
Forays into Sequential Composition and
Concatenation in EAGLE

Baran, Joachim and Barringer, Howard

2008

MIMS EPrint: 2010.58

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


Forays into Sequential Composition and

Concatenation in Eagle

Joachim Baran and Howard Barringer

The University of Manchester, School of Computer Science, Oxford Road,
Manchester, M13 9PL, United Kingdom

{joachim.baran,howard.barringer}@cs.manchester.ac.uk

Abstract. The run-time verification logic Eagle is equipped with two
forms of binary cut operator, sequential composition ( ; ) and concate-
nation (·). Essentially, a concatenation formula F1 · F2 holds on a trace
if that trace can be cut into two non-overlapping traces such that F1

holds on the first and F2 on the second. Sequential composition differs
from concatenation in that the two traces must overlap by one state.
Both cut operators are non-deterministic in the sense that the cutting
point is not uniquely defined. In this paper we establish that sequential
composition and concatenation are equally expressive. We then extend
Eagle with deterministic variants of sequential composition and con-
catenation. These variants impose a restriction on either the left or right
operand so that the cut point defines either the shortest or longest pos-
sible satisfiable cut trace. Whilst it is possible to define such determin-
istic operators recursively within Eagle, such definitions based on the
non-deterministic cut operators impose a complexity penalty. By aug-
menting Eagle’s evaluation calculus for the deterministic variants, we
establish that the asymptotic time and space complexity of on-line mon-
itoring for the variants with deterministic restrictions applied to the left
operand is no worse than the asymptotic time and space complexity of
the sub-formulæ.

1 Introduction

Although common temporal logics like propositional temporal logic, extended
temporal logic and the modal μ-calculus are quite expressive [Wol83, Koz83],
they define no operator analog to the most common principle in imperative
programming: sequential composition. Sequential composition allows one to glue
two traces together, where the last state of the first trace overlaps with the first
state of the second trace. A sequential composition formula is then satisfied at
the start of a trace, if the trace can be cut into two sub-traces, overlapping as
above, on which both its operands hold respectively.

Concatenation defines the cut of the trace such that there is no overlapping
part, so the two traces butted together form the original trace. Even though
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sequential composition and concatenation seem to be closely related, this has
not been formally investigated yet.1

In this paper the runtime verification logic Eagle is examined [BGHS04b].
Eagle is a temporal fixed-point logic on finite traces. Eagle is able to perform
efficient on-line monitoring without storing the execution trace [BGHS04b]. In
Eagle, both sequential composition and concatenation are part of the logics
language. We show that sequential composition can be expressed in terms of
concatenation and vice-versa. We then extend Eagle with deterministic variants
of concatenation and sequential composition. These variants impose a restriction
on either the left or right operand so that the cut point defines either the shortest
or longest possible satisfiable cut trace. We augment Eagle’s evaluation calculus
by the new operators and establish that the asymptotic space complexity of on-
line monitoring for the variants with restrictions applied to the left operand is no
worse than the asymptotic space complexity of the sub-formulæ. Two examples
now follow to provide motivation for the deterministic cut operators.

Fig. 1. Traces of a fail-safe system (Example 1)

Example 1. Consider a fail-safe system that in the occurrence of an error even-
tually resets itself and enters a predefined “good” system state in that way. In
Figure 1(a), an acceptable observation trace is depicted, where “ok” denotes that
the system is in a good state, “err” denotes the occurrence of an error and “rst”
denotes a reset of the system. We allow that a reset can occur with a finite delay
after an error has occured. We can formulate this behaviour by the following
specification:

max ErrHandler(Form F ) = �F � · (�err ∧ Eventually(rst)� · ErrHandler(F ))
mon FailSafe = ErrHandler(Always(ok))

The formulæ �F1�·F2 and �F1�·F2 are constraint variants of the concatenation
formula F1 ·F2, where the cut has to be placed so that there is no longer or shorter
sub-trace satisfying F1, respectively. For the specification above it means that a
trace without erroneous behaviour is completely labelled with “ok”s. If an error

1 In [CHMP81], concatenation was defined in terms of sequential composition. This
cannot be done in Eagle so easily, which is shown in the following. Instead of
referring to the operators as sequential composition and concatenation, Chandra et
al. referred to them as “chop” and “chomp” respectively.
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occurs, i.e. a state labelled by “err”, then the good behaviour resumes after a
reset, i.e. “rst”.

While this specification can also be written without formulæ of the form
�F1� · F2 and �F1� · F2, specification without these the new operators are not
necessarily as succinct as specification that make use of �F1� · F2 and �F1� ·
F2, and furthermore, will incur a significant monitoring cost penalty for the
compositional recodings.

Example 2. We introduce a conditional concatenation operator, �F1� ·→F2, based
on the operator �F1�·F2 which we used in the previous example. Let �F1�·→F2 be
the syntactic abbreviation for ¬(�F1� ·True)∨ (�F1� ·F2). Informally, �F1� ·→ F2

can be interpreted as “whenever F1 matched, do F2 afterwards”.
Consider a nested locking pattern, where we wish to detect when a thread t

takes a lock l1 and does not release it until t has taken a different lock l2, after
which we verify another property ϕ. Using the newly defined operator, we can
formulate the corresponding specification as

Always(�lock(t, l1) ∧ Until(¬release(t, l1), lock(t, l2) ∧ l1 �= l2)� ·→ ϕ

The latter specification is not an Eagle monitoring formula, since data
parametrisation in Eagle is bound to evaluating the current state. However,
we can formulate a semantically equivalent monitoring formula in Eagle:

mon NestedLck = Always(isLock() → Nested(getThread(), getLock()))

with the rule definition

max Nested(int t, int l) = �Until(¬release(t, l), isLock() ∧ getLock() �= l)� ·→ ϕ

SinceEagle is implemented inJava,we rely on themethods isLock(), getLock(),
getThread() and release() with the obvious semantics and we use integers as han-
dles for threads and locks. It should be noted that getLock() returns the last lock
obtained by the current thread, so that its return value when called in the moni-
toring formula NestedLck and its return value when called in the rule Nested(. . .)
eventually differ.

The shortest trace-length restriction in the concatenation formula of the rule
definition Nested(. . .) ensures that we match the first occurrence of a newly
obtained lock, i.e. the rule parameter l and the return value of getLock() dif-
fer,where it is also ensured that the previous lock is not released yet.

The paper is structured as follows. A formal definition of Eagle is given in
Section 2. In Section 3 it is proven that sequential composition and concatena-
tion are definable in terms of each other. In Section 4 Eagle is extended by
deterministic cut operators, where it is shown that those operators are definable
in unextended Eagle. In Section 5 Eagle’s calculus is extended by the deter-
ministic cut operators and it is proven that deterministic cut operators enable
more efficient on-line monitoring. Section 6 concludes our work.
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2 Preliminaries

Eagle is a temporal logic based on recursively defined temporal predicates
(rules) with four primitive temporal operators, �, 
, ·, ; . Formally:

Definition 1. Specifications in Eagle are formed by a pair 〈D,O〉, where D
is the declaration part and O the observer part. Rule definitions R define named
parametrised rules N . Monitors M specify the requirements.

D ::= R∗

R ::= {min |max} N(T1 x1, . . . , Tn xn) = F

T ::= Form | primitive type
F ::= False |True |xi | expression | ¬F |F1 ∨ F2 | � F | 
F |

F1 · F2 |F1 ; F2 |N(F1, . . . , Fn)

O ::= M∗

M ::= mon N = F

In the following, we use standard operators of propositional logic that are defined
by De Morgan’s laws.

Formulæ are evaluated over discrete finite traces of observation states. A se-
quence of states s1, s2, . . . , sn constitutes a trace σ of length |σ| = n. In order to
keep track of the positions on the trace, states will be enumerated incrementally
starting with one. σ[i,j] denotes then the sub-trace si, si+1, . . . , sj of a trace σ.
For sub-traces, the numbering of states will again begin from one. We write σ(i)
to denote the i-th state of the trace. The empty trace, i.e. the trace of length 0,
is abbreviated as ε.

Definition 2. For trace σ = s1s2 . . . s|σ|, the satisfiability relation σ, i |=D F ,
with 0 ≤ i ≤ |σ| + 1, is defined as

σ, i |=D expression iff 1 ≤ i ≤ |σ| and evaluate(expression)(σ(i)) == true
σ, i |=D �F iff i ≤ |σ| and σ, i+ 1 |=D F

σ, i |=D 
F iff 1 ≤ i and |σ| ≥ 1 and σ, i− 1 |=D F

σ, i |=D F1 · F2 iff ∃j.i ≤ j ≤ |σ| + 1 and
σ[1,j−1], i |=D F1 and σ[j,|σ|], 1 |=D F2

σ, i |=D F1 ; F2 iff ∃j.i < j ≤ |σ| + 1 and
σ[1,j−1], i |=D F1 and σ[j−1,|σ|], 1 |=D F2

σ, i |=D N(F1, . . . , Fn) iff

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if 1 ≤ i ≤ |σ| then
σ, i |=D F [F1/x1, . . . , Fn/xn],where

(N(T1 x1, . . . , Tn xn) = F ) ∈ D
if i = 0 or i = |σ| + 1 then

if (max N(T1 x1, . . . , Tn xn) = F ) ∈ D then
σ, i |=D True,

if (min N(T1 x1, . . . , Tn xn) = F ) ∈ D then
σ, i |=D False

and the propositional constants and operators are defined in the obvious way.
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If the set of declarations D follows from the context, then |= is used instead of
|=D. In formulæ where an expression can be chosen arbitrarily, i.e. it is treated
as a propositional variable, the evaluation is simplified to evaluate(p)(σ(i)) ==
true, where p denotes a propositional variable and p is True at σ(i).

Remark: It should be noted that at trace boundaries, i.e. the absent states at
index 0 and |σ| + 1, only the logical constant True and maximal defined rules
evaluate to true, while all other formulæ including tautologies evaluate to False.
Once the trace has been left, i.e. a step has been made onto the boundary of
the trace, it is possible to step back into the trace, but stepping beyond the
boundary (stepping to indices -1 and |σ| + 2) evaluates to False.

A specification 〈D,O〉 is satisfied by a trace σ if all monitoring formulæ of the
specification are satisfied on σ. Each monitoring formula is evaluated from posi-
tion one, regardless of the trace length. A trace is said to model a specification,
if the specification is satisfied by the trace. The latter we denote by σ |= 〈D,O〉.
Definition 3. A given trace σ satisfies a specification 〈D,O〉 if all monitoring
formulæ hold on the trace from position one, i.e. σ |= 〈D,O〉 iff ∀(mon N =
F ) ∈ O. σ, 1 |=D F

In the remainder of the paper, the rule max Limit() = False is assumed to be
part of every specification. It evaluates to True on the boundaries of a trace,
i.e. when the current state is either 0 or |σ| + 1, otherwise it is False.

3 Interdefinability of Sequential Composition and
Concatenation

Interdefinability of operators, i.e. expressibility of an operator in terms of an-
other operator due to syntactical transformations, simplify definitions, proofs
and implementations of a logic. A proof or implementation has only to focus on
one of the operators then, where the obtained results can be carried forward to
other operators.

For the logic Eagle, we show that sequential composition and concatena-
tion are equally expressive. Hence, sequential composition can be syntactically
formulated in terms of concatenation and vice-versa. In Section 3.1 below we
define sequential composition recursively in terms of concatenation. The other
direction, however, is not so straightforward: Section 3.2 outlines our elimination
procedure and argues its correctness.

3.1 Sequential Composition in Terms of Concatenation

A sequential composition formula F1 ; F2 can be expressed in terms of concatena-
tion by simulation of the former operator’s semantics using a fixed-point rule def-
inition. We define and add the new rule min SequentialComposition(Form F1,
Form F2) to every specification. The sequential composition operator can then
be removed from arbitrary formulæ, by substituting each sub-formula of the
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form F1 ; F2 by an application of the rule SequentialComposition(F1, F2) ,where
the rule is given as:

min SequentialComposition(Form F1,Form F2) =
(((F1 ∧ �Limit()) ·True) ∧ (Limit() · (F2 ∧ 
Limit()))) ∨�SequentialComposition(
F1, F2)

We defined the rule SequentialComposition(F1, F2) as a minimal fixed-point,
so that it will not be satisfied on the empty trace or the boundaries of a trace.
This behaviour coincides with the semantics of the sequential composition oper-
ator. For non-empty traces, the first application of the rule body splits the trace,
so that F1 is evaluated on a sub-trace with its boundary in the next state and F2

is evaluated on a sub-trace with its boundary in the previous state. Hence, the
evaluation of F1 and F2 overlaps at the index at which the rule is evaluated. Ad-
ditionally, the rule body contains a recursion �SequentialComposition(
F1, F2)
that repeats the just described splitting of the trace, but now the sub-trace
boundary for F1 is shifted one index to the right, and likewise, the evaluation of
F2 begins one index later. The recursion finally terminates when the boundary of
the trace is reached, on which SequentialComposition(F1, F2) was first invoked.

Theorem 1.2 For every formula F of Eagle, we can give a semantically equiv-
alent formula F ′ of Eagle, where F ′ contains no sequential composition sub-
formula.

This result can be carried forward to any arbitrary Eagle-specification, where
one subsequently replaces occurrences of sequential composition formulæ – from
innermost sub-formulæ to outermost sub-formulæ.

3.2 Concatenation in Terms of Sequential Composition

Concatenation can be expressed in terms of sequential composition as well. How-
ever, due to the semantics of the concatenation operator, there is no single substi-
tution mechanism for substituting all occurrences of concatenation sub-formulæ
by equivalent sequential composition sub-formulæ. For concatenation, one or
even both operands can hold on the empty trace, while sequential composition
requires that its operands hold on sub-traces of non-zero length. Therefore a
substitution of a concatenation sub-formula by an equivalent sequential compo-
sition formula has to take into account that one or both of the concatenation’s
sub-formulæ might hold on the empty trace. Depending on which of the two
operands of concatenation sub-formulæ can hold on the empty trace, different
sequential composition formulæ have to be substituted.

In the following, it will be proven that for a given Eagle formula, it can be
determined if it holds on the empty trace (Lemma 1). From this particular result
it follows immediately that concatenation is expressible in terms of sequential

2 We omit most proofs in this paper due to page number restrictions. The full proofs
were included for the review of the paper and can be obtained from the authors.
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composition, such that for each combination of concatenation sub-formulæ which
may or may not hold on the empty trace, a suitable sequential composition
formula can be substituted (Theorem 2).

We show that it is sufficient to inspect an Eagle-formula syntactically, in
order to verify whether it would be satisfied on the empty trace or not. More
importantly, rule applications do not have to be substituted by their rule bodies
at any point, which would otherwise lead to undecidability of the problem. The
latter is due to the possible encoding of a Turing-machine or equivalent device
in Eagle.3

Lemma 1. For an arbitrary formula in Eagle, it is decidable whether it is
satisfiable on the empty trace.

Proof. For an arbitrary formula we can inductively determine whether it holds
on the empty trace or not.

Base cases: The formulæ False, expression , �F , 
F , F1 ; F2 and N(. . .),
with (min N(T1 x1, . . . , Tn xn) = F ) ∈ D, are not satisfied on the empty trace,
whereas True, and N(. . .), with (max N(T1 x1, . . . , Tn xn) = F ) ∈ D, are
satisfied on the empty trace.

Inductive step: The formulæ F1 ∧ F2 and F1 · F2 are satisfied on the empty
trace, iff F1 and F2 are satisfied on the empty trace. ¬F is satisfied on the empty
trace, when F is not satisfied on the empty trace. ��
We give a translation from any formula F1 · F2 to an equivalent concatenation-
free formula, which is parametrised by which of the operands F1 and F2 are
satisfiable on the empty trace. An arbitrary formula F1 · F2 is substituted by

ψ iff ε, 1 |= ¬F1 ∧ ¬F2,
ψ ∨ F1 iff ε, 1 |= ¬F1 ∧ F2,

ψ ∨ (
Limit() ∧ F2) iff ε, 1 |= F1 ∧ ¬F2,
ψ ∨ F1 ∨ (
Limit() ∧ F2) ∨ Limit() iff ε, 1 |= F1 ∧ F2,

where ψ ≡ (F1 ; (�2Limit() ; F2)) ∨
(�(F1 ∧ Limit()) ; (�2Limit() ; F2)).

Theorem 2. For every formula F of Eagle, we can give a semantically equiv-
alent formula F ′ of Eagle, where F ′ contains no concatenation sub-formula.

Again, this result can be carried forward to any arbitrary Eagle-specification,
where one subsequently replaces occurrences of concatenation formulæ – from
innermost sub-formulæ to outermost sub-formulæ.

4 Deterministic Cut Operators

Both sequential composition and concatenation allow a trace to be split non-de-
terministically, i.e. due to the semantics of the operators, several cut positions
3 It is in fact straightforward to implement a Minsky machine in Eagle, which is

Turing complete [Min61].
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may satisfy a formula F1 ; F2 or F1 · F2 on a given trace. The designer of a
monitoring specification may however desire a unique position of the cut, i.e. a
deterministic choice of where a trace is being cut.

In the following, mixfix operators are introduced which allow us to express de-
terministic cuts in specifications. These operators extend sequential composition
and concatenation by additionally verifying that there is no shorter, respectively
longer, sub-trace on which the sub-formula holds. It is shown that all determin-
istic cut operators can be formulated in unextended Eagle. Even though the
operators do not increase Eagle’s expressiveness, we show in Section 5 that the
new operators enable more efficient on-line monitoring.

4.1 Syntax and Semantics of Deterministic Cut Operators

Eagle with deterministic cut operators extends the syntax of Definition 1. For
brevity just the new BNF production F is given. The other productions are left
unchanged.

Definition 4. Eagle[] denotes an extension of Eagle with additional mixfix
operators, where the production F of Definition 1 is replaced by

F ::= False |True |xi | expression | ¬F |F1 ∨ F2 | � F | 
F |
F1 ◦ F2 | �F1� ◦ F2 | �F1� ◦ F2 | F1 ◦ �F1� | F1 ◦ �F1� | N(F1, . . . , Fn)

◦ ::= ; | ·
In conjunction with a concatenation or sequential composition operator, we write
�F � and �F � to denote that F is only satisfied on its respectively shortest and
longest sub-trace of all the sub-traces that satisfy the unrestricted F . In the
following, we will then refer to �F � and �F � as the minimally and maximally
trace length restricting formulæ, respectively. As with the definition of Eagle[]’s
syntax, only the extensions to Eagle’s semantics is given.

Definition 5. On traces σ = s1s2 . . . s|σ| the satisfiability relation σ, i |=D F ,
with 0 ≤ i ≤ |σ| + 1, is extended by

σ, i |=D �F1� · F2 iff ∃j. i ≤ j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j,|σ|], 1 |=D F2 and ¬∃k.i− 1 ≤ k < j − 1 and σ[1,k], i |= F1

σ, i |=D �F1� · F2 iff ∃j. i ≤ j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j,|σ|], 1 |=D F2 and ¬∃k.j ≤ k ≤ |σ| and σ[1,k], i |= F1

σ, i |=D F1 · �F2� iff ∃j. i ≤ j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j,|σ|], 1 |=D F2 and ¬∃k.j < k ≤ |σ| + 1 and σ[k,|σ|], 1 |= F2

σ, i |=D F1 · �F2� iff ∃j. i ≤ j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j,|σ|], 1 |=D F2 and ¬∃k.1 ≤ k < j and σ[k,|σ|], 1 |= F2

σ, i |=D �F1� ; F2 iff ∃j. i < j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j−1,|σ|], 1 |=D F2 and ¬∃k.i ≤ k < j − 1 and σ[1,k], i |= F1
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σ, i |=D �F1� ; F2 iff ∃j. i < j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j−1,|σ|], 1 |=D F2 and ¬∃k.j ≤ k ≤ |σ| and σ[1,k], i |= F1

σ, i |=D F1 ; �F2� iff ∃j. i < j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j−1,|σ|], 1 |=D F2 and ¬∃k.j ≤ k ≤ |σ| and σ[k,|σ|], 1 |= F2

σ, i |=D F1 ; �F2� iff ∃j. i < j ≤ |σ| + 1 and σ[1,j−1], i |=D F1 and
σ[j−1,|σ|], 1 |=D F2 and ¬∃k.1 ≤ k < j − 1 and σ[k,|σ|], 1 |= F2

We depict three applications of the deterministic cut operators in Figure 2 below,
where we show the evaluation of σ, 1 |= Eventually(err) ; �rst�, σ, 1 |= ϕ and
σ, 1 |= ψ on an example trace σ as shown below:

Eventually(err) ; �rst�

ϕ

ψ

ϕ ≡ �Eventually(err ∧ Eventually(rst))� · ok
ψ ≡ True · ��err ∧ Eventually(rst)� · ok�

Fig. 2. Examples of deterministic cut operator applications

Remark : It should be noted that while σ, 1 |= Eventually(err) ; �rst� is satisfied
on the example trace, we have σ, 1 �|= Eventually(err) ; �ok�. The longest sub-
trace on which “ok” is satisfied is the whole trace, but for that cut the left-hand
formula Eventually(err) is not true.

4.2 Definability of Deterministic Cut Operators in Eagle

It is not apparent whether the mixfix variants of sequential composition and
concatenation can also be defined in Eagle. In the following it will be shown
that Eagle[] is not more expressive than Eagle. The translation of the maximal
mixfix operators into Eagle is given first, followed by the translation for the
minimal mixfix operators.

For the maximal mixfix-operators, we will use the rules4

4 NonMtMxLT spells out as NonEmptyMaximalLeftTrace, etc.
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min NonMtMxLT(Form F1,Form F2) =
(((F1 ∧ �Limit()) · F2) → ¬((F1 ∧ Eventually(�2Limit())) · True)) ∨�NonMtMxLT(
F1, F2,),

min NonMtMxRT(Form F1,Form F2) =
((F1 · (F2 ∧ �Limit())) → ¬(True · (F2 ∧ Eventually(�2Limit())))) ∨�NonMtMxRT(F1,
F2),

min NonMtMxOvrlpngLT(Form F1,Form F2) =
(((F1 ∧ �Limit()) ; F2) → ¬((F1 ∧ Eventually(�2Limit())) ; True)) ∨�NonMtMxOvrlpngLT(
F1, F2,),

min NonMtMxOvrlpngRT(Form F1,Form F2) =
((F1 ; (F2 ∧ �Limit())) → ¬(True ; (F2 ∧ Eventually(�2Limit())))) ∨�NonMtMxOvrlpngRT(F1,
F2),

in order to denote the semantics of �F1�·F2, F1 ·�F2�, �F1� ; F2 and F1 ; �F2� on
non-empty traces, respectively. Since �F1� ·F2 and F1 · �F2� could be satisfiable
on the empty trace, their corresponding rules in the respective translations have
to be accompanied by a formula that explicitly handles the formulæ holding on
the empty trace.

We outline the semantics of NonMtMxLT(F1, F2) only, since the semantics
of the remaining rules can be explained similarly. When NonMtMxLT(F1, F2)
is substituted for �F1� · F2, the first invocation of its rule body will cause a cut
of the form (((F1 ∧ �Limit()) · F2) → ¬((F1 ∧ Eventually(�2Limit())) · True)).
The sub-formula (F1 ∧ �Limit()) · F2 denotes that the cut is enforced so that
the right boundary of the left-subtrace follows immediately the current index at
which the rule body is evaluated at. Then, the implication following the formula
¬((F1 ∧ Eventually(�2Limit())) · True)) assures that F1 is not satisfied on any
sub-trace for which the cut is made further to the right. Alternatively, the rule
body enters a recursion due to the disjunctive formula �NonMtMxLT(
F1, F2).
With each recursion, the cut is moved one index further to the right, where the
recursion terminates as soon as the boundary of the trace under inspection is
reached.

With these rule definitions, the maximal mixfix operators can be expressed in
Eagle as

�F1� · F2 ≡ (((F1 ∧ Limit()) · F2) → ¬((F1 ∧ ¬Limit()) · True)) ∨
NonMtMxLT(F1, F2)

F1 · �F2� ≡ ((F1 · (F2 ∧ Limit())) → ¬(True · (F2 ∧ ¬Limit()))) ∨
NonMtMxRT(F1, F2)

�F1� ; F2 ≡ NonMtMxOvrlpngLT(F1, F2)
F1 ; �F2� ≡ NonMtMxOvrlpngRT(F1, F2)

Theorem 3. For each of the formulæ �F1�·F2, F1 ·�F2�, �F1� ; F2 and F1 ; �F2�
of Eagle[] there exists a semantically equivalent formula in Eagle.

For the minimal mixfix-operators, the translations are much simpler. Here, we
only need an additional rule
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min ShorterNonEmptyTrace(Form F ) =
((F ∧ �Limit()) · �True) ∨ �ShorterNonEmptyTrace(
F )

which is satisfied when there is a shorter non-empty sub-trace of the current trace
under inspection on which F is satisfied. In the actual translation, it is then suffi-
cient to verify whether the restricted sub-formula cannot be satisfied on a shorter
sub-trace. For example, �F1�·F2 becomes (F1∧¬ShorterNonEmptyTrace(F1))·F2,
which reflects the semantics of �F1� ·F2 under the assumption that F1 is not sat-
isfied on the empty trace. Since for mixfix concatenation formulæ it is the case
that the trace length restricted formula can also be satisfied on the empty trace,
we have to add a formula to the translations which explicitly addresses this.

When also considering the minimal mixfix operators’ semantics on the empty
trace, we get the following translations into Eagle:

�F1� · F2 ≡ ((F1 ∧ Limit()) · F2) ∨
(((F1 ∧ ¬ShorterNonEmptyTrace(F1)) · F2) → ¬(F1 ∧ Limit() · True))

F1 · �F2� ≡ (F1 · (F2 ∧ Limit())) ∨
((F1 · (F2 ∧ ¬ShorterNonEmptyTrace(F2))) → ¬(True · (F2 ∧ Limit())))

�F1� ; F2 ≡ (F1 ∧ ¬ShorterNonEmptyTrace(F1)) ; F2

F1 ; �F2� ≡ F1 ; (F2 ∧ ¬ShorterNonEmptyTrace(F2))

Theorem 4. For each of the formulæ �F1�·F2, F1 ·�F2�, �F1� ; F2 and F1 ; �F2�
of Eagle[] there exists a semantically equivalent formula in Eagle.

5 On-Line Monitoring of Deterministic Cut Operators

In [BGHS04b], a calculus for Eagle was presented that defines directly an on-
line monitoring algorithm in which observation states are consumed on a step-by-
step basis in tandem with a partial evaluation of the monitoring formula. Here,
Eagle’s calculus is extended by rules that encode the semantics of the mixfix
operators of Eagle[]. For the calculus of Eagle[], we establish that the asymp-
totic space complexity of on-line monitoring for the variants with restrictions
applied to the left operand is no worse than the asymptotic space complex-
ity of the sub-formulæ. For the operators with restrictions applied to the right
operand, we show that the space complexity coincides with the corresponding
non-deterministic operators.

The extended calculus allows us an efficient evaluation, which can not be
achieved by substituting appearances of mixfix operators by their semantically
equivalent Eagle-formulæ. For example, in the extended calculus the evaluation
of F1 ; �F2� takes |σ| applications of eval 〈〈. . .〉〉, while the semantically equivalent
Eagle-formula F1 ; (F2 ∧ ¬ShorterNonEmptyTrace(F2)) takes already |σ|2 ap-
plications of eval 〈〈. . .〉〉 due to evaluation of the sequential composition operator
in the formula, plus the evaluation steps for the rule ShorterNonEmptyTrace(F2).
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5.1 Eagle’s On-Line Monitoring Algorithm

The evaluation calculus presented in [BGHS04b] used four functions. First, a
formula is initialised using init〈〈. . .〉〉, which substitutes rules by their rule bodies.
Second, eval 〈〈. . .〉〉 evaluates the resulting formula in the current state, where
update〈〈. . .〉〉 takes care of 
-operators so that a history of states does not need
to be stored. Third, value〈〈. . .〉〉 determines the truth value of the verification at
the boundaries of the trace.

In the following, ρb.F (b) is a closed term which denotes a fixed-point, such that
ρb.F (b) = F (ρb.F (b)), where b represents the recursion variable. Furthermore,
named operators are introduced. The named operators are indeed functions of
some type Form × . . . × Form → Form such that it is possible to rewrite a
formula during evaluation.

Rules are assumed to have their parameters ordered by their type in the
form N(Form F1, . . . ,Form Fm, primitive type x1, . . . , primitive type xn) = F .
W.l.o.g. all definitions can be rewritten into this form by simply reordering the
rule’s arguments. The arguments are then written as two vectors �F and �P with
types −−−→Form and �T respectively. Similar to the rewriting of �, each rule N
is rewritten as N : Form × �T → Form during initialisation, where the first
argument denotes a recursive application of the rule body of N .

Definition 6. A monitoring formula F holds on a trace σ = s1s2 . . . s|σ|, iff the
formula value〈〈eval〈〈. . . eval〈〈eval〈〈init〈〈F, null, null〉〉, s1〉〉, s2〉〉 . . ., s|σ|〉〉〉〉 evalu-
ates to True, where null denotes a special element that is not equivalent to any
other formula of Eagle. Instances of vector types −−−→Form and �T are denoted
by 〈F1, . . . , Fn〉 and 〈p, . . . , r〉 respectively. For both vector types, �∅ denotes the
empty vector. The rules for the temporal operators and temporal predicates are:

init〈〈�F, Z, b′〉〉 = Next(init〈〈F, Z, b′〉〉)
init〈〈
F, Z, b′〉〉 = Previous(α, value〈〈α〉〉), where α = init〈〈F, Z, b′〉〉

init〈〈F1 ◦ F2, Z, b′〉〉 = init〈〈F1, Z, b′〉〉 ◦ init〈〈F2, Z, b′〉〉, where ◦ ∈ {·, ; }
init〈〈N(�F , �P ), N(�F , �P ′), b′〉〉 = N(b′, �P )

init〈〈N(�F , �P ), Z, b′〉〉 = N(ρb.init〈〈F [F̂ / �F ], N(�F , �P ), b〉〉, �P ), where

F̂ = init〈〈�F , Z, b′〉〉 and Z 
≡ N(�F , . . .)

value〈〈Next(F )〉〉 =

j
F if at the beginning of the trace
False if at the end of the trace or |σ| = 0

value〈〈Previous(F, F̂ )〉〉 =

j
False if at the beg. of the trace or |σ| = 0
value〈〈F 〉〉 if at the end of the trace

value〈〈F1 · F2〉〉 = value〈〈F1〉〉 ∧ value〈〈F2〉〉
value〈〈F1 ; F2〉〉 = False

value〈〈N(�F , �P )〉〉 =

j
True if (max N(. . .)) ∈ R,
False otherwise
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eval〈〈Next(F ), s〉〉 = update〈〈F, s,null, null〉〉
eval〈〈Previous(F, F̂ ), s〉〉 = eval〈〈F̂ , s〉〉

eval〈〈F1 · F2, s〉〉 = if value〈〈F1〉〉 = True then (α · F2) ∨ eval〈〈F2, s〉〉
else α · F2, where α = eval〈〈F1, s〉〉

eval〈〈F1 ; F2, s〉〉 = if value〈〈α〉〉 = True then (α ; F2) ∨ eval〈〈F2, s〉〉
else α ; F2, where α = eval〈〈F1, s〉〉

eval〈〈N(ρb′.F (b′), �P ), s〉〉 = eval〈〈F (ρb′.F (b′))[eval〈〈�P , s〉〉/�p ], s〉〉

update〈〈Next(F ), s, Z, b′〉〉 = Next(update〈〈F, s, Z, b′〉〉)
update〈〈Previous(F, F̂ ), s, Z, b′〉〉 = Previous(update〈〈F, s, Z, b′〉〉, eval〈〈F, s〉〉)

update〈〈F1 ◦ F2, s, Z, b′〉〉 = update〈〈F1, s, Z, b′〉〉 ◦ F2, where ◦ ∈ { ; , ·}
update〈〈α, s, α, b′〉〉 = N(b′, �P ), where α ≡ N(ρb.F (b), �P )

update〈〈α, s, F̂ , Z〉〉 = N(ρb′.update〈〈F (ρb′.F (b′)), s, α, �P 〉〉, �P ),

where α ≡ N(ρb.F (b), �P ) and Z 
≡ N(�F , . . .)

The rules for propositional constants and operators are defined in the obvious way.

We provide a rather simple example that shows the evaluation of the temporal
operators � and 
. As example trace we have chosen a trace of length one,
where in its only state the proposition p is true.
Evaluating �
p on 〈{p}〉:
1. value〈〈eval 〈〈init〈〈�
p, null, null〉〉, s1〉〉〉〉
2. value〈〈eval 〈〈Next(init〈〈
p, null, null〉〉), s1〉〉〉〉

For the next step, init〈〈
p, null, null〉〉 is rewritten to Previous(init〈〈p, null,
null〉〉, value〈〈init〈〈p, null, null〉〉〉〉). The first parameter of Previous(. . .) stores
the formula that would be evaluated after the 
-operator. In the second pa-
rameter, the past is stored, which is referring to the left boundary of the trace
now.

3. value〈〈eval 〈〈
Next(Previous(init〈〈p, null, null〉〉, value〈〈init〈〈p, null, null〉〉〉〉)), s1〉〉〉〉

4. value〈〈eval 〈〈Next(Previous(p, value〈〈p〉〉)), s1〉〉〉〉
5. value〈〈eval 〈〈Next(Previous(p,False)), s1〉〉〉〉
6. value〈〈update〈〈Previous(p,False), s1, null, null〉〉〉〉

When Next(. . .) is evaluated, it is rewritten to update〈〈. . .〉〉. The last two pa-
rameters of update〈〈. . .〉〉 are only used in conjunction with the evaluation of rules,
so that they can be ignored in this example. update〈〈. . .〉〉 rewrites the arguments
of appearances of Previous(. . .), since due to the next operator, previous states
occur now as being shifted one state to the end of the trace. Hence, the first
parameter of Previous(. . .), which was used to store the initialised parameter
of the 
-operator, is evaluated in this state and the result of this evaluation is
placed in the second parameter.
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7. value〈〈Previous(update〈〈p, s1, null, null〉〉, eval 〈〈p, s1〉〉)〉〉
value〈〈. . .〉〉 is now referring to the right boundary of the trace. Hence, the

second parameter of Previous(. . .), which is storing the result of the last state,
determines the outcome of value〈〈. . .〉〉.
8. value〈〈Previous(p,True)〉〉
9. value〈〈True〉〉

10. True

5.2 Eagle’s Monitoring Algorithm Extended

The following ternary rules LMxConcat(. . .), RMnConcat(. . .), RMxConcat(. . .),
LMxSeqComp(. . .), and RMnSeqComp(. . .), RMxSeqComp(. . .), with self-ex-
planatory correspondences to their respective mixfix operators, are used during
evaluation to sort out the shortest/longest sub-traces by updating the third ar-
gument depending on whether the first two arguments allow a cut to be made
or not.

Definition 7. (Extension of Definition 6) Eagle’s calculus is extended by mix-
fix variants of sequential composition, such that

init〈〈�F1� ◦ F2, Z, b′〉〉 = �init〈〈F1, Z, b′〉〉� ◦ init〈〈F2, Z, b′〉〉
init〈〈�F1� ◦ F2, Z, b′〉〉 = ϕ(init〈〈F1, Z, b′〉〉, init〈〈F2, Z, b′〉〉, null)
init〈〈F1 ◦ �F2�, Z, b′〉〉 = ϕ(init〈〈F1, Z, b′〉〉, init〈〈F2, Z, b′〉〉, null)
init〈〈F1 ◦ �F2�, Z, b′〉〉 = ϕ(init〈〈F1, Z, b′〉〉, init〈〈F2, Z, b′〉〉, List(False, False, null))

value〈〈null〉〉 = False

value〈〈List(F1, F2, F3)〉〉 = if value〈〈F2〉〉 = True then F1

else value〈〈F3〉〉
value〈〈�F1� · F2〉〉 = value〈〈F1〉〉 ∧ value〈〈F2〉〉

value〈〈LMxConcat(F1, F2, F3)〉〉 = if value〈〈F1〉〉 = True then value〈〈F2〉〉
else value〈〈F3〉〉

value〈〈RMnConcat(F1, F2, F3)〉〉 = if value〈〈F2〉〉 = True then value〈〈F1〉〉
else value〈〈F3〉〉

value〈〈RMxConcat(F1, F2, F3)〉〉 = value〈〈Append(F3, List(value〈〈F1〉〉, F2, null))〉〉
value〈〈�F1� ; F2〉〉 = False

value〈〈LMxSeqComp(F1, F2, F3)〉〉 = value〈〈RMnSeqComp(F1, F2, F3)〉〉 =

value〈〈RMxSeqComp(F1, F2, F3)〉〉 = value〈〈F3〉〉

eval〈〈null, s〉〉 = null

eval〈〈List(F1, F2, F3), s〉〉 = List(F1, β, γ)

eval〈〈�F1� · F2, s〉〉 = if value〈〈F1〉〉 = True then β

else �α� · F2
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eval〈〈LMxConcat(F1, F2, F3), s〉〉 = if value〈〈F1〉〉 = True then

LMxConcat(α, F2, β)

else LMxConcat(α, F2, γ)

eval〈〈RMnConcat(F1, F2, F3), s〉〉 =

RMnConcat(α, F2, eval〈〈List(value〈〈F1〉〉, F2, F3), s〉〉)
eval〈〈RMxConcat(F1, F2, F3), s〉〉 =

RMxConcat(α, F2, eval〈〈Append(F3, List(value〈〈F1〉〉, F2, null)), s〉〉)
eval〈〈�F1� ; F2, s〉〉 = if value〈〈α〉〉 = True then β

else �α� ; F2

eval〈〈LMxSeqComp(F1, F2, F3), s〉〉 = if value〈〈α〉〉 = True then

LMxSeqComp(α, F2, β)

else LMxSeqComp(α, F2, γ)

eval〈〈RMnSeqComp(F1, F2, F3), s〉〉 =

RMnSeqComp(α, F2, eval〈〈List(value〈〈α〉〉, F2, F3), s〉〉)
eval〈〈RMxSeqComp(F1, F2, F3), s〉〉 =

RMxSeqComp(α, F2, eval〈〈Append(F3, List(value〈〈α〉〉, F2, null)), s〉〉)
update〈〈�F1� ◦ F2, s, Z, b′〉〉 = �update〈〈F1, s, Z, b′〉〉� ◦ F2

update〈〈ϕ(F1, F2, F3), s, Z, b′〉〉 =

ϕ(update〈〈F1, s, Z, b′〉〉, F2, F3)

where α ≡ eval〈〈F1, s〉〉, β ≡ eval〈〈F2, s〉〉, γ ≡ eval〈〈F3, s〉〉, ◦ ∈ { ; , ·}, and ϕ denotes
the rule LMxSeqComp, RMnSeqComp, RMxSeqComp, LMxConcat, RMnConcat,
RMxConcat, which is apparent from the context.

Theorem 5. The semantics of Eagle[]’s calculus (Definition 7) coincide with
the semantics of the corresponding logic (Definition 5).

5.3 On-Line Monitoring Complexity

We now consider the time and space requirements of the evaluation of con-
catenation, sequential composition and the mixfix operators. In [BGHS04a], we
showed that the time and space complexity of the future LTL fragment of Ea-
gle is independent of the length of the monitoring trace. We first show below
that the evaluation of a non-deterministic cut operator F1 ◦F2, ◦ ∈ { ; , ·}, whose
operands are free of cut formula may require O(|σ|2) number of calls to evalu-
ate F2 (Theorem 6). However, for the mixfix operators with restrictions on the
left, the complexity is reduced to being independent of the trace length again
(Theorem 7).

Consider an arbitrary formula F1 · F2. The state evaluation rule for concate-
nation is given by

eval 〈〈F1 · F2, s〉〉 = if value〈〈F1〉〉 = True then (eval 〈〈F1, s〉〉 · F2) ∨ eval 〈〈F2, s〉〉
else eval 〈〈F1, s〉〉 · F2
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In the worst case scenario of evaluating concatenation, a non-deterministic cut
is made at each state of a trace. This can be enforced by the formula True ·F2.
On an arbitrary trace σ, True · F2 is evaluated as

value〈〈eval 〈〈. . . eval 〈〈eval 〈〈init〈〈True · F2, null, null〉〉, s1〉〉, s2〉〉 . . ., s|σ|〉〉〉〉

By straightforward applications of rules of Eagle[]’s calculus, the evaluation
can be unfolded as

value〈〈
|σ|∨

n=1

eval 〈〈. . . eval 〈〈eval 〈〈init〈〈F2, null, null〉〉, sn〉〉, sn+1〉〉 . . ., s|σ|〉〉〉〉

Relative to the evaluation of F2, the formula requires (|σ|2 + |σ|)/2 appli-
cations of eval〈〈. . .〉〉. This argumentation can be carried forward to sequential
composition as well, and additionally, to all mixfix operators with restrictions
on the right operand.

Theorem 6. For a given trace σ, the operators F1 · F2, F1 ; F2, F1 · �F2�, F1 ·
�F2�, F1 ; �F2� and F1 ; �F2� require up to O(|σ|2) applications of eval〈〈. . .〉〉 in
addition to the applications required to evaluate F1 and F2.

When we consider a mixfix formula with deterministic restrictions on the left
operand, e.g. �F1� · F2, then we can show that we only need linear-space for its
evaluation – relative to the space required to evaluate the operands. By taking
the state-evaluation rule for �F1� · F2, i.e.

eval 〈〈�F1� · F2, s〉〉 = if value〈〈F1〉〉 = True then eval 〈〈F2, s〉〉
else �eval 〈〈F1, s〉〉� · F2

one can immediately see that the non-deterministic choice of concatenation (i.e.
(eval 〈〈F1, s〉〉 ·F2) ∨eval 〈〈F2, s〉〉) is replaced by a single application of eval〈〈. . .〉〉.
We can carry this forward to all mixfix operators with restrictions on the left
operand, so that we obtain the following result:

Theorem 7. For a given trace σ, the left mixfix operators �F1� · F2, �F1� · F2,
�F1� ; F2 and �F1� ; F2 require only O(|σ|) applications of eval〈〈. . .〉〉 in addition
to the applications required to evaluate F1 and F2.

6 Conclusion

For the runtime verification logic Eagle, we have shown that concatenation
and sequential composition are equally expressive. Furthermore, mixfix oper-
ators were introduced, which limit the possible number of cuts of sequential
composition and concatenation. The new operators restrict the lengths of the
sequential composition/concatenation sub-traces, such that the corresponding
sub-formula is satisfied on a sub-trace of minimal or maximal length. Since the
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cut is then uniquely defined on the trace, the mixfix variants of sequential com-
position and concatenation are deterministic counterparts of their corresponding
non-mixfix operators. We further showed that the semantics of the mixfix op-
erators are already definable in unextended Eagle. For all mixfix operators,
semantically equivalent mixfix operator free formulæ were presented. We then
extended Eagle’s on-line monitoring calculus with rules for the new operators,
where we could show that right-hand side restricted mixfix operators evaluate as
efficiently as their non-deterministic counterparts, and left-hand side restricted
mixfix operators can be evaluated more efficiently.
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