
More Motion Capture� in Games — Can We

Make Example-Based Approaches Scale?

Michael Gleicher

University of Wisconsin - Madison, Madison WI 53706, USA
gleicher@cs.wisc.edu

http://cs.wisc.edu/~gleicher

Abstract. Synthesis-by-Example (SBE) approaches have been success-
ful at animating characters in both research and practice (games). These
approaches assemble motions from pre-recorded examples, usually mo-
tion captured or keyframed. To date, the methods have relied on a small
set of simple, generic building blocks for assembling the motions. To
meet the increasing demands for better character movement and control
in games, the approaches will need to evolve. An obvious path to address
these challenges, employing increasingly large collections of examples, is
enabled by recent research. However, scaling up the number of examples
is unlikely to sufficiently scale up the quality of the character animation.
Methods that make better use of examples will be required.

1 Introduction

Human (or human-like) characters are important in many types of computer
games and interactive simulations. Often, the movements of these characters are
created by an example-based approach where pre-recorded clips of movement,
either from motion capture or keyframing, are assembled as needed. While these
Synthesis-By-Example (SBE) approaches have been extremely successful in re-
search and practice, future applications (e.g. improved games) will have increased
demands. In this paper, we consider how the (SBE) approaches may evolve to
meet these new needs.

Creating the movements for game characters is difficult. Animating human
characters is difficult in general: human movement is incredibly complex, di-
verse, and subtle. People can do many things in many ways. Even simple, ev-
eryday actions like walking involve the complex coordination of many degrees
of freedom, and involve an amazing degree of subtlety. Movements can convey a
large amount of information in this subtlety: from watching someone walk, we
can often get a sense of their mood, their personality, their intent, etc.

Interactivity (e.g. in games) provides another set of challenges. While many
games include scripted “cut-scenes,” most game play involves a player’s action
(or other unknown factors) and therefore cannot be determined ahead of time.
Characters’ movement must be responsive to the unfolding situation in the game,
� Or keyframe animated motion.

A. Egges, A. Kamphuis, and M. Overmars (Eds.): MIG 2008, LNCS 5277, pp. 82–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

More Motion Capture in Games 83

whether it is under the direct control of the player or otherwise. Games often
involve longer durations requiring large amounts of animation.

There are two main strategies for creating game character motion: algorithmic
(model-based) synthesis and synthesis by example (SBE). The key ideas contrast:
algorithmic synthesis focuses on creating specialized techniques based on an
understanding of movement, while SBE methods employ generic algorithms that
avoid understanding the movement, treating it as generic data that is combined
by simple, generic procedures. In practice, a spectrum of approaches blends these
extremes.

Much of the success of current game character animation stems from the
use of SBE approaches. As will be discussed in Section 2, examples provide a
number of advantages for animation creation. SBE approaches (§3) have been
successful in research and practice as they preserve these advantages. However,
future games will need better character animation (§4). Improving the results of
an SBE approach typically means using a larger set of examples, but while the
enabling technologies for this are in place, this strategy is unlikely to scale (§5).
Instead, we are likely to need to improve the methods used in SBE, some first
steps in this direction are discussed in Section 6.

2 Why Examples?

The central idea of example-based, or data-driven, approaches to motion is that
the movement is obtained from some outside source (like capturing the motion
of an actor or having an animator create keyframes). The movement data is just
data: a set of measurements that can be replayed. There is no “model” of the
movement to explain why a particular set of data is the desired motion. All of
the complexity and subtlety is stored in the data.

Examples avoid the need to model the movements to be created. High quality
movement can be created without understanding the complexities and subtleties.
Given enough time and effort, it may be possible to model a particular motion
algorithmically. It is unclear how well the effort for any particular model applies
to other motions. Modeling motion is difficult to scale to large repertoires or
diversity of styles.

In contrast, example-based approaches readily scale to diverse sets of move-
ment - all that is required is to obtain more examples. An actor (or a keyframe
animator) is capable of an amazingly wide range of actions and styles, and
can quickly produce many examples of movement. More significantly, example
creation provides artistic control. Motion capture involves a partnership and
communication between the actor, the director, and (to a lesser degree) the
technologist. The actor and director can work together to create the necessary
movement, without having to figure out how to explain it in sufficiently concrete
terms that it can be encoded algorithmically. The beauty of example-based ap-
proaches is that they put creative control over the motion into the hands of the
artistic team.

84 M. Gleicher

3 Synthesis by Example

By themselves, examples provide only the specific motions that are recorded.
Synthesis-by-Example approaches create new motions based on a collection of
pre-recorded examples.

Any synthesis approach involves some amount of algorithmic process, and usu-
ally data. We use the term Synthesis-By-Example (SBE) to refer to approaches
that attempt to stay close to the model-free, data-driven concept. The spirit of
such approaches is that they tend to be model-free: motions are just sets of num-
bers that are combined using simple, generic algorithms. The specifics and com-
plexities of different movements come from the data. In contrast, Model-Based
approaches encode more of the movement algorithmically. SBE approaches main-
tain the advantages of examples: movements are primarily specified through the
examples, allowing for a diverse range of movements to be created, and for these
movements to be specified by the artistic team.

Synthesis-By-Example approaches generally combine example motions in a
few basic ways. These basic operations, such as blending or sequencing, are not
necessarily simple: finding a motion that is “halfway in-between” running and
sitting, or a transition between walking and a handstand, can be as difficult
as creating the initial examples themselves. However, the space of motions is
generally smooth: that is, small changes to valid motions are likely to be valid
motions as well. Therefore, if motions are similar, combining them is easy. Basic
mathematical operations, such as blending or sequencing, provide reasonable
motions when provided with appropriate data.

Synthesis-by-Example methods generally use simple techniques for combining
motions, but apply them only where they are likely to lead acceptable results.
Almost all SBE is based on the same building blocks: motions are blended (gener-
ally by linear combinations of individual parameters), concatenated (often with
transitions in between), layered (per-channel adjustments are phased-in and -
out), and transformed (positioned spatially and temporally).

Much of the limitations of SBE approaches stem from the simplicity of the
building blocks: because the basic techniques are only likely to work on appropri-
ate example motions, their applicability is limited. Since the techniques generally
only apply to create small changes to motions (e.g. to transition or blend between
similar motions, or to make small adjustments to an example), the achievable
results must be similar to the source examples. Phrased differently: without a
model to provide an understanding of why an example is desirable, a method
must be conservative in how it deviates from the example since it cannot know
what in the example must be preserved.

While SBE methods all share the same basic building blocks (e.g. blending,
concatenation) for combining motions, they differ in how these building blocks
are used. These combination methods are only one of three aspects of an SBE
method. Additionally there must be preparation to determine what data can be

More Motion Capture in Games 85

combined and control to determine how to use the combinations to assemble the
necessary motions. There is much more diversity in these other aspects of SBE.

3.1 Synthesis-by-Example in Games

The use of pre-recorded pieces that are assembled to create interactive ani-
mations in games certainly predates the use of motion capture. However, the
demands of motion capture pushed the techniques. With motion capture data
(or 3D animated characters in general), the pieces needed to be assembled more
carefully to maintain visual quality (or at least avoid objectionable artifacts). As
the early pioneers developed the use of motion capture in games, they also had
to develop the basic foundations of the synthesis-by-example approaches to use
these results. Unfortunately, there is little record of these early developments.1

By the mid-1990s, synthesis by example systems were applying motion capture
to characters in games2. Transition graphs were planned out in advance, and
manually constructed. Tools for supporting graph design were in use at least far
back enough to be used for games released in early 1996 [5], although the first
published description of a graph construction tool seems to be much later [6].
Even in this early era, blending was used both to create transitions as well as to
create more precise control (e.g. blending left and right to create gradated turns),
although most early blending was pre-computed because it was considered too
costly to be done at run time[5].

Modern game characters have evolved from their early origins. However, they
are still (often) built from the same basic SBE building blocks. Modern charac-
ters usually have a discrete set of actions, where each action has a continuous
parameterization. For example, a character might be able to punch and kick
to various locations and walk with various turning curvatures and speeds. Such
characters still employ a transition graph to specify which actions can follow a
given one, but the graphs describe parametric ranges of movements, rather than
specific examples. The motions for the parametric actions might be created by
any number of methods, such as blending examples together or making layered
adjustments to a single example.

The key to practical application of synthesis by example approaches has been
the careful planning and manual labor in preparing the data such that the exam-
ples work together[1,7]. Developers carefully choose what movements to acquire
(either capture or hand animate), carefully plan these movements so that they
can transition or blend as needed, carefully choose the blends and transitions
to facilitate the necessary control over the character, and carefully perform the
movements to create examples that can be connected.
1 Published accounts of the early motion capture, such as [1] or [2,3,4], generally focus

on the development of the capture hardware, the application of data to character
models, or film applications. Most of my knowledge of this “folklore” of motion
editing history comes from conversations with the pioneers. In particular, Mark
Schafer has graciously provided me with some specifics of the history at Acclaim.

2 It is difficult to pinpoint the exact origins, since games used motion capture for
cut-scenes and promotional animations as well.

86 M. Gleicher

3.2 Synthesis-by-Example in Research

Synthesis-by-Example approaches have evolved differently in research than in
practice. The same basic building blocks of blending, layering, and concatena-
tion are used. The introduction of these methods to the research community
(for example, blending [8,9,10,11] or layering [12,13]), often came after they had
already been deployed in practice. While there are examples of efforts to provide
improved building blocks, such as better transition generation [14] or alternate
blending schemes [15], most work on synthesis-by-example approaches has fo-
cused on making use of the same basic building blocks for combining motions as
used in practice.

Where research has deviated from practice is in the application of automa-
tion and more advanced algorithms for the preparation of the examples and
the creation of control strategies. For example, the “motion graph” approaches
[16,17,18] (and their successors) distinguish themselves from their predecessors
by automatically searching through a repository of motions to find potential
transitions to introduce. This opportunistic graph construction avoids the labor
of identifying transitions and offers the potential for reducing the planning ef-
fort. However, the unstructured nature of the resulting graphs makes the control
problem more complex. Research has addressed this challenge with a wide range
of search strategies.

Reducing the need for planning and manual labor through automation and
clever control strategies is a common theme in SBE research. For example, [19]
shows how the alignments required for blending can be determined automatically.
This automation not only saves labor, but allows for the creation of blends that
would be impractical to create manually. In an extension of the approach, [20]
shows how a database of motions can be searched to find appropriate examples
to blend and provides an automatic way to build the control strategy that maps
parameters to blending weights. Again, this not only significantly reduces the
amount of effort required to create parametric actions, but also extends the range
of where blending can be applied. The ease with which parametric actions can be
built allows for easy experimentation, which often leads to surprising examples.

Another aspect of SBE that has been automated in research is the design of
controls (choosing which examples to combine and how). The search strategies
demanded by unstructured graphs have lead to entirely new control paradigms.
For interactive control, pre-computed search [21,22] and optimal control [23]
methods automate control mappings even in situations where the example col-
lection is not carefully planned. Automatic blend parameterizations [20] allow
for precise control of blends even when the example set is irregular.

4 The Needs for Better Game Animation

While character animation in games is quite advanced, improvement is still im-
portant. In current games, the quality of the movement of characters already lag
other aspects, particularly the visual appearance of the environments. Advances
in interactive rendering that exploit increasing hardware resources (GPUs) are

More Motion Capture in Games 87

widening the gap. If nothing else, movement quality must improve so that char-
acters don’t look out of place in the well-rendered scenes.

Characters with more convincing movement can better add to creating com-
pelling visuals, and provide game designers with more flexibility to create a wider
range of compelling experiences for players. However, to provide for this range
of future games, the technology to animate character must provide:

More quality - the characters’ movements should meet the designer’s goals for
the visual style that creates the experience. For example, if a game’s design
is meant to be realistic, the characters in the game should move realistically.

More actions - characters should have richer repertoires, and ultimately be
able to do (at least) the range of things that actors can do.

More styles - characters should be able to do these things in the entire range
of ways that people do them, as these differences are often important.

More subtlety - the differences in the ways that things are done can often
be quite subtle. Conveying these subtleties is important for communicating
things such as mood, intent and personality. Current games generally rely
on other means (such as narration) to convey this.

More situated - the characters’ movements must relate correctly to their sur-
roundings, otherwise the illusion of the character inhabiting its world is
broken. This requires a degree of precision in motions: if connections (such
as contacts) are not exact, they are a very visible reminder.

More responsiveness - characters should respond quickly to their control (e.g.
a player’s commands or other occurances in their environment).

While the current technologies allow for excellence in some of these categories,
this excellence usually comes at the expense of other attributes. For example,
it is possible to make a character with very high quality movement if its range
of actions is very small, or is unresponsive - the cut scenes in games often have
very good motion.

5 Using More Examples

The results of SBE can be improved by using larger sets of examples. Larger
sets of examples help improve many of the aspects of character animation:

More actions and styles - most obviously, having a wider range of examples
is the primary (possibly the only) way to extend the range of actions and
styles the character is capable of.

More quality, subtlety and artistic control - more examples means that
whatever motion is going to be created is more likely to be close to an
example. Deviation from the examples is the source of loss of quality (because
the examples are given by the artistic team and express their goals).

To see how increased example sets can help, consider a simple example: a
character walks up to a bookcase and grabs a book. With a single example,
an SBE approach might use IK to reposition the hand to reach different

88 M. Gleicher

places on the book shelf, and then to propagate these changes to neighboring
frames. If many examples are provided (i.e. having examples of a person
reaching to multiple locations), the other variability in the movements can
be captured. For example, a person might move differently to read a higher
object, and their eyes need to find the book before they can grab it. While
it may be possible to algorithmically encode these details, each would need
to be identified, understood, and implemented.

More responsiveness - a larger example set provides more options for syn-
thesis methods to create motions, so it is more likely that a choice will be
readily available when a change is necessary.

Fortunately, technological improvements have facilitated obtaining and using
larger example sets. The equipment and software for motion capture and post-
processing makes obtaining more examples practical. The wider availability of
the equipment reduces the limitations in the amount of capture possible. At run-
time, data storage is becoming more plentiful and motion data is very compact
relative to other assets like sounds and textures.

Automation in the authoring tools, as described in Section 3.2 are better
able to scale to larger number of examples. Automatic tools not only reduce
the amount of labor to process the data, they also reduce the required planning
and can provide results that cannot be achieved manually, such as very complex
blend spaces, accurate blend parameterizations, or near-optimal control.

5.1 Why Example Sets Cannot Scale

One possible stumbling block for increased motion usage is performance. While
modern games (especially consoles) have considerable processing resources, they
are often constrained in the amount of bandwidth available to access examples.
Also, motion synthesis is only one aspect of a game whose computing resources
are growing. Increased computational abilities have raised player expectations
about rendering quality, visual complexity, and artificial intelligence, all of which
demand increasing amounts of processing resources. To retain practicality, the
memory bandwidth requirements of SBE methods needs to be considered more
thoroughly as example sizes scale.

A more challenging issue is unintended variation in the examples. Some of
this comes from limitations in the combination processes. For example, in the
bookcase scenario above, in order for blending to work, the character must al-
ways initiate the reaching motion with a step on the same foot. More subtle
variabilities may not cause failures, but instead have unintended consequences.
For example, imagine a walking character created by combining footsteps found
in an example database. While the large example set may provide a diverse range
of steering and speeds allowing for a very controllable character, every footstep
has its own story. For example, on any given example the actor might be more
or less tired or distracted, have a more or less clear idea of where they are going,
or may have stumbled or twitched. As SBE chooses different examples for each

More Motion Capture in Games 89

step, it may mix these stories3. The degree of quality assurance to insure the
regularity of the examples may preclude large example sets.

All of the variabilities could be viewed positively: all of the differences between
motions might become parametrically controllable. There are several reasons why
such an approach is unlikely to scale. First, existing methods for automation are
not good at identifying and parameterizing the more subtle variability. Second,
the different parameters aren’t necessarily orthogonal. Third, tradeoffs between
differences are difficult to compare (is it better to pick an example that is similar
in tiredness, personality, or position?). Fourth, as the number of parameters
grows, the space of possibilities grows exponentially. This leads to increased
demands on the number of examples required to adequately sample the space
and the methods for controlling within it.

The inability of SBE approaches to deal with high dimensional parameter
spaces is likely to be the ultimate limitation on its scalability. To create truly
expressive and responsive characters, a myriad of properties need to be controlled
for any particular action. In games, it is easy to see a slippery slope of wanting
more and more parameters to be controlled: a walking character should be able
to turn, vary its speed, step up/down on obstacles, have varying levels of injury,
have varying levels of intensity/focus, . . .

The curse of dimensionality is a final limiting factor of the standard SBE ap-
proaches. While automation might help the methods scale to larger example sets,
it cannot help them scale enough. Example sets would need to grow exponentially.

6 Scaling SBE Methods

The previous section argued that increasing the size of the example sets used
in SBE methods is unlikely to scale to the needs of future applications. Similar
arguments have been made by several others in this workshop (c.f. [24,25,26]).

The power of example-based methods to allow for artistic collaboration to
specify desired movement properties by example means that the SBE approach
is unlikely to go away. Purely algorithmic approaches, in some sense the antithesis
of example-based ones, still must somehow engage collaboration with the artists,
designers, and directors who provide the vision of the movement requirements.
While Perlin has shown great progress in creating parameterized algorithmic
controllers at this workshop [25], it is unclear how well this approach will scale to
large repetoires, movement styles, or ranges of visual style (including realism). It
takes a very expert programmer to understand movement well enough to devise
algorithmic synthesis processes, and the need to make these flexible enough to
meet an artists’ stylistic wishes even further complicates the problem.

I believe that the future of technology for animated characters in interactive
systems lies as a hybrid of synthesis-by-example and algorithmic approaches.

3 Sometimes, coherence in the variability can lead to unusual outcomes. In one capture
shoot, left turns were captured in the morning and right turns at the end of the day,
yielding a character that looked tired whenever they turned right.

90 M. Gleicher

There are two different ways in which the “pure” approaches may mix: using more
sophisticated methods for combining examples and using collections of data to de-
rive algorithmic controllers. Examples of both paths can be seen in the literature.
Popović’s presentation at this workshop [26] provides a particularly compelling
example of how an algorithmic controller might be derived from examples.

Here, I provide two brief examples from our group’s work4 that illustrate
these hybrid approaches. In the first example, the standard set of methods for
combining examples is extended, providing a mechanism for scaling to a broader
repertoire without a commensurate expansion in the example set. In the sec-
ond example, an algorithmic synthesis procedure is derived from data. While
the strategies are quite different, they both represent attempts to provide more
scalable SBE approaches.

6.1 Splicing Actions

Different parts of a character might perform different actions simultaneously. For
example, a character might wave, carry a box, or stare in a particular direction at
the same time that they walk, stand or sit. This creates a potential combinatorial
explosion of possible things a character might do (i.e. stare to the left while
standing, carrying a box, tapping the left foot). When limited to the traditional
mechanisms for combining examples, examples are needed for each combination.

Being able to partition the parts of a character and provide independent exam-
ples (or motion synthesis methods) for each avoids the need for all combinations.
For example, if we could consider the upper and lower body separately, we could
have a set of example upper body actions (e.g. wave, salute, carry a box, hold
a coffee cup) and lower body actions (e.g. walk and run with various turns and
speeds) without having examples of all n2 combinations. Splicing methods as-
semble movements for a character from independent sources of movement for
each part.

Adding splicing to the set of methods used to create SBE offers a mechanism
for greatly reducing the number of examples needed. However, when multiple
actions are performed simultaneously, they do interact (e.g. carrying a heavy
box changes the way one walks). Creating these couplings can be challenging.
Simple splicing methods do not provide the proper couplings, and therefore often
look wrong. However, splicing is so useful that these simple splicing methods are
commonly used in practice in games despite the quality problems.

The diversity and complexity of couplings between body parts suggests that
a general solution for splicing may be illusive. To date, researchers have focused
on creating splicing methods for specific parts and situations, such as hands
[28]. In [29] we presented a method for splicing upper body motions onto lower
bodies in the specific case where both examples come from locomotion. The
method works by specifically identifying important types of couplings, including
posture, coordinated timing, and spatial alignment, and taking specific steps to
make sure that each coupling is properly established in the result.
4 The research described in these sections is part of the Ph. D. thesis research [27] of

my former student, Rachel Heck.

More Motion Capture in Games 91

Splicing can serve as a building block for synthesis-by-example, along side
the more usual blending and concatenation. By building SBE approaches with a
richer set of building blocks, there is a potential to achieve greater performance
(in terms of result quality, repetoire range, range of stles, etc.) without an explo-
sion of examples. However, our splicing method lacks the simplicity, genericness,
and broad applicability of the “pure” SBE approaches. In a sense, our splic-
ing technique shows a mixture of a model-based and example-based approach:
understanding of a specific class of motions was used to create an algorithmic
synthesis method that relies on data.

6.2 Gaze Control

It is important to be able to control the gaze direction of an animated character.
To an observer, shifts in the location or direction where a character is looking
might not only indicate a shift in attention but can also convey a person’s goal
before they act on it.

Effective control of the gaze direction is complicated. The gaze direction is
determined by the orientation of head, as well as the eyes. To look in a particular
direction, a person might adjust their torso and neck (in order to orient the head),
as well as move their eyes. The timing and coordination of these movement are
also complicated, as the eyes can move much more rapidly than the head, leading
to a progression where they move first, and usually overshoot the target. The
specifics of the movements depend on the direction, the size of the change, and
even the individual and their mood (e.g. different people have different ranges of
motions and preferences, and may react differently if they are tired or scared).

Gaze control would be very difficult with standard SBE approaches. It adds at
least 2 new parameters to any movement (the direction of gaze). Providing good
control would require not only sufficient examples to allow for the range of gaze
directions, but also to allow for the range of gaze timings (i.e. a character might
look in a particular direction at a particular instant). The number of examples
required to create such a diverse space of possibilities would be prohibitive.

We have developed a technique for controlling the gaze of an animated char-
acter, described in Chapter 5 of [27]. Given the character’s motion and a gaze
target (a direction at a particular time), the motion is adapted to meet the
gaze target. The technique uses a specifically designed model of gaze motions,
built from an understanding of the psychological and physiological principles in-
volved. In many ways, the technique shows the traditional process of algorithmic
synthesis development: where a programmer gained an understanding of a par-
ticular movement and encoded this understanding into an algorithmic process
with appropriate controllability. In this case, the algorithmic synthesis produces
a change to an existing motion (that is added by layering).

Our gaze technique also employs an example-based approach to achieve in-
dividual and/or mood/style variability. Motion capture data of an actor per-
forming a number of examples of gaze movement is used to generate a set of
parameters that are used by the gaze controller. Effectively, the algorithmic

92 M. Gleicher

model is built from example data. The gaze technique exemplifies the broader
goal of deriving algorithmic control is from example data.

7 The Future

A great actor provides a director/producer with an amazing range of possible
actions and movement styles. Computer animated characters extend this flexi-
bility in other ways, such as providing for different visual styles (e.g. realistic,
cartoony) or responsiveness tradeoffs. The greater range of character animation
makes more tools available for designers to create better interactive experiences.
The technology to drive future game characters will need to be more like a great
actor, providing game developers with a powerful and expressive component to
create better games.

These future game characters will require technology beyond what is currently
available. Examples are still likely to be useful, as they enable a designer or
director to specify the movements that they want, as well as providing an effective
way to create the necessary diversity of actions and styles. However, current
synthesis-by-example approaches with larger sets of examples are unlikely to
scale to meet to meet the challenges. New methods that can make more use out
of a compact set of examples will be required.

Acknowledgements

The research work performed in our group represents the efforts of a long list of
talented students, including Lucas Kovar, Rachel Heck (now Rose), Alex Mohr,
Andrew Selle, Mankyu Sung, and Hyun Joon Shin.

References

1. Menache, A.: Understanding Motion Capture for Computer Animation and Video
Games. Morgan Kaufmann, San Francisco (1999)

2. Elson, M., Sturman, D., Dyer, S., Trager, W., Schafer, M.: Character motion sys-
tems (SIGGRAPH, Course Notes) (1994)

3. Sturman, D.: A brief history of motion capture for computer character animation.
SIGGRAPH Hypergraph Web Page (1994)

4. Trager, W.: A practical approach to motion capture: Acclaim’s optical motion
capture system. SIGGRAPH HyperGraph Web Page (1994)

5. Schafer, M.: Personal Communication (July 2008)

6. Mizuguchi, M., Buchanan, J., Calvert, T.: Data driven motion transitions for in-
teractive games. In: Eurographics 2001 Short Presentations (September 2001)

7. Kines, M.: Planning and directing motion capture for games. Game Developer
Magazine (1998); Also in GDC 1998 and Gamasutra

8. Perlin, K.: Real time responsive animation with personality. IEEE Transactions
on Visualization and Computer Graphics 1(1), 5–15 (1995)

More Motion Capture in Games 93

9. Guo, S., Roberge, J.: A high-level control mechanism for human locomotion based
on parametric frame space interpolation. In: Proc. of Eurographics Workshop on
Computer Animation and Simulation 1996, pp. 95–107 (August 1996)

10. Wiley, D., Hahn, J.: Interpolation synthesis of articulated figure motion. IEEE
Computer Graphics and Application 17(6), 39–45 (1997)

11. Rose, C., Cohen, M., Bodenheimer, B.: Verbs and adverbs: multidimensional mo-
tion interpolation. IEEE Computer Graphics and Application 18(5), 32–40 (1998)

12. Witkin, A.P., Popović, Z.: Motion Warping. In: Proc. SIGGRAPH 1995, pp. 105–
108 (August 1995)

13. Bruderlin, A., Williams, L.: Motion signal processing. In: Proc. ACM SIGGRAPH
1995. Annual Conference Series, pp. 97–104 (1995)

14. Rose, C., Guenter, B., Bodenheimer, B., Cohen, M.F.: Efficient generation of mo-
tion transitions using spacetime constraints. In: Proc. SIGGRAPH 1996, pp. 147–
154 (1996)

15. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM Transactions
on Graphics 24(3), 1062–1070 (2005)

16. Arikan, O., Forsyth, D.A.: Synthesizing Constrained Motions from Examples. ACM
Transactions on Graphics 21(3), 483–490 (2002)

17. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Transactions on Graph-
ics 21(3), 473–482 (2002)

18. Lee, J., Chai, J., Reitsma, P., Hodgins, J., Pollard, N.: Interactive control of avatars
animated with human motion data. ACM Trans. on Graph. 21(3), 491–500 (2002)

19. Kovar, L., Gleicher, M.: Flexible automatic motion blending with registration
curves. In: Proceedings of the Symposium on Computer Animation (July 2003)

20. Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in
large data sets. ACM Transactions on Graphics 23(3), 559–568 (2004)

21. Lee, J., Lee, K.H.: Precomputing avatar behavior from human motion data. In:
SCA 2004: Proc. of the 2004 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, pp. 79–87 (2004)

22. Lau, M., Kuffner, J.J.: Precomputed search trees: Planning for interactive goal-
driven animation. In: 2006 ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation, pp. 299–308 (September 2006)

23. Treuille, A., Lee, Y., Popović, Z.: Near-optimal character animation with continu-
ous control. ACM Trans. Graph. 26(3), 7 (2007)

24. Thalmann, D.: Motion modeling: Can we get rid of motion capture? In: Egges, A.,
Kamphuis, A., Overmars, M. (eds.) Motion in Games. LNCS. Springer, Heidelberg
(2008)

25. Perlin, K., Seidman, G.: Autonomous digital actors. In: Egges, A., Kamphuis, A.,
Overmars, M. (eds.) Motion in Games. LNCS. Springer, Heidelberg (2008)

26. Popović, Z.: Towards robust dynamic controllers for high-fidelity character locomo-
tion. In: Egges, A., Kamphuis, A., Overmars, M. (eds.) Motion in Games. LNCS.
Springer, Heidelberg (2008)

27. Heck, R.: Automated Authoring of Quality Human Motion for Interactive Envi-
ronments. PhD thesis, Dept. of Comp Sci., University of Wisconsin (2007)

28. Majkowska, A., Zordan, V., Faloutsos, P.: Automatic splicing for hand and body
animations. In: Proc. of the Symposium on Computer Animation (SCA) (2006)

29. Heck, R., Kovar, L., Gleicher, M.: Splicing upper-body actions with locomotion.
Computer Graphics Forum 25(3) (2006); Proc. Eurographics

	Introduction
	Why Examples?
	Synthesis by Example
	Synthesis-by-Example in Games
	Synthesis-by-Example in Research

	The Needs for Better Game Animation
	Using More Examples
	Why Example Sets Cannot Scale

	Scaling SBE Methods
	Splicing Actions
	Gaze Control

	The Future

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

