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Dual properties of the relative belief of
singletons

Fabio Cuzzolin
Fabio.Cuzzolin@inrialpes.fr

INRIA Rhone-Alpes

Abstract. In this paper we prove that a recent Bayesian approximation
of belief functions, the relative belief of singletons, meets a number of
properties with respect to Dempster’s rule of combination which mirrors
those satisfied by the relative plausibility of singletons. In particular, its
operator commutes with Dempster’s sum of plausibility functions, while
perfectly representing a plausibility function when combined through
Dempster’s rule. This suggests a classification of all Bayesian approxi-
mations into two families according to the operator they relate to.

1 Introduction: A new Bayesian approximation

The theory of evidence (ToE) [1] extends classical probability theory through
the notion of belief function (b.f.), a mathematical entity which independently
assigns probability values to sets of possibilities rather than single events. A
belief function b : 2Θ → [0, 1] on a finite set (“frame”) Θ has the form b(A) =∑

B⊆A mb(B) where mb : 2Θ → [0, 1], is called “basic probability assignment”
(b.p.a.), and meets normalization

∑
A⊆Θ mb(A) = 1 and positivity mb(A) ≥ 0

∀A ⊆ Θ axioms. Events associated with non-zero basic probabilities are called
“focal elements”. A b.p.a. can be uniquely recovered from a belief function
through Moebius inversion:

mb(A) =
∑

B⊆A

(−1)|A−B|b(B). (1)

As probability measures or Bayesian belief functions are just a special class of
b.f.s (for which m(A) = 0 when |A| > 1), the relation between beliefs and proba-
bilities plays a major role in the theory of evidence [2–6]. Tessem [7], for instance,
incorporated only the highest-valued focal elements in his mklx approximation.
In Smets’ “Transferable Belief Model” [8] beliefs are represented at credal level
(as convex sets of probabilities), while decisions are made by resorting to a
Bayesian belief function called pignistic transformation [9]. More recently, two
new Bayesian approximations of b.f.s have been derived from purely geometric
considerations [10] in the context of the geometric approach to the ToE.

Another classical approximation is based on the plausibility function (pl.f.)
plb : 2Θ → [0, 1], where

plb(A) .= 1− b(Ac) =
∑

B∩A 6=∅
mb(B)



represent of the evidence not against a proposition A. Voorbraak [11] proposed
the so-called relative plausibility of singletons (rel.plaus.) p̃lb as the unique proba-
bility that, given a belief function b with plausibility plb, assigns to each singleton
x ∈ Θ its normalized plausibility:

p̃lb(x) =
plb(x)∑

y∈Θ plb(y)
. (2)

He proved that p̃lb is a perfect representative of b when combined with other
probabilities p through Dempster’s rule ⊕ [12]: p̃lb ⊕ p = b ⊕ p. Its properties
have been later discussed by Cobb and Shenoy [13].

Another Bayesian approximation based on normalizing the belief (instead of
plausibility) values of singletons has been recently introduced [14]:

b̃(x) .=
b(x)∑

y∈Θ b(y)
=

mb(x)∑
y∈Θ mb(y)

. (3)

(3) is called relative belief of singletons b̃ (rel.bel.). Clearly b̃ exists iff b assigns
some mass to singletons: ∑

x∈Θ

mb(x) 6= 0. (4)

The different semantics and limitations of the relative belief of singletons have
been studied by F. Cuzzolin [14]. In particular, rel.bel. provides a conservative
estimate of the evidence supporting each singleton x ∈ Θ, and can indeed be
seen as the relative plausibility of a plausibility function.

1.1 Aim of the paper

On our side, in this paper we focus on the behavior of the relative belief of
singletons with respect to evidence combination in the form of Dempster’s com-
bination rule. We prove that rel.bel. meets a number of properties with respect
to Dempster’s rule of combination which mirrors those satisfied by the rela-
tive plausibility of singletons (2). In particular: 1. its operator commutes with
Dempster’s sum of plausibility functions, and 2. rel.bel. perfectly represents a
plausibility function when combined through Dempster’s rule.
These results together with those holding for the relative plausibility suggest
a clear subdivision of all Bayesian approximations in two families, related to
Dempster’s sum and affine combination respectively.

After briefly recalling the different semantics of the relative belief of singletons
we summarize the properties of rel.plaus. with respect to Dempster’s rule, whose
dual we are going to prove here for b̃. To this purpose we introduce the notion
of ”pseudo belief functions”, i.e. b.f.s which admit negative b.p.a.s, as the basic
tool we need in the course of this work.
We prove that the relative belief operator commutes with respect to Dempster’s
combination of plausibility functions, and enjoys idempotence properties similar
to those met by the relative plausibility. Analogously, convergence results for



rel.bel. can also be proven. In the last Section we prove that the relative belief of
singletons perfectly represents the corresponding plausibility function plb when
combined with any probability through (extended) Dempster’s rule.

2 Semantics of the relative belief of singletons

2.1 A conservative estimate

A first insight on the meaning of b̃ comes from the original semantics of belief
functions as constraints on the actual allocation of mass of an underlying un-
known probability distribution. A focal element A with mass mb(A) indicates
that this mass can “float” around in A and be distributed arbitrarily between
the elements of A. In this framework p̃lb (2) can be interpreted as follows:

– for each singleton x ∈ Θ the most optimistic hypothesis in which the mass
of all A ⊇ {x} focuses on x is considered, yielding {plb(x), x ∈ Θ};

– this assumption, however, is contradictory as it is supposed to hold for all
singletons (many of which belong to the same higher-size events);

– nevertheless, the obtained values are normalized to yield a Bayesian belief
function.

p̃lb is associated with the less conservative (but incoherent) scenario in which all
the mass that can be assigned to a singleton is actually assigned to it.
The relative belief of singletons (3) has in turn the following interpretation in
terms of mass assignments:

– for each singleton x ∈ Θ the most pessimistic hypothesis in which only
the mass of {x} itself actually focuses on x is considered, yielding {b(x) =
mb(x), x ∈ Θ};

– this assumption is also contradictory, as the mass of all higher-size events is
not assigned to any singletons;

– the obtained values are again normalized.

Dually, b̃ reflects the most conservative (but still not coherent) choice of assigning
to x only the mass that the b.f. b (seen as a constraint) assures it belong to x,
in perfect analogy to the case of rel.plaus.

One can argue that the existence of rel.bel. is subject to quite a strong
condition (4). However it can be proven that the case in which b̃ does not exist is
indeed pathological, as it excludes a great deal of belief and probability measures
[14].

2.2 Convergence under quasi-Bayesianity

A different angle on the utility of b̃ comes from a discussion of what classes of
b.f.s are “suitable” to be approximated by means of (3). As it only makes use of
the masses of singletons, working with b̃ requires storing n values to represent
a belief function. As a consequence, the computational cost of combining new



evidence through Dempster’s rule or disjunctive combination [15] is reduced to
O(n) as only the mass of singletons has to be calculated.
When the actual values of b̃(x) are close to those provided by, for instance,
pignistic function or rel.plaus. is then more convenient to resort to the relative
belief transformation.

Let us call quasi-Bayesian b.f.s the belief functions b for which the mass
assigned to singletons is very close to one:

kmb

.=
∑

x∈Θ

mb(x) → 1.

Proposition 1. For quasi-Bayesian b.f.s all Bayesian approximations converge:

lim
kmb

→1
BetP [b] = lim

kmb
→1

p̃lb = lim
kmb

→1
b̃.

For quasi-Bayesian b.f.s the relative belief works as a low-cost proxy for the
other Bayesian approximations.

3 Relative plausibility and Dempster’s rule

Rel.bel. and rel.plaus. are then strictly related. In this paper we prove indeed
that b̃ and p̃lb share also an intimate relationship with Dempster’s evidence
combination rule ⊕, as they meet a set of dual properties with respect to ⊕.

Definition 1. The orthogonal sum or Dempster’s sum of two belief functions
b1, b2 on the same frame Θ is a new belief function b1 ⊕ b2 on Θ with b.p.a.

mb1⊕b2(A) =
∑

B∩C=A mb1(B) mb2(C)∑
B∩C 6=∅mb1(B) mb2(C)

(5)

where mbi denotes the b.p.a. associated with bi.

We denote with k(b1, b2) the denominator of Equation (5).
Cobb and Shenoy [13] proved that the relative plausibility function p̃lb com-

mutes with respect to Dempster’s rule. More precisely, they proved that the
relative plausibility of singletons meets the following properties1 which relates
to Dempster’s combination rule.

Proposition 2. 1. if b = b1 ⊕ · · · ⊕ bm then p̃lb = p̃lb1 ⊕ · · · ⊕ p̃lbm
. In other

words, Dempster’s sum and the relative plausibility operator

p̃l : B → P
b 7→ p̃l[b] = p̃lb

(6)

commute.
1 Original statements from [13] have been reformulated according to the notation of

this paper.



2. if mb is idempotent with respect to Dempster’s rule, i.e. mb⊕mb = mb, then
p̃lb is idempotent with respect to ⊕.

3. let us define the limit of a belief function b as

b∞ .= lim
n→∞

bn .= lim
n→∞

b⊕ · · · ⊕ b (n times); (7)

if ∃x ∈ Θ such that plb(x) > plb(y) ∀y 6= x, y ∈ Θ, then p̃lb∞(x) = 1,
p̃lb∞(y) = 0 ∀y 6= x.

4. if ∃A ⊆ Θ (|A| = k) s.t. plb(x) = plb(y) ∀x, y ∈ A, plb(x) > plb(z) ∀x ∈
A, z ∈ Ac, then p̃lb∞(x) = p̃lb∞(y) = 1/k ∀x, y ∈ A, p̃lb∞(z) = 0 ∀z ∈ Ac.

On his side, Voorbraak has shown [11] that the relative plausibility function
perfectly represents a belief function when combined with a probability.

Proposition 3. The relative plausibility of singletons p̃lb is a perfect represen-
tative of b in the probability space when combined through Dempster’s rule, i.e.

b⊕ p = p̃lb ⊕ p, ∀p ∈ P.

4 Pseudo belief functions

The study of the properties of b̃ requires first to extend the set of objects we
work on from that of b.f.s to the more general class of “pseudo belief func-
tions”. Namely, the b.p.a. mb associated with a b.f. b meets the positivity axiom:
mb(A) ≥ 0 ∀A ⊆ Θ. If we relax this condition we get functions ς of the form

ς(A) =
∑

B⊆A

mς(B).

or sum function [16] whose Moebius inverse (1) mς : 2Θ \ ∅ → R may assume
negative values: mς(B) 6≥ 0 ∀B ⊆ Θ. Sum functions meeting the normalization
axiom

∑
∅(A⊆Θ mς(A) = 1, or pseudo belief functions (p.b.f.s) [17], are then

natural extensions of belief functions.

4.1 Plausibilities as pseudo belief functions

Plausibility functions are p.b.f.s, as they meet the normalization constraint
plb(Θ) = 1 for all b. Their Moebius inverse [18]

µb(A) .=
∑

B⊆A

(−1)|A\B|plb(B) = (−1)|A|+1
∑

B⊇A

mb(B) (8)

when A 6= ∅, µb(∅) = 0 is called basic plausibility assignment (b.pl.a.).
Each pl.f. is an affine combination of basis belief functions

bA
.= b ∈ B s.t. mb(A) = 1, mb(B) = 0 ∀B 6= A (9)

with coefficients given by its b.pl.a. [18]:

plb =
∑

A⊆Θ

µb(A)bA. (10)



4.2 Dempster’s sum of pseudo belief functions

The orthogonal sum can be naturally extended to pseudo b.f.s by applying (5)
to the Moebius inverses mς1 , mς2 of a pair of p.b.f.s. As Cuzzolin has proven [19]

Proposition 4. Dempster’s rule defined as in Equation (5) when applied to a
pair of pseudo belief functions ς1, ς2 yields again a pseudo belief function.

We denote the orthogonal sum of two p.b.f.s ς1, ς2 by ς1 ⊕ ς2.

5 Dual results for relative belief operator

5.1 The relative belief operator

As pl.f.s are pseudo b.f.s, Dempster’s rule can then be formally applied to pl.f.s
too. We can then prove a dual commutativity result for relative beliefs, once
introduced (in full analogy to what done for the other Bayesian approximations)
the relative belief operator

b̃ : PL → P
plb 7→ b̃[plb]

where

b̃[plb](x) .=
mb(x)∑

y∈Θ mb(y)
∀x ∈ Θ (11)

is defined as usual for b.f.s b such that
∑

x mb(x) 6= 0.
As a matter of fact, since b and plb are in 1-1 correspondence, we could indif-
ferently define two operators mapping respectively a belief function b onto its
relative belief, or the unique plausibility function plb associated with b onto b̃.
We chose to consider the operator in this second form as this is instrumental to
prove the following theorem, the dual of point 1. in Proposition 2.

5.2 Commutativity

A useful property of µb is that [14]

Lemma 1. mb(x) =
∑

A⊇{x} µb(A).

Theorem 1. The relative belief operator commutes with respect to Dempster’s
combination of plausibility functions, namely

b̃[pl1 ⊕ pl2] = b̃[pl1]⊕ b̃[pl2].

Theorem 1 implies that

b̃[(plb)n] = (b̃[plb])n. (12)



5.3 Idempotence

Another consequence of Theorem 1 is an idempotence property which is the dual
of point 2. of Proposition 2.

Theorem 2. If plb is idempotent with respect to Dempster’s rule, i.e. plb⊕plb =
plb, then b̃[plb] is itself idempotent: b̃[plb]⊕ b̃[plb] = b̃[plb].

Proof. By Theorem 1 b̃[plb] ⊕ b̃[plb] = b̃[plb ⊕ plb], and if plb ⊕ plb = plb the
thesis immediately follows. ¤

5.4 Convergence

The dual statements of the convergence results of Proposition 2 can be proven
in a similar fashion.

Theorem 3. If ∃x ∈ Θ such that b(x) > b(y) ∀y 6= x, y ∈ Θ then

b̃[pl∞b ](x) = 1, b̃[pl∞b ](y) = 0 ∀y 6= x.

A similar proof can be provided for the following generalization of Theorem 3.

Theorem 4. if ∃A ⊆ Θ (|A| = k) s.t. b(x) = b(y) ∀x, y ∈ A, b(x) > b(z)
∀x ∈ A, z ∈ Ac then

b̃[pl∞b ](x) = b̃[pl∞b ](y) = 1/k ∀x, y ∈ A, b̃[pl∞b ](z) = 0 ∀z ∈ Ac.

5.5 Example

Let us consider the belief function b on the frame of size four Θ = {x, y, z, w}
defined by the following basic probability assignment:

mb({x, y}) = 0.4, mb({y, z}) = 0.4, mb(w) = 0.2. (13)

The corresponding b.pl.a. is by (8)

µb(x) = 0.4, µb(y) = 0.8, µb(z) = 0.4,
µb(w) = 0.2, µb({x, y}) = −0.4, µb({y, z}) = −0.4.

(14)

To check the validity of Theorems 1 and 3 let us then compute the series (b̃[plb])n

and b̃[(plb)n]. By applying Dempster’s rule to the b.pl.a. (14) (pl2b = plb ⊕ plb)
we get a new b.pl.a. µ2

b with (see Figure 1)

µ2
b(x) = 4/7, µ2

b(y) = 8/7, µ2
b(z) = 4/7,

µ2
b(w) = −1/7, µ2

b({x, y}) = −4/7, µ2
b({y, z}) = −4/7.

To compute the corresponding relative belief b̃[pl2b ] we first need to get the
plausibility values

pl2b({x, y, z}) = µ2
b(x) + µ2

b(y) + µ2
b(z) + µ2

b({x, y}) + µ2
b({y, z}) = 8/7,

pl2b({x, y, w}) = pl2b({x, z, w}) = pl2b ({y, z, w}) = 1



{y,z}

{x,y}

{w}

{z}

{y}

{x}

{x} {y} {z} {w} {x,y}{y,z}

{x}

{x}

{x}

{y}

{y}

{y} {y}

{y}

{y} {y}

{z}

{z}

{z}

{w}

{x,y}

{y,z}

Fig. 1. Intersection of focal elements in Dempster’s combination of the b.pl.a. (14)
with itself. Non-zero mass events for each addendum µ1 = µ2 = µb correspond to
rows/columns of the table, each entry of the table hosting the related intersection.

which imply by Definition plb(A) .= 1− b(Ac)

b2(w) = −1/7, b2(z) = 0, b2(y) = 0, b2(x) = 0

i.e. b̃[pl2b ] = [0, 0, 0, 1]′.
Theorem 1 is confirmed as by (13) (being {w} the only singleton with non-zero
mass) b̃ = [0, 0, 0, 1]′ so that b̃⊕ b̃ = [0, 0, 0, 1]′ and b̃[.] commutes with plb⊕.
By combining pl2b with plb one more time we get the b.pl.a.

µ3
b(x) = µ3

b(z) = 16/31, µ3
b(y) = 32/31,

µ3
b(w) = −1/31, µ3

b({x, y}) = µ3
b({y, z}) = −16/31

which corresponds to

pl3b({x, y, z}) = 32/31, pl3b({x, y, w}) = 1,
pl3b({x, z, w}) = 1, pl3b({y, z, w}) = 1

i.e.
b3(w) = −1/31, b3(z) = 0, b3(y) = 0, b3(x) = 0

and b̃[pl3b ] = [0, 0, 0, 1]′ which again is equal to b̃⊕ b̃⊕ b̃ as Theorem 1 guarantees.
Clearly the series of the basic plausibilities (µb)n converges to

µn
b (x) → 1/2+, µ3

b(y) → 1+, µ3
b(z) → 1/2+,

µ3
b(w) → 0−, µ3

b({x, y}) → −1/2−, µ3
b({y, z}) → −1/2−

associated with the following plausibility values

limn→∞ plnb ({x, y, z}) = 1+, plnb ({x, y, w}) = 1,
plnb ({x, z, w}) = 1, plnb ({y, z, w}) = 1 ∀n ≥ 1



which correspond to limn→∞ bn(w) = 0−, bn(z) = bn(y) = bn(x) = 0 ∀n ≥ 1, so
that

limn→∞ b̃[pl∞b ](w) = limn→∞
bn(w)
bn(w) = 1

limn→∞ b̃[pl∞b ](x) = limn→∞ b̃[pl∞b ](y) =
limn→∞ b̃[pl∞b ](z) = limn→∞ 0

bn(w) = limn→∞ 0 = 0

in agreement with Theorem 3.

5.6 Combination of plausibilities versus combination of beliefs

It is crucial to notice that Theorem 1 (and by consequence Theorem 3) are about
combination of plausibility functions (as pseudo b.f.s) and not combinations of
belief functions. Hence, it is not true in general that b̃∞ = (b̃)∞ or for that
matters that commutativity holds. If we go back to the above example, it is
straightforward to see that the combination b⊕ b of b with itself has b.p.a.

mb⊕b({x, y}) =
mb({x, y})mb({x, y})

k(b, b)
=

0.16
0.68

= 0.235,

mb⊕b({y, z}) =
mb({y, z})mb({y, z})

k(b, b)
=

0.16
0.68

= 0.235,

mb⊕b(w) =
mb(w)mb(w)

k(b, b)
=

0.04
0.68

= 0.058, mb⊕b(y)

=
mb({x, y})mb({y, z}) + mb({y, z})mb({x, y})

k(b, b)
=

0.32
0.68

= 0.47

which obviously yields

b̃⊕ b =
[
0,

0.47
0.528

, 0,
0.058
0.528

]′
6= b̃⊕ b̃ = [0, 0, 0, 1]′.

The basic reason for this is that the plausibility function of a sum of two belief
functions is not the sum of the associated plausibilities:

[plb1 ⊕ plb2 ] 6= plb1⊕b2 .

6 Representation theorem for relative beliefs

A dual of the representation theorem (Proposition 3) for relative beliefs can also
be proven, once we recall a result on Dempster’s sum of affine combinations [19].

Proposition 5. The orthogonal sum b ⊕ ∑
i αibi,

∑
i αi = 1 of a b.f. b with

any2 affine combination of b.f.s can be written as b ⊕∑
i αibi =

∑
i γi(b ⊕ bi),

where

γi =
αik(b, bi)∑
j αjk(b, bj)

(15)

and k(b, bi) is the normalization factor of the combination between b and bi.
2 In fact the collection {bi} is required to include at least a b.f. which is combinable

with b, [19].



Theorem 5. The relative belief of singletons b̃ represents perfectly the corre-
sponding plausibility function plb when combined with any probability through
(extended) Dempster’s rule:

b̃⊕ p = plb ⊕ p

for each Bayesian belief function p ∈ P.

Theorem 5 can be obtained by replacing b with plb, and p̃lb by b̃ in Proposition
3. It is natural to suppose other properties of upper probabilities could in the
future be found by analogous transformations of known propositions on lower
probabilities, as a useful mathematical characterization of the relation between
them.

7 Conclusions: Two families of Bayesian approximations

In this paper we studied the properties of the relative belief of singletons as
a novel Bayesian approximation of a belief function, and discussed its inter-
pretations and applicability. We proved that relative belief and plausibility of
singletons form a distinct family of Bayesian approximations related to Demp-
ster’s rule, as they both commute with ⊕, and meet dual representation and
idempotence properties. On one side, this suggests a new mathematical form of
the duality which exists between upper and lower probabilities that can be used
to prove new results. On the other side, once we recall that [10]

Proposition 6. Both pignistic function BetP [b] and orthogonal projection π[b]
commute with respect to affine combination:

π
[∑

i

αibi

]
=

∑

i

αiπ[bi], BetP
[∑

i

αibi

]
=

∑

i

αiBetP [bi],
∑

i

αi = 1.

the present results bring about a subdivision of all Bayesian approximations
in two families, related to Dempster’s sum and affine combination respectively.

Appendix

Proof of Theorem 1

The basic plausibility assignment of pl1 ⊕ pl2 is, according to (5),

µpl1⊕pl2(A) =
1

k(pl1, pl2)

∑

X∩Y =A

µ1(X)µ2(Y )

so that the corresponding relative belief of singletons b̃[pl1 ⊕ pl2](x) (11) is pro-
portional to

mpl1⊕pl2(x) =
∑

A⊇{x}
µpl1⊕pl2(A) =

∑
A⊇{x}

∑
X∩Y =A µ1(X)µ2(Y )

k(pl1, pl2)

=

∑
X∩Y⊇{x} µ1(X)µ2(Y )

k(pl1, pl2)

(16)



where mpl1⊕pl2(x) denotes the b.p.a. of the (pseudo) b.f. corresponding to the
pl.f. pl1 ⊕ pl2. As

∑
X⊇{x} µb(X) = mb(x) by Lemma 1,

b̃[pl1](x) ∝ m1(x) =
∑

X⊇{x}
µ1(X), b̃[pl2](x) ∝ m2(x) =

∑

X⊇{x}
µ2(X)

so that their Dempster’s combination is

(b̃[pl1]⊕ b̃[pl2])(x) ∝
( ∑

X⊇{x}
µ1(X)

)( ∑

Y⊇{x}
µ2(Y )

)
=

∑

X∩Y⊇{x}
µ1(X)µ2(Y )

and by normalizing we get (16).

Proof of Theorem 3

Taking the limit on both sides of Equation (12) we get

b̃[pl∞b ] = (b̃[plb])∞. (17)

Let us now focus on the quantity on the right hand side: (b̃[plb])∞ = limn→∞(b̃[plb])n.
Since (b̃[plb])n(x) = K(b(x))n (where K is a constant independent on x) and x
is the unique most believed state, it follows that

(b̃[plb])∞(x) = 1, (b̃[plb])∞(y) = 0 ∀y 6= x. (18)

Hence by (17) b̃[pl∞b ](x) = 1, and b̃[pl∞b ](y) = 0 ∀y 6= x.

Proof of Theorem 5

Once expressed a plausibility function in terms of its basic plausibility assign-
ment (10) we can apply the commutativity property (Proposition 5), obtaining

plb ⊕ p =
∑

A⊆Θ

ν(A)p⊕ bA (19)

where

ν(A) =
µb(A)k(p, bA)∑

B⊆Θ µb(B)k(p, bB)
, p⊕ bA =

∑
x∈A p(x)bx

k(p, bA)

with k(p, bA) =
∑

x∈A p(x). Once replaced these expressions in (19) we get

plb ⊕ p =

∑

A⊆Θ

µb(A)
( ∑

x∈A

p(x)bx

)

∑

B⊆Θ

µb(B)
( ∑

y∈B

p(y)
) =

∑

x∈Θ

p(x)
( ∑

A⊇{x}
µb(A)

)
bx

∑

y∈Θ

p(y)
( ∑

B⊇{y}
µb(B)

) =

∑

x∈Θ

p(x)mb(x)bx

∑

y∈Θ

p(y)mb(y)

again by Lemma 1. But this is exactly b̃⊕p, as a direct application of Dempster’s
rule (5) shows.
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