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Abstract. In this paper we describfgcusi? the speech interpretation component
of a spoken dialogue module designed for an autonomousicahgéent.Scusi?
postulates and maintains multiple interpretations of gheken discourse, and
employs a probabilistic formalism to assess and rank hgseth regarding the
meaning of spoken utterances. These constituents in caitidinenableScusi?

to cope gracefully with ambiguity and speech recognitiawms: The results of
our evaluation are encouraging, yielding good interpi@taberformance for ut-
terances of different types and lengths.

1 Introduction

The DORIS project aims to develop a spoken dialogue module for an autonis
robotic agent, which supports the generation of respoimsgsequire physical as well
as dialogue actions. In this paper, we desc@oeisi? DORISs language interpreta-
tion component, focusing on the techniques used to postalad assess hypotheses
regarding the meaning of a spoken utterance.

Minimally, a language interpretation component must be &dbpostulate promising
interpretations, and decide whether there is a clear wionseveral likely candidates
to be passed to the dialogue system. These capabilitieglprthe basis for additional
desiderata, viz recovering from erroneous interpretatiand adjusting interpretations
dynamically as new information becomes available. Theodia¢ system in turn must
determine an appropriate action. For example, consideretjeest “get me the blue
mug”. If there is an agqua mug, an indigo mug and a light blue imugew, the robot
could do one of the following: (1) pick the ‘bluest’ mug amahgse candidates, (2) se-
lect one of these mugs at random, (3) ask a clarification gquesir (4) look for a mug
that better fits the request. The chosen action depends aettanty associated with
the options returned by the language interpretation modnléthe decision procedures
applied by the dialogue system.

In order to support the above capabilities, a discoursepnggation system should
(1) maintain multiple interpretations, and (2) apply a iagkprocess to assess the rela-
tive merit of each interpretatio@cusioes this, employing a probabilistic mechanism
for the ranking component. Its interpretation process aisep three stages: speech
recognition, parsing and semantic interpretation. Eaabesproduces multiple candi-
date options, which are ranked according to their prolgmfimatching the speaker’s
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Fig. 1. Scusi® spoken language interpretation process

intention (Section 3). This probabilistic framework, ttiyer with the maintenance of
multiple interpretations at each stage of the process,lefsausi?to cope with ambi-
guity and speech recognition errors (Section 5). In addlitibese constituents support
the re-ranking of interpretations as new information beesmavailable, and hence the
recovery from erroneous interpretations; and they en@biesi?to abstract features of
the interpretations which support the generation of apeits dialogue or physical
actions. Examples of these features are: number of highnlyediinterpretations, the
difference in their probability, and the similarity betwethem.

This paper is organized as follows. Section 2 outlines therfmetation process.
The estimation of the probability of an interpretation i®gented in Section 3, and
the semantic interpretation procedure is described ini@edt Section 5 details our
evaluation. Related research and concluding remarks @ea @i Sections 6 and 7 re-
spectively.

2 Multi-stage Processing

ScusiProcesses spoken input in three stages: speech recogpdising and semantic
interpretation (Figure 1(a)). Our approach generallymgsles that described in [2], but
there are significant differences. Millet al. considered textual (rather than spoken)
input, and used semantic grammars tailored to a slot-fifljpglication. In contrast, our
grammars are syntactic, and we incorporate domain-reiaf@eiation only in the final
stage of the interpretation process, which yields Con@gduaphs — a more general
structure than frames.

In the first stage of our interpretation proceSsysi?uns Automatic Speech Recog-
nition (ASR) software (Microsoft Speech SDK 5.1) to gener@ndidate texts from a
speech signal. Each text is assigned a score that reflecpgdbability of the words



given the speech wave. The second stage applies Charniakaljlistic parserf(t p:

/1 ftp.cs.brown. edu/ pub/ nl par ser/)to generate parse trees from the texts. The
parser generates up 16 (= 50) parse trees for each text, associating each parse tree
with a probability. During semantic interpretation, pati®s are successively mapped
into two representations based on Conceptual Graphs [&]Uninstantiated Concept
Graphs (UCGs) and thenInstantiated Concept Graphs (ICG4)CGs are obtained
from parse trees deterministically — one parse tree gezseoate UCG (but a UCG can
have more than one parent parse tree).

A UCG represents syntactic information, where the conceptsespond to the
words in the parent parse tree, and the relations betweerotieepts are directly de-
rived from syntactic information in the parse tree and psipmns. Each UCG can gen-
erate many ICGs. This is done by nominating different ins&ded concepts (relations)
from DORISs knowledge base as potential realizations for each cdr{celation) in
a UCG (Section 4). Instantiated concepts are objects avrectn the domain, and in-
stantiated relations are similar to semantic role labelsH#gure 1(b) illustrates the
generation of one ICG for the request “leave the blue mug entable”. The noun
“mug” in the parse tree is mapped to the conaepg in the UCG, which in turn is
mapped to the instantiated concept03 in the ICG. The preposition ‘on’ in the parse
tree is mapped to the relatiam in the UCG, and then to the relatidbestinationin
the ICG. Noun modifiers, such as colour and size, are treatéshtures to be matched
to those of instantiated objects in the knowledge base.riapamce, the coloBLUE is
represented as a set of colour coordinates, which are th&hathagainst the colour
coordinates of stored objects [5].

The consideration of all possible options at each stagesoirtterpretation process
is computationally intractabl&cusi?uses two computational devices to generate inter-
pretations in real time: (1) amnytimealgorithm [6], and (2) a processing threshold.

Theanytime algorithm ensures that the system can return a list of ranked interpre-
tations at any point after completing an expansion. In etagesof the interpretation
process, the algorithm applies a selection-expansior¢gadd an element to a search
graph (Figure 1(a)) as follows. First, it selects an optmrcbnsideration (speech wave,
textual ASR output, parse tree or UCG), and expands thisopdi the next level of in-
terpretation. When an option is expanded, a single caralidateturned for this next
level, but additional options reside in a buffer, which isated the first time the option
is expanded. For example, when we expand a particular texpdrser returns the next
most probable parse tree (but the first time this text is edpdna buffer with at most
N parse trees is created). Similarly, when we expand a UCG(Begeneration mod-
ule returns the next most probable ICG, but as indicated ati@e4, the first time the
UCG is expanded, a buffer of at madst,.. ICGs is created. Buffers are used, rather
than piecemeal generation of alternatives, due to two reagad) the ASR and parser
return all the options at once; and (2) owing to the compléeractions between the
components of ICGs, ICGs are not generated in descendiegafrgrobability (i.e., the
best ICGs are often generated later on). By maintaining & bGffer for each UCG,
higher-probability ICGs that are generated later can hiteslonto the buffer (and con-
sidered by the selection-expansion process) in the orderéfiects their probability.
The selection-expansion process is repeated until oneedbtltowing happens: all op-



tions are fully expanded, a time limit is reached, or theaystuns out of memory. At
any point after completing an expansi@gusi?can return a list of ranked interpreta-
tions with their parent sub-interpretations (text, parse(s) and UCG(s)).

Thethresholding approach is based on the observation that the probabitige
texts returned by the ASR drop quite dramatically after thst few texts, as do the
probabilities of the parse trees. We take advantage of tisgmvation to prevent the
consideration of unpromising alternatives as follows. Wittee probability of the next
child of a parent node drops below a threshol@hr relative to the probability of the
most probable child of,, no additional children of. are considered. For example, for
Thr = 50%, if the probability of the next parse tree for tekt is less than half of
the probability of the first (best) parse tree generatedifpmo more parse trees are
considered fof;.

3 Probability of an Interpretation

Scusi?anks candidate ICGs according to their probability of gehre intended mean-
ing of a spoken utterance. The principles of this calcufatiere set out in [6]. Here we
refine this process, focusing on the calculation of the godibaof ICGs.

Given a speech signéll and a context, the probability of an ICJ is represented
as follows.

Pr(I|W,C) x Z Pr(I|U,C) - Pr(U|P) - PY(P|T) - Pr(T|W) 1)
A

where the UCG, the parse tree and the textual interpretasi@denoted by, P andT’
respectively. The summation is taken over all possibleqétk { P, U} from the parse
tree to the ICG, because a UCG and an ICG can have more tharaoerg.prhe ASR
and the parser return an estimate ofTHiV) and P(P|T") respectively. In addition,
Pr(U|P) = 1, since the process of generating a UCG from a parse treedmdiefstic.
Hence, we still have to estimate(P{U, C).

Consider an IC@ containing concepits®® € (2. and relations'® € (2,. (£2. and{2,.
are the concepts and relations in the domain knowledgectgply). The parent UCG
(denoted bylJ) comprises concepts“® < I'. and relationsV“¢ e I',. (I, and [} are the
concepts and relations from which UCGs are built). The podity of 7 givenU and
contextC can be stated as follows.

PrI|U,C) = ] Pr(e®, ree|ee,r, 2, 2,,C) 2)
¢ e .
TICG c Qr
— H{ |,:)r(,r,ICG|CICG7 CUCG’ ,r,UCG7 QC—’ Q,,_7C) ><F)r(CICG|CUCG7 ,r.UCG’ ‘(2(;_7 QT—’ C) }

A e .
TICG c Qr

wherec““¢ and r'°¢ denote the UCG concept and relation corresponding to the ICG
concepi“® and relation-'°® respectively; and?, and (2, denote the set®. and {2,
without the concept® and relation'® respectively.



It is difficult to estimate Equation 2, as each concept aratic in an ICG depends
on the other ICG concepts and relations. We therefore makétlowing simplifying
assumptions.

— The probability of an ICG relation'*® depends only on the corresponding UCG
relation, the parent ICG conceptdf®, and the context.

— The probability of an ICG concept“® depends only on the corresponding UCG
concept, the parent ICG relation and grandparent concegt°ofand the context
(e.g., the parent relation efig03 in Figure 1 isPatient and its grandparent concept
is put 01).

These assumptions are justified by the information in therkedge base, which
stores the location and ownership of many objects, and bypvthaable linguistic in-
formation regarding concepts and relations (e.g., th@aétt ch01 has a mandatory
Patientrelation, but an optiondeneficiary and any mug is a suitabRatientfor most
actions). Now, say we have the request “get the mug from thietaand one of the
candidate ICGs has the fragmemtifj03 — Location—t abl e01] (Locationis the par-
ent oft abl e01, andnug03 is its grandparent). lfrug03 is indeed ort abl e01, the
probability of this ICG increases, otherwise it decreabethe absence of this informa-
tion, we back off to bigram probabilities (e.g., whethebl e01 a possibld_ocatior).
These assumptions yield

Pr(IU,C) ~ H { Pr(r'ee|rice, 0'15‘37C)><Pr(c'c‘3|c“°‘3, % cg:;C) } (3)

¢ e 2.
¢ e 0,

where the parent concept of relatidff € (2, is ¢ € (2., and the grandparent concept
and parent relation of concegt® € (2. arecg > € 2. andry® € (2, respectively.
After applying Bayes rule, and making additional simplifgiassumptions about

conditional dependencies, we obtain

Pr(rvce|r'c) PT(T'CG|C';G) Pr(c';G|C) X

PIU,C)~ [ { PHEe™) Pl i) 4
¢ e ., segment 1 segment 2 segment 3
r'®¢c 0,

The first segment in Equation 4 represents the probabiliyahuser who intended
7' and ¢°® said ' and ¢"°¢ respectively; the second segment represents the prob-
abilities of relations and concepts in the ICG in light ofith@arent and grandparent
elements; and the third segment represents the prior pititiestof the concepts in the
ICG (judicious conditionalization obviates the need tccokdte the prior probabilities
of relations in the ICG). Ideally, all these probabilitidsild be estimated from data,
but this would require the development of a large databaséGsss and ICGs corre-
sponding to different speech signals. Such a databaserentlyrnot available. Hence,
Scusi?employs a heuristic approach to estimate the necessarglpitibies, as follows.

— The probabilities in the first segment of Equation 4 are ettt on the basis of
the goodness of the match between candidate instantiateeots (relations) in the



ICG and concepts (relations) mentioned in the UCG. Forigiat this probability
depends on the lexical match between a stated relation aimdtamtiated relation.
For concepts we also take into account the left modifiers efridad noun — at
present we consider colour and size. For example, if thesadr'blue mug”, then
a light blue cup will yield a lower probability than a royalld mug [5].

— The probabilities in the second segment are estimated lwasbdw well children
nodes match the expectations of their parent (and grandf)aredes in the ICG.
For example, the probability of the ICG bigragop2 — Destinatiory depends on
whetherDestinationis a compulsory complement gb02 (high probability) or op-
tional (lower probability); the probability of the trigrafeup05 — Owned-by—
Susan01] is 1 if Susan01 ownscup05, and 0.5 if ownership is unknown. At
present, grandparent concepts are considered only faida@nd ownership of ob-
jects, which may be determined from the system’s knowledgpebln other cases
or if the information is unknown, we back-off to the parenat®n of a concept,
e.g., the probability oki t chen being alLocation

— The prior probability of an instantiated concept dependshencontext, which at
present includes only domain knowledge, i.e., all instat concepts have the
same prior. In the future, we propose to estimate these praiyabilities by com-
bining salience scores obtained from dialogue history [iffh wisual salience [8].

4 Generating ICGs

The process of generating ICGs from a UCG and estimating pebability is car-
ried out by Algorithm 1, which refines the procedure presgime6]. This algorithm
generates a buffer containing up £g,... (= 400) ICGs ranked in descending order
of probability the first time a UCG is expanded (the size of biwéfer was empiri-
cally determined). Every time a new ICG is requested for @G, the next ranked
ICG is returned. The algorithm has two main stagesicept and relation postulation
(Steps 2—-10), ankCG construction(Steps 11-16).

4.1 Postulating concepts and relations

In this stage, the algorithm proposes instantiated cosdeelations) from the knowl-
edge base for each UCG concept (relation), and sorts eadided list of instantiated
concepts (relations) in descending order of probability.

In Step 5 for each concept’®® in the UCG, the algorithm estimates the probability
that each instantiated concept in the knowledge base nm&t¢fieThe same is done for
relations. The probability of this match, which correspstaithe first segmentin Equa-
tion 4, is estimated by means of comparison functions [5¢ plobability of a match
between an instantiated relation and a UCG relation depemnigtison the goodness of
the lexical match between these relations. In contrasprblgability of a concept match
also depends on the match between intrinsic features nmextim the UCG, such as
colour and size, and the actual values of these featurescam@idate instantiated con-
cept. For instance, given the UCG conceyp, the instantiated conceptag01, ...,
mug05 andcup0l, ..., cup04 have a good lexical match with the UCG concept. If



Algorithm 1 Generate candidate ICGs for a UCG

Require: UCG U comprising conceptg’® and relations:
1: Initialize bufferZy of sizekmax (=400)
{ Postulate concepts and relations for UCG}
2: for all concepts“® (relationsr’“®) in U do
3: Initialize a list of candidate concepts
Leuw «— ) (list of relationsL,.» « 0)

Uee contextC

4:  for all instantiated concepts (instantiated relations') do
5: Compare:"® with ¢' (r“°® with r'), yielding a probability for the match (segment 1 in
Equation 4)
6: Calculate the prior probability of according to the context (segment 3 in Equa-
tion 4)
7 Multiply the probabilities obtained in Steps 5 and 6
8: Insertc' in the list L. (r' into L,«) in descending order of probability
9:  endfor
10: end for

{ Construct ICGs }

11: for 5 = 1 to kmaxdo

12:  Generate the “next best” ICG by going down each list.., andL.., in turn

13:  Perform internal consistency checks to calculate tbbaiilities of the concepts and re-
lations in ICGI; (segment 2 in Equation 4)

14:  Estimate Ri;|U,C) by multiplying the probabilities obtained in Step 7 with theba-
bilities obtained in Step 13

15:  Insertl; into bufferZy in descending order of probability

16: end for

the UCG concept had bedétue cup then the colour coordinates of the mugs and cups
in the knowledge base would be matched against the cooedifiat the term ‘blue’.

Upon completion of Step 5, we prune ICG candidates that dban a good match
with the concept (relation) in the UCG. For example, the U@Goeptchair could refer
to an armchair, a stool, a pouf, etc. Hence, all the armchstiosls, poufs, etc in the
knowledge base are retained for further processing, waitgk, tables, cups, etc are
discarded. Similarly, red cups are discarded if a blue mugdsiested, and there are
blue mugs in the knowledge base.

The prior probability of the retained candidate concegtgdtsegment in Equa-
tion 4) is estimated istep 6 In Step 7, this probability is multiplied by the probability
calculated in Step 5.

This stage of the algorithm yields a list of candidate insédad conceptd. .. for
each UCG concept“®, and a list of candidate instantiated relatidns for each UCG
relationr¢. These lists are sorted in descending order of probabiiiy.example,
Table 1 shows the sorted lists of concepts and relationsifadst for the request in
Figure 1 “leave the blue mug on the table”: there are fourdbjthat are a good match
for the concepblue mugthree candidate tables, three candidate actiorsde(leave
the room (eave01), put in a specific placep(t 01), and put down gut 02)), two
relations foron, and one foobject



Table 1. Concepts and relations used to build ICGs for the utteralezaé the blue mug on the
table”

leave blue mug table on object
| eave0l1l nug02 tabl e01 Destination Patient
put 01 cup01 tabl e02 Location
put 02 nug03 t abl e03
cup02

4.2 Constructing ICGs

In this stage, the algorithm uses the list of instantiatedcepts (relations) built for
each concept (relation) in a UCG to construct candidate IfoGthis UCG, and sorts
these ICGs in descending order of probability. Fi&tiep 12applies an enumerative
process to generate different combinations of conceptselatons from the list_..,
(L,,) maintained for each UCG concept (relation). This is donédratively selecting
one candidate concept (relation) from each list. For irtathe concepts and rela-
tions in Table 1 are combined as follows to build candidat&sCFirst, the top line
{I eave01, mug02, ...}, which has the highest probability, is used. The next founco
binations are generated by replacing one element fromittést a time, i.e ), eave01l

is replaced withput 01, yielding {put 01, nug02, ...}; thennug02 is replaced with
cup01, yielding{l eave01, cup01, ...}; and so on.

The probabilities of the concepts and relations in each 16&d¢nd segment in
Equation 4) are then estimated 8tep 13 These probabilities reflect the extent to
which the relationships between neighbouring nodes in & iiatch the known real-
ity. As mentioned in Section 3, for relations this calcidatis done based on the type of
relations admitted by each concept (e.g., compulsorypoptior absent), and for con-
cepts the calculation reflects the current state of the wéidd example, if we request
“the mug on the table” and according to the knowledge basg0d3 is ont abl e02,
the probability of an ICG that containsg03— Location— t abl e02] is increased,
whereas ifcup01 is not on a table, the probability of an ICG containiagp01 is
decreased. I8tep 14 this ‘structural’ probability is combined with the probkdy cal-
culated in Step 7 (candidate postulation stage) to obtaifiittal probability of an ICG
produced for a given UCG. This ICG is inserted in the buffertf@at UCG in descend-
ing order of the ICG’s probability.

5 Evaluation

Our evaluation test set compris@d0 utterances43 declarative (e.g., “the book is on
the desk”, “in the kitchen”, “the red mug”) ariif imperative (e.g., “open the door?).

These utterances were based on interactions between uskas“‘eobot” (enacted by
one of the authors) in a virtual home scenario; they wererdszbby one of the authors,

1 We acknowledge the modest size of this test set comparedtaotisome publicly available
corpora, e.g., ATIS and GeoQuery. However, we must genetatewn test set since our task
differs significantly from the slot-filling tasks where tleelsrge corpora are used. This is due
to the domain itself and the open-ended nature of the uttegan



Table 2. Scusi’ interpretation performance

# Gold ICGs with prob in Average Not  Avg# of ICGs to Gold
top 1 top 3 adj rank (rank) found ICG (avg # of iters)

BASELINE 53 53 0(0) a7 0(4)

No Thrsh 69 82 3.85 (1.15) 7 9 (38)

10% 67 81 2.63 (0.91) 8 8 (37)

20% 70 83 2.47 (0.87) 7 8 (39)

50% 70 84 2.37 (0.81) 7 8 (37)

80% 70 85 2.31(0.80) 7 8 (37)

90% 70 85 2.31(0.78) 7 8 (37)

Total 100 100

as the ASR software is speaker dependent, and at present mad Handle features of
spontaneous speech. The utterances (which naresed during system development)
were chosen to teScusi’ ability to identify target objects (the intended book, gnu
table, etc), and its ability to handle phenomena such asngyns (e.g., “wash” and
“clean”) and homonyms (e.g.|¢avethe mug on the table” versuseavethe room”).
The average utterance length v#as words, with a maximum length df2 words.

Scusiwas set to generate at ma8l0 sub-interpretations in total (including texts,
parse trees, UCGs and ICGs) for each utterance in the tegirsétterpretation was
deemed successful if it correctly represented the spesak#gntion within the limi-
tations ofScusi® knowledge base, which compris&35 items @4 relations and 11
concepts). This intention was represented by one or i@otd ICGs that were manu-
ally constructed by one of the authors. Multiple Gold ICGsavallowed if there were
several objects in the knowledge base that matched a reglasect, e.g., “get a mug”.

Ideally, we would like to evaluate separately the impactwfprobabilistic frame-
work and that of maintaining multiple interpretations. Hewer, the design of an alter-
native, baseline hypothesis-ranking framework is outtfigescope of this project. We
therefore designed our experiments to measur&€Lsi’s overall interpretation per-
formance, (2) the impact of maintaining multiple interpait&ins on performance, and
(3) the impact of different thresholds (Section 2). Thustdevere conducted under the
following settings.

— BASELINE — a beam search was executed, where only the best ASR resalt wa
parsed, and only the best parse tree yielded a UCG. We thecteglthe top ICG
among those in the buffer for the UCG (Section 4). Note thatslection of the
top-ranked item for each of these stages is still done ondkes of its probability.
Hence, our baseline enables us to isolate only the impactagitaining multiple
interpretations.

— Threshold — No Threshold, and thresholds of 10%, 20%, 50%, &0d 90%, e.g., a
10% threshold discards textdsuch that RfT") < 0.1xPr(highest-probability text.

Table 2 summarizes our results, which were obtained with @R #at had a 20%
error rate (the correct text was top ranked by the ASR in 80%h@ftases). Column 1
displays the test condition (baseline and threshold va@umns 2-3 show how many
utterances had Gold ICGs whose probability was among the topop 3, e.g., the 20%



threshold yielded 70 Gold ICGs with the highest probablibp 1), and 83 within the
top 3 probabilities. The averagaljusted rankand rank of the Gold ICG appear in
Column 4. The rank of an IC@ is its position in a list sorted in descending order
of probability (starting from position 0), such that all éopobable ICGs are deemed
to have the same position (recall that the baseline retusisgde ICG, whose rank is
therefore0). The adjusted rank of an ICG is the mean of the positions of all ICGs
that have the same probability AsFor example, if we have 3 top-ranked equiprobable
ICGs, each has a rank of 0, but an adjusted ran!?@g&f. Column 5 shows how many
utterances didn't yield a Gold ICG, and Column 6 indicates éhrerage number of
ICGs created and iterations done until the Gold ICG was foffirin a total of 300
iterations).

As seen in Table 2, the baseline yielded significantly fewprranked Gold ICGs
than our anytime algorithnp(< 0.05).2 The 20% ASR error was substantially exacer-
bated by the baseline approach, which failed to return Gol(k) in 27 of the 80 cases
where it was presented with the correct text. In cont@stisi?performed significantly
better, failing to produce top-ranked Gold ICG(s) in onlydf@hose cases. Further, for
the top-3 rankingScusi?vercame the ASR error (i.e., its error rate is less than 20%)
These results confirm the need to maintain multiple intégbiens in combination with
a probabilistic hypothesis assessment.

Interestingly, the threshold did not affect the number g@ftanked Gold ICGs and
not found ICGs, and the number of iterations to Gold. Howgaheraverage rank of the
Gold ICGs decreases (improves) as the threshold increaséd is consistent with
the slight improvement in the number of top-3 ICGs. We alsdqumed additional
experiments that examined the effect of using a differergsthold for each level of
interpretation. However, the new scheme did not yield argromement over a single
system-wide threshold.

6 Related Research

This research builds on the work described in [6]. Here waedfie process for consid-
ering multiple alternatives during the generation of iptetations, and its combination
with the probabilistic hypothesis assessment formalisnpdrticular, we focus on the
calculation of the probabilities of ICGs.

Many researchers have investigated numerical approaoftég tinterpretation of
spoken utterances in dialogue systems, e.g., [9-12]. Pfedgd. [9] and Huwel and
Wrede [10] employ modality fusion to combine hypothesesnfifferent analyzers
(linguistic, visual and gesture), and apply a scoring maidm to rank the resultant
hypotheses. In contrast, He and Young [11] and Gorniak and[Rg apply a proba-
bilistic approach to spoken language interpretation,gislidden Markov Models for
the ASR stage. Additionally, as mentioned abdselsi% probabilistic formalism re-
sembles in style that employed by Millet al. for discourse interpretation in a text-

2 Sample paired t-tests were used for all statistical tests.

3 Clearly, it is not fair to compar&cusi% top-3 rank with the baseline’s top-1 rank. However,
the top-3 rank supports the generation of clarification tioes for ICGs with similar proba-
bilities — an option that is not available if only the top-kaal interpretation is returned.



based system [2]. However, all these systems employ secrggatnmars, whil&cusi?
employs a three-stage interpretation process, which usesrig, syntactic tools, and
incorporates semantic- and domain-related informatidyiorthe final stage of the in-
terpretation process. Kniglet al. [13] compare the performance of a dialogue system
based on a semantic grammar to that of a system based orsticgihtanguage model
and a robust phrase-spotting grammar. The latter perfogtisrifor relatively uncon-
strained utterances by users unfamiliar with the systera.prbbabilistic approach and
intended users of our system are in line with this finding.

From the view point of application domain, robot-mountealajue systems were
also studied in [14, 15, 10]. Matset al.[14], like Gorniak and Roy [12], use contextual
information to constrain the alternatives returned by tis&RAearly in the interpretation
process. This allows their system to process expectecuties efficiently, but makes it
difficult to interpret unexpected utterances. In contrasysi?incorporates contextual
information in the final stage of the interpretation procébiike Scusi? probabilistic
reasoning formalism, Bost al. [15] use a logic-based language interpretation frame-
work to understand instructions and descriptions, and eyrfpkmal proofs for conflict
resolution. Consequently, alternatives are not consitleresn an utterance is ambigu-
ous or the preferred option proves undesirable. This is #iisccase for Hiwel and
Wrede’s [10] system, which considers only a single altéveats a result of each stage
of the interpretation process.

7 Conclusion and Future Work

We have describe8cusi? a spoken language interpretation system that maintaihs mu
tiple options at each stage of the interpretation processranks interpretations based
on estimates of their posterior probability. In particulae presented the algorithm
used byScusi?to postulate hypotheses regarding the meaning of a spokeranite,
and detailed the estimation of the probabilities of thegeoltlyeses.

Our empirical evaluation shows th&tusi?performs well for declarative and im-
perative utterances of varying length, with the Gold ICG&)eiving one of the top
three probabilities for most test utterances. Our resigts ghow that using a threshold
has a small impact o8cusi? performance (by slightly improving the number of ICGs
ranked top-3, and hence the average rank of the Gold ICG#)elnear future, we will
further investigate the impact of thresholds on perforneaspeed and accuracy. An ad-
ditional avenue of investigation pertains to the consitiensof different weightings for
combining the scores obtained from the three interpraiatiages.
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