based on multisensor perceptions. Robotics and Autonomous Systems 18(3), 301–310 (1996)

    Article  Google Scholar 

  10. Yanco, H.A., Drury, J.: Classifying human-robot interaction: An updated taxonomy. In: IEEE Conference on Systems, Man and Cybernetics (October 2004), www.cs.uml.edu/~holly/papers/

  11. Clark, C., Frew, E.: An integrated system for command and control of cooperative robotic systems. In: 11th International Conference on Advanced Robotics, Coimbra, Portugal (June 2003)

    Google Scholar 

  12. Jones, H., Hinds, P.: Extreme work groups: Using swat teams as a model for coordinating distributed robots. In: Conference on Computer Supported Cooperative Work (November 2002)

    Google Scholar 

  13. Jones, M.S.H.: Operating gps-enabled robots with an opengl gui. Dr. Dobb’s Journal, 16–24 (January 2003)

    Google Scholar 

  14. Makarenko, A., Kaupp, T., Grocholsky, B., Durrant-Whyte, H.: Human-robot interactions in active sensor networks. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA 2003), Kobe, Japan, July 2003, pp. 247–252 (2003)

    Google Scholar 

  15. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: Proc. 11th International Conference on Advanced Robotics, Coimbra, Portugal, pp. 317–323 (2003), playerstage.sf.net

  16. Ishii, H.S.M.: A step toward a human-robot cooperative system. Artificial Life and Robotics (1997)

    Google Scholar 

  17. Xu, H., Brussel, H.V., Moreas, R.: Designing a user interface for service operations of an intelligent mobile manipulator. Telemanipulator and Telepresence Technologies IV 3206(1), 12–21 (1997)

    Article  Google Scholar 

  18. Kheddar, A., Coiffet, P., Kotoku, T., Tanie, K.: Multi-robots teleoperation - analysis and prognosis. In: 6th IEEE Int. Workshop on Robot and Human Communication, IROS, Sendai, Japan, September 1997, pp. 166–171 (1997), citeseer.ist.psu.edu/kheddar97multirobots.html

  19. Kheddar, A., Fontaine, J., Coiffet, P.: Mobile robot teleoperation in virtual reality. In: IEEE IMACS CESA 1998, Nabeul-Hammamet, Tunisie (April 1998), citeseer.ist.psu.edu/kheddar98mobile.html

  20. Aucoin, N., Sandbekkhaug, O., Jenkin, M.: Immersive 3d user interface for mobile robot control. In: Proc. IASTED Int. Conf. on Applications of Control and Robotics, Orlando, pp. 1–4 (1996), citeseer.ist.psu.edu/379953.html

  21. Stuart, R.E.K., Chapman, G.: Interactive visualization for sensor-based robotic programming. In: Systems, Man, and Cybernetics, vol. 12(15), pp. 761–766 (1997)

    Google Scholar 

  22. Michael Schmitt, F.: Virtual reality-based navigation of a mobile robot. In: 7th IFAC / IFIP / IFORS / IEA Symposium on Analysis, Design and Evaluation of Man-Machine Systems, pp. 377–382 (1999)

    Google Scholar 

  23. Nguyen, L., Bualat, M.: Virtual reality interfaces for visualization and control of remote vehicles. In: IEEE Conference on Robotics and Automation (2002)

    Google Scholar 

  24. Collett, T., MacDonald, B.: Augmented reality visualisation for player. In: ICRA, Orlando CA (2006), www.ece.auckland.ac.nz/~robot

  25. Wings 3d modeller, http://wings3d.org

  26. Wavefront obj format, csit.fsu.edu/~burkardt/data/obj/obj_format.txt

  27. Modules for intelligent autonomous robot navigation, miarn.sf.net

  28. Xavier, J., Pacheco, M., Castro, D., Ruano, A., Nunes, U.: Fast line arc/circle and leg detection from laser scan data in a player driver. In: Proc. IEEE Int. Conf. on Robotics and Automation, Barcelona (2005)

    Google Scholar 

  29. The fast light toolkit, fltk.org

  30. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: an architecture for general intelligence. Artif. Intell. 33(1), 1–64 (1987), http://portal.acm.org/citation.cfm?id=27702

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xavier, J., Araújo, H. (2008). The Experimental Robotics Framework. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2008. Lecture Notes in Computer Science(), vol 5325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89076-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89076-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89075-1

  • Online ISBN: 978-3-540-89076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics