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Abstract. In this paper we describeScusi?, the speech interpretation component
of a spoken dialogue module designed for an autonomous robotic agent.Scusi?
postulates and maintains multiple interpretations of the spoken discourse, and
employs a probabilistic formalism to assess and rank hypotheses regarding the
meaning of spoken utterances. These constituents in combination enableScusi?
to cope gracefully with ambiguity and speech recognition errors. The results of
our evaluation are encouraging, yielding good interpretation performance for ut-
terances of different types and lengths.

1 Introduction

The DORISproject aims to develop a spoken dialogue module for an autonomous
robotic agent, which supports the generation of responses that require physical as well
as dialogue actions. In this paper, we describeScusi?, DORIS’s language interpreta-
tion component, focusing on the techniques used to postulate and assess hypotheses
regarding the meaning of a spoken utterance.

Minimally, a language interpretation component must be able to postulate promising
interpretations, and decide whether there is a clear winneror several likely candidates
to be passed to the dialogue system. These capabilities provide the basis for additional
desiderata, viz recovering from erroneous interpretations, and adjusting interpretations
dynamically as new information becomes available. The dialogue system in turn must
determine an appropriate action. For example, consider therequest “get me the blue
mug”. If there is an aqua mug, an indigo mug and a light blue mugin view, the robot
could do one of the following: (1) pick the ‘bluest’ mug amongthese candidates, (2) se-
lect one of these mugs at random, (3) ask a clarification question, or (4) look for a mug
that better fits the request. The chosen action depends on thecertainty associated with
the options returned by the language interpretation module, and the decision procedures
applied by the dialogue system.

In order to support the above capabilities, a discourse interpretation system should
(1) maintain multiple interpretations, and (2) apply a ranking process to assess the rela-
tive merit of each interpretation.Scusi?does this, employing a probabilistic mechanism
for the ranking component. Its interpretation process comprises three stages: speech
recognition, parsing and semantic interpretation. Each stage produces multiple candi-
date options, which are ranked according to their probability of matching the speaker’s
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Fig. 1. Scusi?’s spoken language interpretation process

intention (Section 3). This probabilistic framework, together with the maintenance of
multiple interpretations at each stage of the process, enable Scusi?to cope with ambi-
guity and speech recognition errors (Section 5). In addition, these constituents support
the re-ranking of interpretations as new information becomes available, and hence the
recovery from erroneous interpretations; and they enableScusi?to abstract features of
the interpretations which support the generation of appropriate dialogue or physical
actions. Examples of these features are: number of highly ranked interpretations, the
difference in their probability, and the similarity between them.

This paper is organized as follows. Section 2 outlines the interpretation process.
The estimation of the probability of an interpretation is presented in Section 3, and
the semantic interpretation procedure is described in Section 4. Section 5 details our
evaluation. Related research and concluding remarks are given in Sections 6 and 7 re-
spectively.

2 Multi-stage Processing

Scusi?processes spoken input in three stages: speech recognition, parsing and semantic
interpretation (Figure 1(a)). Our approach generally resembles that described in [2], but
there are significant differences. Milleret al. considered textual (rather than spoken)
input, and used semantic grammars tailored to a slot-fillingapplication. In contrast, our
grammars are syntactic, and we incorporate domain-relatedinformation only in the final
stage of the interpretation process, which yields Conceptual Graphs – a more general
structure than frames.

In the first stage of our interpretation process,Scusi?runs Automatic Speech Recog-
nition (ASR) software (Microsoft Speech SDK 5.1) to generate candidate texts from a
speech signal. Each text is assigned a score that reflects theprobability of the words



given the speech wave. The second stage applies Charniak’s probabilistic parser (ftp:
//ftp.cs.brown.edu/pub/nlparser/) to generate parse trees from the texts. The
parser generates up toN (= 50) parse trees for each text, associating each parse tree
with a probability. During semantic interpretation, parsetrees are successively mapped
into two representations based on Conceptual Graphs [3]: first Uninstantiated Concept
Graphs (UCGs), and thenInstantiated Concept Graphs (ICGs). UCGs are obtained
from parse trees deterministically – one parse tree generates one UCG (but a UCG can
have more than one parent parse tree).

A UCG represents syntactic information, where the conceptscorrespond to the
words in the parent parse tree, and the relations between theconcepts are directly de-
rived from syntactic information in the parse tree and prepositions. Each UCG can gen-
erate many ICGs. This is done by nominating different instantiated concepts (relations)
from DORIS’s knowledge base as potential realizations for each concept (relation) in
a UCG (Section 4). Instantiated concepts are objects or actions in the domain, and in-
stantiated relations are similar to semantic role labels [4]. Figure 1(b) illustrates the
generation of one ICG for the request “leave the blue mug on the table”. The noun
“mug” in the parse tree is mapped to the conceptmug in the UCG, which in turn is
mapped to the instantiated conceptmug03 in the ICG. The preposition ‘on’ in the parse
tree is mapped to the relationon in the UCG, and then to the relationDestinationin
the ICG. Noun modifiers, such as colour and size, are treated as features to be matched
to those of instantiated objects in the knowledge base. For instance, the colourBLUE is
represented as a set of colour coordinates, which are then matched against the colour
coordinates of stored objects [5].

The consideration of all possible options at each stage of the interpretation process
is computationally intractable.Scusi?uses two computational devices to generate inter-
pretations in real time: (1) ananytimealgorithm [6], and (2) a processing threshold.

Theanytime algorithm ensures that the system can return a list of ranked interpre-
tations at any point after completing an expansion. In each stage of the interpretation
process, the algorithm applies a selection-expansion cycle to add an element to a search
graph (Figure 1(a)) as follows. First, it selects an option for consideration (speech wave,
textual ASR output, parse tree or UCG), and expands this option to the next level of in-
terpretation. When an option is expanded, a single candidate is returned for this next
level, but additional options reside in a buffer, which is created the first time the option
is expanded. For example, when we expand a particular text, the parser returns the next
most probable parse tree (but the first time this text is expanded, a buffer with at most
N parse trees is created). Similarly, when we expand a UCG, theICG-generation mod-
ule returns the next most probable ICG, but as indicated in Section 4, the first time the
UCG is expanded, a buffer of at mostkmax ICGs is created. Buffers are used, rather
than piecemeal generation of alternatives, due to two reasons: (1) the ASR and parser
return all the options at once; and (2) owing to the complex interactions between the
components of ICGs, ICGs are not generated in descending order of probability (i.e., the
best ICGs are often generated later on). By maintaining an ICG buffer for each UCG,
higher-probability ICGs that are generated later can be slotted into the buffer (and con-
sidered by the selection-expansion process) in the order that reflects their probability.
The selection-expansion process is repeated until one of the following happens: all op-



tions are fully expanded, a time limit is reached, or the system runs out of memory. At
any point after completing an expansion,Scusi?can return a list of ranked interpreta-
tions with their parent sub-interpretations (text, parse tree(s) and UCG(s)).

Thethresholding approach is based on the observation that the probabilitiesof the
texts returned by the ASR drop quite dramatically after the first few texts, as do the
probabilities of the parse trees. We take advantage of this observation to prevent the
consideration of unpromising alternatives as follows. When the probability of the next
child of a parent noden drops below a thresholdThr relative to the probability of the
most probable child ofn, no additional children ofn are considered. For example, for
Thr = 50%, if the probability of the next parse tree for textTi is less than half of
the probability of the first (best) parse tree generated forTi, no more parse trees are
considered forTi.

3 Probability of an Interpretation

Scusi?ranks candidate ICGs according to their probability of being the intended mean-
ing of a spoken utterance. The principles of this calculation were set out in [6]. Here we
refine this process, focusing on the calculation of the probability of ICGs.

Given a speech signalW and a contextC, the probability of an ICGI is represented
as follows.

Pr(I|W, C) ∝
∑

Λ

Pr(I|U, C) · Pr(U |P ) · Pr(P |T ) · Pr(T |W ) (1)

where the UCG, the parse tree and the textual interpretations are denoted byU , P andT

respectively. The summation is taken over all possible pathsΛ = {P, U} from the parse
tree to the ICG, because a UCG and an ICG can have more than one parent. The ASR
and the parser return an estimate of Pr(T |W ) and Pr(P |T ) respectively. In addition,
Pr(U |P ) = 1, since the process of generating a UCG from a parse tree is deterministic.
Hence, we still have to estimate Pr(I|U, C).

Consider an ICGI containing conceptscICG∈Ωc and relationsrICG∈Ωr (Ωc andΩr

are the concepts and relations in the domain knowledge respectively). The parent UCG
(denoted byU ) comprises conceptscUCG∈Γc and relationsrUCG∈Γr (Γc andΓr are the
concepts and relations from which UCGs are built). The probability of I givenU and
contextC can be stated as follows.

Pr(I|U, C) =
∏

cICG
∈ Ωc

rICG
∈ Ωr

Pr
(
cICG, rICG|cUCG, rUCG, Ω−

c , Ω−

r , C
)

(2)

=
∏

cICG
∈ Ωc

rICG
∈ Ωr

{
Pr(rICG|cICG, cUCG, rUCG, Ω−

c , Ω−

r , C)×Pr(cICG|cUCG, rUCG, Ω−

c , Ω−

r , C)
}

wherecUCG andrUCG denote the UCG concept and relation corresponding to the ICG
conceptcICG and relationrICG respectively; andΩ−

c andΩ−

r denote the setsΩc andΩr

without the conceptcICG and relationrICG respectively.



It is difficult to estimate Equation 2, as each concept and relation in an ICG depends
on the other ICG concepts and relations. We therefore make the following simplifying
assumptions.

– The probability of an ICG relationrICG depends only on the corresponding UCG
relation, the parent ICG concept ofrICG, and the context.

– The probability of an ICG conceptcICG depends only on the corresponding UCG
concept, the parent ICG relation and grandparent concept ofcICG, and the context
(e.g., the parent relation ofmug03 in Figure 1 isPatient, and its grandparent concept
is put01).

These assumptions are justified by the information in the knowledge base, which
stores the location and ownership of many objects, and by theavailable linguistic in-
formation regarding concepts and relations (e.g., the actionfetch01 has a mandatory
Patientrelation, but an optionalBeneficiary, and any mug is a suitablePatientfor most
actions). Now, say we have the request “get the mug from the table”, and one of the
candidate ICGs has the fragment [mug03→Location→table01] (Locationis the par-
ent oftable01, andmug03 is its grandparent). Ifmug03 is indeed ontable01, the
probability of this ICG increases, otherwise it decreases.In the absence of this informa-
tion, we back off to bigram probabilities (e.g., whethertable01 a possibleLocation).
These assumptions yield

Pr(I|U, C) ≈
∏

cICG
∈ Ωc

rICG
∈ Ωr

{
Pr(rICG|rUCG, cICG

p , C)×Pr(cICG|cUCG, rICG
p , cICG

gp , C)
}

(3)

where the parent concept of relationrICG ∈ Ωr is cICG
p ∈ Ωc, and the grandparent concept

and parent relation of conceptcICG ∈ Ωc arecICG
gp ∈ Ωc andrICG

p ∈ Ωr respectively.
After applying Bayes rule, and making additional simplifying assumptions about

conditional dependencies, we obtain

Pr(I|U, C) ≈
∏

cICG
∈ Ωc

rICG
∈ Ωr







Pr(rUCG|rICG) Pr(rICG|cICG
p ) Pr(cICG

p |C)×
Pr(cUCG|cICG)
︸ ︷︷ ︸

segment 1

Pr(cICG|rICG
p , cICG

gp)
︸ ︷︷ ︸

segment 2

︸ ︷︷ ︸

segment 3







(4)

The first segment in Equation 4 represents the probability that a user who intended
rICG andcICG saidrUCG andcUCG respectively; the second segment represents the prob-
abilities of relations and concepts in the ICG in light of their parent and grandparent
elements; and the third segment represents the prior probabilities of the concepts in the
ICG (judicious conditionalization obviates the need to calculate the prior probabilities
of relations in the ICG). Ideally, all these probabilities should be estimated from data,
but this would require the development of a large database ofUCGs and ICGs corre-
sponding to different speech signals. Such a database is currently not available. Hence,
Scusi?employs a heuristic approach to estimate the necessary probabilities, as follows.

– The probabilities in the first segment of Equation 4 are estimated on the basis of
the goodness of the match between candidate instantiated concepts (relations) in the



ICG and concepts (relations) mentioned in the UCG. For relations, this probability
depends on the lexical match between a stated relation and aninstantiated relation.
For concepts we also take into account the left modifiers of the head noun — at
present we consider colour and size. For example, if the usersaid “blue mug”, then
a light blue cup will yield a lower probability than a royal blue mug [5].

– The probabilities in the second segment are estimated basedon how well children
nodes match the expectations of their parent (and grandparent) nodes in the ICG.
For example, the probability of the ICG bigram [go02 → Destination] depends on
whetherDestinationis a compulsory complement ofgo02 (high probability) or op-
tional (lower probability); the probability of the trigram[cup05 → Owned-by→
Susan01] is 1 if Susan01 owns cup05, and 0.5 if ownership is unknown. At
present, grandparent concepts are considered only for location and ownership of ob-
jects, which may be determined from the system’s knowledge base. In other cases
or if the information is unknown, we back-off to the parent relation of a concept,
e.g., the probability ofkitchen being aLocation.

– The prior probability of an instantiated concept depends onthe context, which at
present includes only domain knowledge, i.e., all instantiated concepts have the
same prior. In the future, we propose to estimate these priorprobabilities by com-
bining salience scores obtained from dialogue history [7] with visual salience [8].

4 Generating ICGs

The process of generating ICGs from a UCG and estimating their probability is car-
ried out by Algorithm 1, which refines the procedure presented in [6]. This algorithm
generates a buffer containing up tokmax (= 400) ICGs ranked in descending order
of probability the first time a UCG is expanded (the size of thebuffer was empiri-
cally determined). Every time a new ICG is requested for thatUCG, the next ranked
ICG is returned. The algorithm has two main stages:concept and relation postulation
(Steps 2–10), andICG construction(Steps 11–16).

4.1 Postulating concepts and relations

In this stage, the algorithm proposes instantiated concepts (relations) from the knowl-
edge base for each UCG concept (relation), and sorts each candidate list of instantiated
concepts (relations) in descending order of probability.

In Step 5, for each conceptcUCG in the UCG, the algorithm estimates the probability
that each instantiated concept in the knowledge base matchescUCG. The same is done for
relations. The probability of this match, which corresponds to the first segment in Equa-
tion 4, is estimated by means of comparison functions [5]. The probability of a match
between an instantiated relation and a UCG relation dependsonly on the goodness of
the lexical match between these relations. In contrast, theprobability of a concept match
also depends on the match between intrinsic features mentioned in the UCG, such as
colour and size, and the actual values of these features for acandidate instantiated con-
cept. For instance, given the UCG conceptcup, the instantiated conceptsmug01, ...,

mug05 andcup01, ..., cup04 have a good lexical match with the UCG concept. If



Algorithm 1 Generate candidate ICGs for a UCG
Require: UCGU comprising conceptscUCG and relationsrUCG, contextC
1: Initialize bufferIU of sizekmax(=400)
{ Postulate concepts and relations for UCG}

2: for all conceptscUCG (relationsrUCG) in U do
3: Initialize a list of candidate concepts

Lcu ← ∅ (list of relationsLru ← ∅)
4: for all instantiated conceptscI (instantiated relationsrI) do
5: ComparecUCG with c

I (rUCG with r
I), yielding a probability for the match (segment 1 in

Equation 4)
6: Calculate the prior probability ofcI according to the contextC (segment 3 in Equa-

tion 4)
7: Multiply the probabilities obtained in Steps 5 and 6
8: InsertcI in the listLcu (rI into Lru ) in descending order of probability
9: end for

10: end for
{ Construct ICGs }

11: for j = 1 to kmax do
12: Generate the “next best” ICGIj by going down each listLcu

andLru
in turn

13: Perform internal consistency checks to calculate the probabilities of the concepts and re-
lations in ICGIj (segment 2 in Equation 4)

14: Estimate Pr(Ij |U, C) by multiplying the probabilities obtained in Step 7 with theproba-
bilities obtained in Step 13

15: InsertIj into bufferIU in descending order of probability
16: end for

the UCG concept had beenblue cup, then the colour coordinates of the mugs and cups
in the knowledge base would be matched against the coordinates for the term ‘blue’.

Upon completion of Step 5, we prune ICG candidates that do nothave a good match
with the concept (relation) in the UCG. For example, the UCG conceptchaircould refer
to an armchair, a stool, a pouf, etc. Hence, all the armchairs, stools, poufs, etc in the
knowledge base are retained for further processing, while lamps, tables, cups, etc are
discarded. Similarly, red cups are discarded if a blue mug isrequested, and there are
blue mugs in the knowledge base.

The prior probability of the retained candidate concepts (third segment in Equa-
tion 4) is estimated inStep 6. In Step 7, this probability is multiplied by the probability
calculated in Step 5.

This stage of the algorithm yields a list of candidate instantiated conceptsLcu for
each UCG conceptcUCG, and a list of candidate instantiated relationsLru for each UCG
relationrUCG. These lists are sorted in descending order of probability.For example,
Table 1 shows the sorted lists of concepts and relations postulated for the request in
Figure 1 “leave the blue mug on the table”: there are four objects that are a good match
for the conceptblue mug, three candidate tables, three candidate actions forleave(leave
the room (leave01), put in a specific place (put01), and put down (put02)), two
relations foron, and one forobject.



Table 1.Concepts and relations used to build ICGs for the utterance “leave the blue mug on the
table”

leave blue mug table on object
leave01 mug02 table01 Destination Patient
put01 cup01 table02 Location
put02 mug03 table03

cup02

4.2 Constructing ICGs

In this stage, the algorithm uses the list of instantiated concepts (relations) built for
each concept (relation) in a UCG to construct candidate ICGsfor this UCG, and sorts
these ICGs in descending order of probability. First,Step 12applies an enumerative
process to generate different combinations of concepts andrelations from the listLcu

(Lru
) maintained for each UCG concept (relation). This is done byiteratively selecting

one candidate concept (relation) from each list. For instance, the concepts and rela-
tions in Table 1 are combined as follows to build candidate ICGs. First, the top line
{leave01,mug02,. . .}, which has the highest probability, is used. The next four com-
binations are generated by replacing one element from this line at a time, i.e.,leave01
is replaced withput01, yielding {put01,mug02,. . .}; thenmug02 is replaced with
cup01, yielding{leave01,cup01,. . .}; and so on.

The probabilities of the concepts and relations in each ICG (second segment in
Equation 4) are then estimated inStep 13. These probabilities reflect the extent to
which the relationships between neighbouring nodes in an ICG match the known real-
ity. As mentioned in Section 3, for relations this calculation is done based on the type of
relations admitted by each concept (e.g., compulsory, optional or absent), and for con-
cepts the calculation reflects the current state of the world. For example, if we request
“the mug on the table” and according to the knowledge base,mug03 is ontable02,
the probability of an ICG that contains [mug03→Location→ table02] is increased,
whereas ifcup01 is not on a table, the probability of an ICG containingcup01 is
decreased. InStep 14, this ‘structural’ probability is combined with the probability cal-
culated in Step 7 (candidate postulation stage) to obtain the final probability of an ICG
produced for a given UCG. This ICG is inserted in the buffer for that UCG in descend-
ing order of the ICG’s probability.

5 Evaluation

Our evaluation test set comprised100 utterances:43 declarative (e.g., “the book is on
the desk”, “in the kitchen”, “the red mug”) and57 imperative (e.g., “open the door”).1

These utterances were based on interactions between users and a “robot” (enacted by
one of the authors) in a virtual home scenario; they were recorded by one of the authors,

1 We acknowledge the modest size of this test set compared to that of some publicly available
corpora, e.g., ATIS and GeoQuery. However, we must generateour own test set since our task
differs significantly from the slot-filling tasks where these large corpora are used. This is due
to the domain itself and the open-ended nature of the utterances.



Table 2.Scusi?’s interpretation performance

# Gold ICGs with prob in Average Not Avg # of ICGs to Gold
top 1 top 3 adj rank (rank) found ICG (avg # of iters)

BASELINE 53 53 0 (0) 47 0 (4)
No Thrsh 69 82 3.85 (1.15) 7 9 (38)
10% 67 81 2.63 (0.91) 8 8 (37)
20% 70 83 2.47 (0.87) 7 8 (39)
50% 70 84 2.37 (0.81) 7 8 (37)
80% 70 85 2.31 (0.80) 7 8 (37)
90% 70 85 2.31 (0.78) 7 8 (37)
Total 100 100

as the ASR software is speaker dependent, and at present we donot handle features of
spontaneous speech. The utterances (which werenotused during system development)
were chosen to testScusi?’s ability to identify target objects (the intended book, mug,
table, etc), and its ability to handle phenomena such as synonyms (e.g., “wash” and
“clean”) and homonyms (e.g., “leavethe mug on the table” versus “leavethe room”).
The average utterance length was8.5 words, with a maximum length of12 words.

Scusi?was set to generate at most300 sub-interpretations in total (including texts,
parse trees, UCGs and ICGs) for each utterance in the test set. An interpretation was
deemed successful if it correctly represented the speaker’s intention within the limi-
tations ofScusi?’s knowledge base, which comprises135 items (24 relations and111
concepts). This intention was represented by one or moreGold ICGs that were manu-
ally constructed by one of the authors. Multiple Gold ICGs were allowed if there were
several objects in the knowledge base that matched a requested object, e.g., “get a mug”.

Ideally, we would like to evaluate separately the impact of our probabilistic frame-
work and that of maintaining multiple interpretations. However, the design of an alter-
native, baseline hypothesis-ranking framework is outsidethe scope of this project. We
therefore designed our experiments to measure (1)Scusi?’s overall interpretation per-
formance, (2) the impact of maintaining multiple interpretations on performance, and
(3) the impact of different thresholds (Section 2). Thus, tests were conducted under the
following settings.

– BASELINE – a beam search was executed, where only the best ASR result was
parsed, and only the best parse tree yielded a UCG. We then selected the top ICG
among those in the buffer for the UCG (Section 4). Note that the selection of the
top-ranked item for each of these stages is still done on the basis of its probability.
Hence, our baseline enables us to isolate only the impact of maintaining multiple
interpretations.

– Threshold – No Threshold, and thresholds of 10%, 20%, 50%, 80% and 90%, e.g., a
10% threshold discards textsT such that Pr(T ) < 0.1×Pr(highest-probability text) .

Table 2 summarizes our results, which were obtained with an ASR that had a 20%
error rate (the correct text was top ranked by the ASR in 80% ofthe cases). Column 1
displays the test condition (baseline and threshold value). Columns 2-3 show how many
utterances had Gold ICGs whose probability was among the top1 or top 3, e.g., the 20%



threshold yielded 70 Gold ICGs with the highest probability(top 1), and 83 within the
top 3 probabilities. The averageadjusted rankand rank of the Gold ICG appear in
Column 4. The rank of an ICGI is its position in a list sorted in descending order
of probability (starting from position 0), such that all equiprobable ICGs are deemed
to have the same position (recall that the baseline returns asingle ICG, whose rank is
therefore0). The adjusted rank of an ICGI is the mean of the positions of all ICGs
that have the same probability asI. For example, if we have 3 top-ranked equiprobable
ICGs, each has a rank of 0, but an adjusted rank of0+2

3
. Column 5 shows how many

utterances didn’t yield a Gold ICG, and Column 6 indicates the average number of
ICGs created and iterations done until the Gold ICG was found(from a total of 300
iterations).

As seen in Table 2, the baseline yielded significantly fewer top-ranked Gold ICGs
than our anytime algorithm (p < 0.05).2 The 20% ASR error was substantially exacer-
bated by the baseline approach, which failed to return Gold ICG(s) in 27 of the 80 cases
where it was presented with the correct text. In contrast,Scusi?performed significantly
better, failing to produce top-ranked Gold ICG(s) in only 10of those cases. Further, for
the top-3 ranking,Scusi?overcame the ASR error (i.e., its error rate is less than 20%).3

These results confirm the need to maintain multiple interpretations in combination with
a probabilistic hypothesis assessment.

Interestingly, the threshold did not affect the number of top-ranked Gold ICGs and
not found ICGs, and the number of iterations to Gold. However, the average rank of the
Gold ICGs decreases (improves) as the threshold increases,which is consistent with
the slight improvement in the number of top-3 ICGs. We also performed additional
experiments that examined the effect of using a different threshold for each level of
interpretation. However, the new scheme did not yield any improvement over a single
system-wide threshold.

6 Related Research

This research builds on the work described in [6]. Here we refine the process for consid-
ering multiple alternatives during the generation of interpretations, and its combination
with the probabilistic hypothesis assessment formalism. In particular, we focus on the
calculation of the probabilities of ICGs.

Many researchers have investigated numerical approaches to the interpretation of
spoken utterances in dialogue systems, e.g., [9–12]. Pfleger et al. [9] and Hüwel and
Wrede [10] employ modality fusion to combine hypotheses from different analyzers
(linguistic, visual and gesture), and apply a scoring mechanism to rank the resultant
hypotheses. In contrast, He and Young [11] and Gorniak and Roy [12] apply a proba-
bilistic approach to spoken language interpretation, using Hidden Markov Models for
the ASR stage. Additionally, as mentioned above,Scusi?’s probabilistic formalism re-
sembles in style that employed by Milleret al. for discourse interpretation in a text-

2 Sample paired t-tests were used for all statistical tests.
3 Clearly, it is not fair to compareScusi?’s top-3 rank with the baseline’s top-1 rank. However,

the top-3 rank supports the generation of clarification questions for ICGs with similar proba-
bilities — an option that is not available if only the top-ranked interpretation is returned.



based system [2]. However, all these systems employ semantic grammars, whileScusi?
employs a three-stage interpretation process, which uses generic, syntactic tools, and
incorporates semantic- and domain-related information only in the final stage of the in-
terpretation process. Knightet al. [13] compare the performance of a dialogue system
based on a semantic grammar to that of a system based on a statistical language model
and a robust phrase-spotting grammar. The latter performs better for relatively uncon-
strained utterances by users unfamiliar with the system. The probabilistic approach and
intended users of our system are in line with this finding.

From the view point of application domain, robot-mounted dialogue systems were
also studied in [14, 15, 10]. Matsuiet al.[14], like Gorniak and Roy [12], use contextual
information to constrain the alternatives returned by the ASR early in the interpretation
process. This allows their system to process expected utterances efficiently, but makes it
difficult to interpret unexpected utterances. In contrast,Scusi?incorporates contextual
information in the final stage of the interpretation process. UnlikeScusi?’s probabilistic
reasoning formalism, Boset al. [15] use a logic-based language interpretation frame-
work to understand instructions and descriptions, and employ formal proofs for conflict
resolution. Consequently, alternatives are not considered when an utterance is ambigu-
ous or the preferred option proves undesirable. This is alsothe case for Hüwel and
Wrede’s [10] system, which considers only a single alternative as a result of each stage
of the interpretation process.

7 Conclusion and Future Work

We have describedScusi?, a spoken language interpretation system that maintains mul-
tiple options at each stage of the interpretation process, and ranks interpretations based
on estimates of their posterior probability. In particular, we presented the algorithm
used byScusi?to postulate hypotheses regarding the meaning of a spoken utterance,
and detailed the estimation of the probabilities of these hypotheses.

Our empirical evaluation shows thatScusi?performs well for declarative and im-
perative utterances of varying length, with the Gold ICG(s)receiving one of the top
three probabilities for most test utterances. Our results also show that using a threshold
has a small impact onScusi?’s performance (by slightly improving the number of ICGs
ranked top-3, and hence the average rank of the Gold ICGs). Inthe near future, we will
further investigate the impact of thresholds on performance speed and accuracy. An ad-
ditional avenue of investigation pertains to the consideration of different weightings for
combining the scores obtained from the three interpretation stages.
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