Skip to main content

Adaptive Body, Motion and Cloth

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5277))

Abstract

Virtual Try On (VTO) applications are still under development even if a few simplified applications start to be available. A true VTO should let the user specify its measurements, so that a realistic avatar can be generated. Also, the avatar should be animatable so that the worn cloth can be seen in motion. This later statement requires two technologies: motion adaptation and real-time cloth simulation. Both have been extensively studied during the past decade, and state of the art techniques may now enable the creation of a high quality VTO, allowing a user to virtually try on garments while shopping online. This paper reviews the pieces that should be put together to build such an application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Redoute, L.: (2008) (accessed April 2008), http://mannequin.redoute.fr/

  2. Nedel, L.P., Thalmann, D.: Modeling and deformation of the human body using an anatomically-based approach. In: Proc.Computer Animation 1998, pp. 34–40. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  3. Lee, W.-S., Gu, J., Magnenat-Thalmann, N.: Generating animatable 3D virtual humans from photographs. In: Gross, M., Hopgood, F.R.A. (eds.) Computer Graphics Forum (Eurographics 2000), vol. 19(3) (2000)

    Google Scholar 

  4. Kasap, M., Magnenat-Thalmann, N.: Parameterized human body model for real-time applications. In: Cyberworlds, 2007. CW 2007. International Conference on Cyberworlds, pp. 160–167 (2007)

    Google Scholar 

  5. Zhaoqi, W., Tianlu, M., Shihong, X.: A fast and handy method for skeletondriven body deformation. Comput. Entertain. 4(4), 6 (2006)

    Article  Google Scholar 

  6. Marinov, M., Botsch, M., Kobbelt, L.: Gpu-based multiresolution deformation using approximate normal field reconstruction. Journal of graphics tools 12(1), 27–46 (2007)

    Article  Google Scholar 

  7. Rhee, T., Lewis, J.P., Neumann, U.: Real-timeweighted pose-space deformation on the gpu. Computer Graphics Forum 25(3), 439–448 (2006)

    Article  Google Scholar 

  8. Teran, J., Sifakis, E., Blemker, S.S., Ng-Thow-Hing, V., Lau, C., Fedkiw, R.: Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics 11(3), 317–328 (2005)

    Article  Google Scholar 

  9. Seo, H., Magnenat-Thalmann, N.: An example-based approach to human body manipulation. Graph. Models 66(1), 1–23 (2004)

    Article  MATH  Google Scholar 

  10. International organization for standardization (2008) (accessed April 2008), http://www.iso.org/

  11. Choi, K.-J., Ko, H.-S.: Online motion retargeting. Journal of Visualization and Computer Animation 11(5), 223–235 (2000)

    Article  MATH  Google Scholar 

  12. Baerlocher, P., Boulic, R.: An inverse kinematic architecture enforcing an arbitrary number of strict priority levels. The Visual Computer (2003)

    Google Scholar 

  13. Jeong, K., Lee, S.: Motion adaptation with self-intersection avoidance. In: Proceedings of the International workshop on human modeling and animation, pp. 77–85 (2000)

    Google Scholar 

  14. Gleicher, M.: Retargeting motion to new characters. In: Proceedings of SIGGRAPH 1998, Computer Graphics Proceedings, Annual Conference Series, pp. 33–42. ACM Press/ ACM SIGGRAPH, New York (1998)

    Google Scholar 

  15. Gleicher, M., Litwinowicz, P.: Constraint-based motion adaptation. The Journal of Visualization and Computer Animation 9(2), 65–94 (1998)

    Article  Google Scholar 

  16. Popovic, Z., Witkin, A.: Physically based motion transformation. In: Proceedings of SIGGRAPH 1999, Computer Graphics Proceedings. Annual Conference Series. ACM Press/ ACM SIGGRAPH, New York (1999)

    Google Scholar 

  17. Abe, Y., Liu, K., Popovic, Z.: Momentum-based parameterization of dynamic character motion. In: Proceedings of the ACM Symposium on computer Animation 2004. ACM Press, New York (2004)

    Google Scholar 

  18. Tak, S., Ko, H.-S.: A physically-based motion retargeting filter. ACM Transactions on Graphics 24(1) (2005)

    Google Scholar 

  19. Shin, H.J., Kovar, L., Gleicher, M.: Physical touch-up of human motions. In: Proceedings of the Pacific conference on computer graphics and applications. Wiley-IEEE Computer Society Press (2003)

    Google Scholar 

  20. Lyard, E., Magnenat-Thalmann, N.: Motion adaptation based on character shape. Comput. Animat. Virtual Worlds (to appear, 2008)

    Google Scholar 

  21. Kovar, L., Schreiner, J., Gleicher, M.: Footskate cleanup for motion capture editing. In: Proceedings of the ACM Symposium on computer Animation 2002. ACM Press, New York (2002)

    Google Scholar 

  22. Lyard, E., Magnenat-Thalmann, N.: A simple footskate removal method for virtual reality applications. Vis. Comput. 23(9), 689–695 (2007)

    Article  Google Scholar 

  23. Glardon, P., Boulic, R., Thalmann, D.: Robust on-line adaptive footplant detection and enforcement for locomotion. Vis. Comput. 22(3), 194–209 (2006)

    Article  Google Scholar 

  24. Grzeszczuk, R.: Fast neural network emulation and control of physics based models

    Google Scholar 

  25. Cordier, F., Magnenat-Thalmann, N.: A data-driven approach for real-time clothes simulation. In: PG 2004: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, Washington, DC, USA, pp. 257–266. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  26. Kang, Y., Choi, J., Cho, H., Lee, D., Park, C.: Real-time animation technique for flexible and thin objects (2000)

    Google Scholar 

  27. Cordier, F., Magnenat-Thalmann, N.: Real-time animation of dressed virtual humans. Comput. Graph. Forum 21(3) (2002)

    Google Scholar 

  28. Volino, P., Magnenat-Thalmann, N.: Accurate garment prototyping and simulation. Computer-Aided Design and Applications 2(5), 645–654 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Magnenat-Thalmann, N., Lyard, E., Kasap, M., Volino, P. (2008). Adaptive Body, Motion and Cloth. In: Egges, A., Kamphuis, A., Overmars, M. (eds) Motion in Games. MIG 2008. Lecture Notes in Computer Science, vol 5277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89220-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89220-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89219-9

  • Online ISBN: 978-3-540-89220-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics