
ar
X

iv
:0

80
4.

11
09

v1
 [

qu
an

t-
ph

]
 7

 A
pr

 2
00

8

Classical and Quantum Algorithms for

Exponential Congruences

Wim van Dam1 and Igor E. Shparlinski2

1 Department of Computer Science, Department of Physics, University of California,
Santa Barbara, CA 93106-5110, USA

vandam@cs.ucsb.edu
2 Department of Computing, Macquarie University, NSW 2109, Australia

igor@ics.mq.edu.au

Abstract. We discuss classical and quantum algorithms for solvabil-
ity testing and finding integer solutions x, y of equations of the form
afx + bgy = c over finite fields Fq. A quantum algorithm with time com-
plexity q3/8(log q)O(1) is presented. While still superpolynomial in log q,
this quantum algorithm is significantly faster than the best known classi-
cal algorithm, which has time complexity q9/8(log q)O(1). Thus it gives an
example of a natural problem where quantum algorithms provide about
a cubic speed-up over classical ones.

1 Introduction

Let Fq be a finite field of q elements and let F∗
q denote the multiplicative

group of nonzero elements of Fq. For a, b, c, f, g ∈ F
∗
q we consider the

equations
afx + bgy = c (1)

in nonnegative integers x and y.

Equation (1) has a long history of study in number theory. In partic-
ular, it is dual closely related to the classical problem of finding f, g ∈ Fq

for fixed a, b and x, y from the theory cyclotomic classes, see [2, 11], which
looks like a dual problem to studying Equation (1) but in fact, after a
change of variables, become equivalent.

Furthermore, Equation (1) and variants of it also appeared in recent
work of A. Lenstra and B. de Weger [8] and have been shown to be
of cryptographic significance. In particular, the question about difficulty
of finding solutions to Equation (1) has been discussed in [8] but now
concrete results have been know before the present work.

In the theory of quantum computing the task of finding the solutions
to Equation (1) is of importance when trying to solve the hidden subgroup

problem for semi-direct product groups Z/N ⋊ Z/p with p = Θ(
√
N),

http://arxiv.org/abs/0804.1109v1

see [1], where, as usual, A = Θ(B) means that A = O(B) and B =
O(A) (hereafter all implied constants are absolute). Furthermore it is
also natural to consider this problem as a generalization of the discrete
logarithm problem in Fq, which can be solved efficiently using Shor’s
algorithm [10].

In this article we use some number theoretic tools to design classi-
cal and quantum algorithms that are more efficient than the brute force
search (but unfortunately still have a running time exponential in the
input size log q). We use our classical algorithm to measure the level
of improvement that can be achieved by allowing quantum algorithms.
Ignoring log q terms, the classical algorithm that we present here has
complexity O∗(q9/8) (which seems to be the best known) whereas we
also present a quantum algorithm with complexity O∗(q3/8), where, as
usual, A = O∗(B) means that A = B(logB)O(1). In particular, it gives
an example of a natural problem where quantum algorithms provide an
asymptotically cubic speed-up over classical ones.

Certainly if f or g is a primitive root, which generates all of F∗
q, then

the problem is not harder than the discrete logarithm problem. More-
over, in general our results suggest that finding solutions to Equation (1)
becomes easier in case f or g is of large order, but still it appears to be
much harder than the discrete logarithm problem.

2 The Number of Solutions to the Equation

2.1 The Worst Case

Here we use bounds of multiplicative character sums over finite fields to
show that if the orders of f and g are large enough, then Equation (1)
has a solution with at least one reasonably small component x or y.

Lemma 1. Let a, b, c ∈ F
∗
q and let f and g ∈ Fq be of multiplicative orders

s and t, respectively. Then for any positive integer r ≤ t, the equation

afx + bgy = c has rs/(q − 1) + O(q1/2 log q) solutions in nonnegative

integers x and y with x ∈ {0, . . . , s− 1} and y ∈ {0, . . . , r − 1}.

Proof. Let k = (q − 1)/s and let Xk be the group of all k multiplicative
characters χ : Fq → C of order k, that is, χk = χ0, the principal character,
for any χ ∈ Xk (see [9]). Note that for all non-empty Xk this group
contains k elements. For any u ∈ Fq we have

1

k

∑

χ∈Xk

χ(u) =

{

1, if us = 1,

0, otherwise.

Noting that u ∈ Fq belongs to the group generated by f if and only if
us = 1, we derive that the number Na,b,c(r, s) of solutions to Equation (1)
with x ∈ {0, . . . , s− 1} and y ∈ {0, . . . , r − 1} equals

Na,b,c(r, s) =

r−1
∑

y=0

1

k

∑

χ∈Xk

χ(a−1(c− bgy)).

Changing the order of summation and separating the term r/k corre-
sponding to the principal character χ0 we obtain

∣

∣

∣
Na,b,c(r, s)−

r

k

∣

∣

∣
≤ 1

k

∑

χ∈Xk\{χ0}

χ(a−1)

r−1
∑

y=0

χ(c− bgy).

By [12, Theorem 3] (see also [5]) each summation over y is bounded by
O(q1/2 log q) (provided 1 ≤ r ≤ t), hence we have

Na,b,c(r, s) =
r

k
+O(q1/2 log q),

which concludes the proof. ⊓⊔

From Lemma 1 we can immediately conclude the following.

Corollary 1. Let a, b, c ∈ F
∗
q and let f and g ∈ Fq be of multiplicative

orders s and t, respectively. There exists an absolute constant C > 0 such

that if for some integer r we have

Cq3/2s−1 log q ≤ r ≤ t,

then the equation afx + bgy = c has a solution in integers x and y with

x ∈ {0, . . . , s− 1} and y ∈ {0, . . . , r − 1}.

We remark that the constant C in Corollary 1 is independent of all vari-
ables involved (a, b, c, f, g and q) and that it is effectively computable.
This result reduces the number of (x, y) pairs that has to be searched for
a solution to Equation (1). In Sections 3.1 and 4.1 we show how this re-
duction can be used to construct non-trivial worst case algorithms, both
classical and quantum.

2.2 The Typical Case

To solve the equation afx + bgy = c for typical c ∈ Fq we now show that
for almost all c ∈ F

∗
q the results of Corollary 1 can be improved, which in

turn will yield better average case algorithms for the central problem.

Lemma 2. Let a, b, c ∈ F
∗
q and let f and g ∈ Fq be of multiplicative orders

s and t, respectively. For any positive integer r ≤ t and δ > 0, for all but

q/δ2 elements c ∈ F
∗
q, the equation af

x+bgy = c has rs/q+ϑδ
√
r solutions

in nonnegative integers x and y with x ∈ {0, . . . , s−1}, y ∈ {0, . . . , r−1}
and −1 < ϑ < 1.

Proof. Let ψ : Fq → C be a nontrivial additive character. We recall that
for for any u ∈ Fq we have

1

q

∑

λ∈Fq

ψ(λu) =

{

1, if v = 0,

0, if v ∈ F
∗
q.

As in the proof of Lemma 1 we use Na,b,c(r, s) to denote the number of
solutions to Equation (1) with x ∈ {0, . . . , s − 1} and y ∈ {0, . . . , r − 1}.
We have

Na,b,c(r, s) =

s−1
∑

x=0

r−1
∑

y=0

1

q

∑

λ∈Fq

ψ(λ(afx + bgy − c))

=
sr

q
+

1

q

∑

λ∈F∗

q

s−1
∑

x=0

r−1
∑

y=0

ψ(λ(afx + bgy − c)),

which averaged over c ∈ Fq equals sr/q. To calculate the variance from
its average, we look at the value defined by

Wa,b(r, s) =
∑

c∈Fq

(

Na,b,c(r, s) −
rs

q

)2
,

which equals

1

q2

∑

c∈Fq

∑

λ1,λ2∈F∗

q

s−1
∑

x1,x2=0

r−1
∑

y1,y2=0

ψ(λ1(af
x1+bgy1 −c)+λ2(afx2+bgy2 −c))

=
1

q2

∑

λ1,λ2∈F∗

q

s−1
∑

x1,x2=0

ψ(a(λ1f
x1 + λ2f

x2))

r−1
∑

y1,y2=0

ψ(b(λ1g
y1 + λ2g

y2))×

∑

c∈Fq

ψ(c(λ2 + λ1)).

The inner sum over c vanishes unless λ1 = −λ2 (in which case it is q) and
therefore

Wa,b(r, s) =
1

q

∑

λ∈F∗

q

s−1
∑

x1,x2=0

ψ(aλ(fx1 − fx2))

r−1
∑

y1,y2=0

ψ(bλ(gy1 − gy2))

=
1

q

∑

λ∈F∗

q

∣

∣

∣

∣

∣

s−1
∑

x=0

ψ(aλfx)

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

r−1
∑

y=0

ψ(bλgy)

∣

∣

∣

∣

∣

2

.

It is well known that
∣

∣

∣

∣

∣

s−1
∑

x=0

ψ(aλfx)

∣

∣

∣

∣

∣

2

≤ q1/2,

for example, this follows from [9, Theorem 8.78] taken with k = 1 and
g0, g1, . . . , gs−1 the impulse response sequence (it can also be derived from
the bound of Gauss sums, see [9, Theorem 5.32]). Therefore

Wa,b(r, s) ≤
∑

λ∈Fq

∣

∣

∣

∣

∣

s−1
∑

x=0

ψ(aλfx)

∣

∣

∣

∣

∣

2

(note that we have added λ = 0 into the last sum). We also have the
straightforward equality

∑

λ∈Fq

∣

∣

∣

∣

∣

r−1
∑

y=0

ψ(bλgy)

∣

∣

∣

∣

∣

2

=
∑

λ∈Fq

∣

∣

∣

∣

∣

r−1
∑

y=0

ψ(λgy)

∣

∣

∣

∣

∣

2

= qr

(essentially, this is Parseval’s identity, i.e. we used the unitarity of the
Fourier transformation over Fq on the characteristic vector of the set
{g0, . . . , gr−1}) and thus

Wa,b(r, s) =
∑

c∈Fq

∣

∣

∣

∣

∣

Na,b,c(r, s)−
rs

q

∣

∣

∣

∣

∣

2

≤ qr.

Hence, for any δ > 0, the violation
∣

∣

∣

∣

∣

Na,b,c(r, s) −
rs

q

∣

∣

∣

∣

∣

≥ δ
√
r

holds for no more than q/δ2 values of c ∈ F
∗
q. ⊓⊔

Using δ =
√
log q in Lemma 2, we see that for all but q/log q = o(q)

elements c ∈ F
∗
q the equation af

x+ bgy = c has rs/q+ϑ
√
r log q solutions

in x ∈ {0, . . . , s − 1}, y ∈ {0, . . . , r − 1} with −1 < ϑ < 1. Therefore we
can immediately conclude the following.

Corollary 2. Let a, b, c ∈ F
∗
q and let f and g ∈ Fq be of multiplicative

orders s and t, respectively. If for some integer r we have

q2s−2 log q ≤ r ≤ t,

then for all but o(q) elements c ∈ F
∗
q, the equation afx + bgy = c has a

solution in integers x and y with x ∈ {0, . . . , s−1} and y ∈ {0, . . . , r−1}.

3 Classical Algorithms

3.1 Worst Case Classical Algorithm

We start with a classical deterministic algorithm that is more efficient
than brute search.

Theorem 1. Let a, b, c, f, g ∈ F
∗
q. One can either find a solution x, y ∈

Z≥0 of the equation af
x+bgy = c or decide that it does not have a solution

in deterministic time q9/8(log q)O(1) on a classical computer.

Proof. Using a standard deterministic factorization algorithm, we factor
q−1 and find the orders s and t of f and g in time q1/2(log q)O(1). Assume
without loss of generality that s ≥ t (otherwise of the roles of s and t are
reversed in the proof below). Let C be the constant of Corollary 1 and
define

r =
⌈

Cq3/2s−1 log q
⌉

. (2)

By Corollary 1, if r ≤ t then the central equation afx+bgy = c is solvable
for (x, y) ∈ {0, . . . , s− 1} × {0, . . . , r − 1}. Otherwise, if r > t, there may
or may not be a solution with (x, y) ∈ {0, . . . , s − 1} × {0, . . . , t− 1}. As
a result, the following algorithm proves the theorem.

If r ≤ t then for every y ∈ {0, . . . , r− 1} we evaluate a−1(c− bgx) and
then try to compute its discrete logarithm to base f , that is, an integer
x with fx = a−1(c − bgy), in deterministic time s1/2(log q)O(1), see [4,
Section 5.3]. When found, the algorithm outputs (x, y) and terminates.
The condition t ≥ r and assumption s ≥ t implies for s:

s2 ≥ st ≥ sr ≥ Cq3/2 log q,

which gives for the time complexity of this case

r · s1/2(log q)O(1) = q3/2s−1/2(log q)O(1) ≤ q9/8(log q)O(1).

If r > t we perform the same procedure for every y ∈ {0, . . . , t − 1}.
If none of the y yield a solution, the algorithm reports that the central
equation has no solution. In this case, the condition t < r implies that

st < sr ≤ Cq3/2 log q

and since t ≤ s, the time complexity of this case is also bounded by

t · s1/2(log q)O(1) ≤ (st)3/4(log q)O(1) ≤ q9/8(log q)O(1),

which completes the proof. ⊓⊔

It is natural to ask whether one can design a faster probabilistic al-
gorithm. For some fields this is indeed possible due to the existence of
subexponential algorithms for computing discrete logarithms, see [4, Sec-
tion 6.4]. However in general probabilistic algorithms do not seem to give
any significant advantage for our problem.

3.2 Typical Case Classical Algorithm

Similarly, using Corollary 2 instead of Corollary 1 and repeating the ar-
guments of the proof of Theorem 1 with

r =
⌈

q2s−2 log q
⌉

(3)

we obtain that for almost all c a stronger result than Theorem 1 holds.

Theorem 2. Let a, b, c, f, g ∈ F
∗
q. For all but o(q) elements c ∈ F

∗
q, one

can either find a solution x, y ∈ Z≥0 of the equation afx + bgy = c or

decide that it does not have a solution in deterministic time q(log q)O(1)

on a classical computer.

4 Quantum Algorithms

4.1 Worst Case Quantum Algorithms

On a quantum computer one has the advantage that calculating discrete
logarithms can be done efficiently in time (log q)O(1). In combination with
the quadratic speed-up of quantum searching this gives the following
quantum algorithm for the central problem. We start with an algorithm
that works for any f and g.

Theorem 3. Let a, b, c, f, g ∈ F
∗
q. One can either find a solution x, y ∈

Z≥0 of the equation af
x+bgy = c or decide that it does not have a solution

in time q3/8(log q)O(1) on a quantum computer.

Proof. We use Shor’s algorithm [10] to compute s and t in polynomial
time. Without loss of generality we assume that s ≥ t and we define r
by Equation (2) as in the proof of Theorem 1. A polynomial time quan-
tum subroutine S(y) is constructed that, using Shor’s discrete logarithm
algorithm [10], for a given y either finds and returns the integer x with
fx = a−1(c− bgx) or reports that no such x exists.

If r ≤ t, then, using Grover’s search algorithm [6], we search the
subroutines S(y) for all y ∈ {0, . . . , r − 1} in time

r1/2(log q)O(1) = q3/4s−1/2(log q)O(1) ≤ q3/8(log q)O(1).

If r > t, we search the S(y) for all y ∈ {0, . . . , t− 1} in time

t1/2(log q)O(1) ≤ (st)1/4(log q)O(1) ≤ q3/8(log q)O(1).

As in the proof of Theorem 1, we conclude that due to our choice of r
we either find a solution to Equation (1) or conclude that there is no
solution. ⊓⊔

We now show that if f and g are of large order then there is a more
efficient quantum algorithm.

Theorem 4. Let a, b, c, f, g ∈ F
∗
q and let f and g be of multiplicative

orders s and t, respectively. There is an absolute constant C such that if

st > Cq3/2(log q)1/2

then one can either find a solution x, y ∈ Z≥0 of the equation af
x+bgy = c

or decide that it does not have a solution in time q1/2(st)−1/4(log q)O(1)

on a quantum computer.

Proof. Assume without loss of generality that s ≥ t. It follows from the
condition of the theorem and Lemma 1 that for some appropriate constant
C and

r =
⌊

Cq3/2s−1(log q)1/2
⌋

≤ t

there are
rs

q − 1
+O(q1/2 log q) ≥ rs

2q

solutions to Equation (1) with x ∈ {0, . . . , s− 1} and y ∈ {0, . . . , r − 1}.

We now use the version of Grover’s search algorithm as described
in [3] that finds one out of m matching items in a set of size r using
only O(

√

r/m) queries. Here we search the subroutines S(y) for all y ∈
{0, . . . , r−1} with the promise (which follows from Lemma that there are
m = rs/(q − 1) + O(q1/2 log q) solutions (x, y). Because for each value y
there can be at most one value x ∈ {0, . . . , s− 1} such that afx+ bgy = c
there are m different values y for which S will report a solution x, hence
a solution will be found in time

(r/m)1/2(log q)O(1) = q1/2s−1/2(log q)O(1).

Since s ≥ (st)1/2, this concludes the proof. ⊓⊔

In particular, the running time of the algorithm of Theorem 4 is upper
bounded by O(q1/8(log q)O(1)).

4.2 Typical Case Quantum Algorithms

Similarly to the classical case, for almost all c ∈ Fq stronger results than
those of Theorems 3 and 4 are possible. For example, defining again r by
Equation (3) and arguing as in the proof of Theorem 3, we obtain the
following result.

Theorem 5. Let a, b, c, f, g ∈ F
∗
q. For all but o(q) elements c ∈ F

∗
q, one

can either find a solution x, y ∈ Z≥0 of the equation afx + bgy = c or

decide that it does not have a solution in time q1/3(log q)O(1) on a quantum

computer.

Finally, taking
r =

⌊

q2s−2 log q
⌋

and using Lemma 1 in the argument of the proof of Theorem 4, we see
that for almost all c ∈ Fq the complexity estimate of Theorem 4 holds for
a wider range of s and t.

Theorem 6. Let a, b, c, f, g ∈ F
∗
q and let f and g be of multiplicative

orders s and t, respectively. For all but o(q) elements c ∈ F
∗
q, if

st > q4/3(log q)2/3

then one can either find a solution x, y ∈ Z≥0 of the equation af
x+bgy = c

or decide that it does not have a solution in time q1/2(st)−1/4(log q)O(1)

on a quantum computer.

5 Connection with the Hidden Subgroup Problem

The pretty good measurement approach [1] to the Hidden Subgroup Prob-
lem (hsp) over the non-abelian group Z/q ⋊ Z/p with q a prime and
q/p2 = (log q)O(1) shows that the hsp can be solved efficiently on a quan-
tum computer if one can efficiently solve the equation afx + bf y = c,
where f has multiplicative order p in Z/q. All algorithms presented in
this article have superpolynomial complexity in log q and hence fall short
of this goal.

For this restricted problem with f = g and f of order p ≈ √
q, there

are p2 possible solutions (x, y), hence even a classical algorithm has O∗(q)
time complexity instead of the O∗(q9/8) of Theorem 1. Quantum mechan-
ically, one can ‘Grover search’ the set of solutions x ∈ {0, . . . , p − 1} in
time O∗(q1/4), which, although better than the O∗(q3/8) of Theorem 3, is
still far from polynomial in log q.

6 Remarks and Open Problems

We remark that in some finite fields classical subexponential probabilis-
tic algorithms are possible for the discrete logarithm problem, see [4,
Section 6.4]. In such fields, a version of Theorem 1 can be obtained with
an algorithm that runs in probabilistic time q3/4+o(1), which is still much
slower that the quantum algorithm of Theorems 3 and 4. We note that al-
though over the last several years fast heuristic algorithms for the discrete
logarithm problem have been designed to work over any finite field, rig-
orous subexponential algorithms are know only for fields of special types
(such as prime fields Fp or binary fields F2m), see [4, Section 6.4] for more
details. Clearly using probabilistic algorithms one can also get additional
speed up in the classical case if the multiplicative orders s and t are large
(similar to Theorems 4 and 6).

To try to strengthen the presented results one can consider the ana-
logue to Equation (1) for elliptic curves E over Fq. For example, given
two Fq-rational points F,G ∈ E(Fq) and the values a, b, c ∈ Fq one can
ask for solutions to the equation

a · x([u]F) + b · x([v]G) = c

in integers u and v (where x(Q) denotes the x-coordinate of a point
Q ∈ E(Fq) in a fixed affine model of E and [n]Q denotes the n-fold sum
Q⊕Q⊕ · · · ⊕Q in the group of E). Using bounds of character sums over
subgroups of elliptic curves, see [7], one can obtain full analogues of our

results (in fact at the cost of only typographical changes). This case is
interesting since in the classical scenario even heuristic subexponential
algorithms are not known.

But above of this all, it still remains an open problem whether or not
there exist efficient quantum algorithms that run in time (log q)O(1) for
the determining the integer solutions x, y to the equation afx + bgy = c
and even the more restricted version afx + bf y = c over Fq.

Acknowledgments. The authors are grateful to Michele Mosca for use-
ful and encouraging discussions.

This work was initiated during a very pleasant visit by I.S. to the
University of California at Santa Barbara whose hospitality is gratefully
acknowledged. W.v.D. is supported by the Disruptive Technology Office
(dto) under Army Research Office (aro) contract number wnf--
r- and the nsf career award no. ; I.S. is supported by arc

grant dp.

References

1. D. Bacon, A. M. Childs and W. van Dam, From optimal measurement to efficient
quantum algorithms for the hidden subgroup problem over semidirect product
groups, Proceedings of the 46th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’05), 2005, pp. 469–478.

2. B. Berndt, R. Evans and K. S. Williams, Gauss and Jacobi Sums, Canadian Mathe-
matical Society Series of Monographs and Advanced Texts, Volume 21, John Wiley
& Sons, 1998.

3. M. Boyer, G. Brassard, P. Høyer and A. Tapp, Tight bounds on quantum searching,
Fortschritte der Physik, Vol. 46 (1998), pp. 493–505.

4. R. Crandall and C. Pomerance, Prime numbers: A computational perspective,
Springer-Verlag, Berlin, 2005.

5. E. Dobrowolski and K. S Williams, An upper bound for the sum
Pa+H

n=a+1 f(n) for
a certain class of functions f , Proceedings of the American Mathematical Society,
Vol. 114 (1992), pp. 29–35.

6. L. Grover, A fast quantum-mechanical algorithm for database search, Proceedings
of the 28th Annual ACM Symposium on Theory of Computing (STOC’96), 1996,
pp. 212–219.

7. D. R. Kohel and I. E. Shparlinski, Exponential sums and group generators for el-
liptic curves over finite fields, Lecture Notes in Computer Science, Springer-Verlag,
Berlin, Vol. 1838 (2000), pp. 395–404.

8. A. Lenstra and B. de Weger, On the possibility of constructing meaningful hash
collisions for public keys, Lecture Notes in Computer Science, Springer-Verlag,
Berlin, Vol. 3574 2005, pp. 267–279.

9. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its
Applications, Volume 20, Cambridge University Press, Cambridge, 1997.

10. P. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM Journal on Computing, Vol. 26 (1997),
pp. 1484–1509.

11. T. Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics,
Markham Publishing Company, 1967.

12. H. B. Yu, Estimates of character sums with exponential function, Acta Arithmetica,
Vol. 97 (2001), pp. 211–218.

