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Abstract. We consider a quantum polynomial-time algorithm which
solves the discrete logarithm problem for points on elliptic curves over
GF (2m). We improve over earlier algorithms by constructing an efficient
circuit for multiplying elements of binary finite fields and by representing
elliptic curve points using a technique based on projective coordinates.
The depth of our proposed implementation is O(m2), which is an im-
provement over the previous bound of O(m3).

1 Introduction

Quantum computing [1] has the ability to solve problems whose best clas-
sical solutions are considered inefficient. Perhaps the best-known example
is Shor’s polynomial-time integer factorization algorithm [2], where the
best known classical technique, the General Number Field Sieve, has su-

perpolynomial complexity expO( 3

√

n log2 n) in the number of bits n [3].
Since a hardware implementation of this algorithm on a suitable quan-
tum mechanical system could be used to crack the RSA cryptosystem
[3], these results force researchers to rethink the assumptions of classical
cryptography and to consider optimized circuits for the two main parts
of Shor’s factorization algorithm: the quantum Fourier transform [1, 4]
and modular exponentiation [5]. Quantum noise and issues of scalability
in quantum information processing proposals require circuit designers to
consider optimization carefully.

Since the complexity of breaking RSA is subexponential, cryptosys-
tems such as Elliptic Curve Cryptography (ECC) have become increas-
ingly popular. The best known classical attack on ECC requires an ex-
ponential search with complexity O(2n/2). The difference is substantial:
a 256-bit ECC key requires the same effort to break as a 3072-bit RSA
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key. The largest publicly broken ECC system has a key length of 109
bits [6], while the key lengths of 1024 bits and higher are strongly rec-
ommended for RSA. ECC has been recently acknowledged by National
Security Agency as a secure protocol and included in their Suite B [7].
Most ECC implementations are built over GF (2m). Software implemen-
tations, such as ECC over GF (2155), are also publicly available [8].

However, there does exist a quantum polynomial-time algorithm that
cracks elliptic curve cryptography [9]. As with Shor’s factorization algo-
rithm, this algorithm should be studied in detail by anyone interested in
studying the threat posed by quantum computing to ECC. The quantum
algorithm for solving discrete logarithm problems in cyclic groups such
as the one used in ECC requires computing sums and products of finite
field elements, such as GF (2m) [10]. Addition in GF (2m) requires only
a depth-1 circuit consisting of parallel CNOT gates [11]. We present a
depth O(m) multiplication circuit for GF (2m) based on the construction
by Mastrovito [12]. Previously, a depth O(m2) circuit was given in [11].

In Section 2 we give an overview of quantum computation, GF (2m)
field arithmetic, and elliptic curve arithmetic. Section 3 outlines the quan-
tum algorithm, and presents our improvements: the GF (2m) multiplica-
tion circuit, and projective coordinate representation. The paper con-
cludes with some observations and suggestions for further research.

2 Preliminaries

We will be working in the quantum circuit model, where data is stored
in qubits and unitary operations are applied to various qubits at discrete
time steps as quantum gates. We assume that any set of non-intersecting
gates may be applied within one time step. The total number of time
steps required to execute an algorithm as a circuit is the depth. Further
details on quantum computation in the circuit model can be found in [1].

We will make use of the CNOT and Toffoli gates. The CNOT gate
is defined as the unitary operator which performs the transformation
|a〉 |b〉 7→ |a〉 |a⊕ b〉. The Toffoli gate [13] can be described as a controlled
CNOT gate, and performs the transformation over the computational
basis given by the formula |a〉 |b〉 |c〉 7→ |a〉 |b〉 |c⊕ ab〉.

2.1 Binary Field Arithmetic

The finite field GF (2m) consists of a set of 2m elements, with an addition
and multiplication operation, and additive and multiplicative identities



0 and 1, respectively. GF (2m) forms a commutative ring over these two
operations where each non-zero element has a multiplicative inverse. The
finite field GF (2m) is unique up to isomorphism.

We can represent the elements of GF (2m) where m ≥ 2 with the help
of an irreducible primitive polynomial of the form P (x) =

∑m−1
i=0 cix

i+xm,
where ci ∈ GF (2) [14]. The finite field GF (2m) is isomorphic to the set
of polynomials over GF (2) modulo P (x). In other words, elements of
GF (2m) can be represented as polynomials over GF (2) of degree at most
m − 1, where the product of two elements is the product of their poly-
nomial representations, reduced modulo P (x) [14, 15]. As the sum of two
polynomials is simply the bitwise XOR of the coefficients, it is conve-
nient to express these polynomials as bit vectors of length m. Additional
properties of finite fields can be found in [14].

Mastrovito has proposed an algorithm along with a classical circuit
implementation for polynomial basis (PB) multiplication [12, 16], pop-
ularly known as the Mastrovito multiplier. Based on Mastrovito algo-
rithm, [15] presents a formulation of PB multiplication and a generalized
parallel-bit hardware architecture for special types of primitive polyno-
mials, namely trinomials, equally spaced polynomials (ESPs), and two
classes of pentanomials.

Consider the inputs a and b, with a = [a0, a1, a2, . . . , am−1]
T and b =

[b0, b1, b2, . . . , bm−1]
T , where the coordinates ai and bi, 0 ≤ i < m, are the

coefficients of two polynomials A(x) and B(x) representing representing
two elements of GF (2m) with respect to a primitive polynomial P (x). We
use three matrices in this construction:

1. an m× (m− 1) reduction matrix Q,

2. an m×m lower triangular matrix L, and
3. an (m− 1)×m upper triangular matrix U .

We define vectors d and e as:

d = Lb (1)

e = Ub, (2)

where L and U are defined as

L =

















a0 0 . . . 0 0
a1 a0 . . . 0 0
...

...
. . .

...
...

am−2 am−3 . . . a0 0
am−1 am−2 . . . a1 a0

















, U =

















0 am−1 am−2 . . . 0 a1
0 0 am−1 . . . 0 a2
...

...
...

. . .
...

...
0 0 0 . . . am−1 am−2

0 0 0 . . . 0 am−1

















.



Note that d and e correspond to polynomials D(x) and E(x) such that
A(x)B(x) = D(x) + xmE(x). Using P (x), we may construct a matrix Q
which converts the coefficients of any polynomial xmE(x) to the coeffi-
cients of an equivalent polynomial modulo P (x) with degree less than m.
Thus, the vector

c = d+Qe (3)

gives the coefficients of the polynomial representing the product of a and
b. The construction of the matrix Q, which is dependent on the primitive
polynomial P (x), is given in [15].

2.2 Elliptic Curve Groups

In the most general case, we define an elliptic curve over a field F as the
set of points (x, y) ∈ F × F which satisfy the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a5.

By extending this curve to the projective plane, we may include the point
at infinity O as an additional solution. By defining a suitable addition
operation, we may interpret the points of an elliptic curve as an Abelian
group, with O as the identity element.

In the specific case of the finite field GF (2m), it is possible to reduce
the degrees of freedom in the coefficients defining the elliptic curve by the
use of linear transformations on the variables x and y. In addition, it was
shown in [17] that for a class of elliptic curves called supersingular curves,
it is possible to reduce the discrete logarithm problem for the elliptic
curve group to a discrete logarithm problem over a finite field in such
a way that makes such curves unsuitable for cryptography. For GF (2m),
these correspond to elliptic curves with parameter a1 = 0. We will restrict
our attention to non-supersingular curves over GF (2m), which are of the
form y2 + xy = x3 + ax2 + b, where b 6= 0.

The set of points over an elliptic curve also forms an Abelian group
withO as the identity element. For a non-supersingular curve over GF (2m),
the group operation is defined in the following manner. Given a point
P = (x1, y1) on the curve, we define (−P ) as (x1, x1+y1). Given a second
point Q = (x2, y2), where P 6= ±Q, we define the sum P +Q as the point
(x3, y3) where x3 = λ2 + λ+ x1 + x2 + a and y3 = (x1 + x3)λ+ x3 + y1,
with λ = y1+y2

x1+x2
. When P = Q, we define 2P as the point (x3, y3) where

x3 = λ2 + λ + a and y3 = x21 + λx3 + x3, with λ = x1 +
y1
x1
. Also, any

group operation involving O simply conforms to the properties of a group



Fig. 1. Circuit for GF (24) multiplier with P (x) = x
4 + x+ 1

identity element. Finally, scalar multiplication by an integer can be easily
defined in terms of repeated addition or subtraction.

The elliptic curve discrete logarithm problem (ECDLP) is defined
as the problem of retrieving a constant scalar d given that Q = dP for
known points P and Q. With this definition, we may define cryptographic
protocols using the ECDLP by modifying analogous protocols using the
discrete logarithm problem over finite fields.

3 Quantum Polynomial-Time Attack

With a reversible implementation for the basic elliptic curve group opera-
tions, it is possible to solve the ECDLP with a polynomial-depth quantum
circuit. Given a base point P and some scalar multiple Q = dP on an
elliptic curve over GF (2m), Shor’s algorithm for discrete logarithms [2]
constructs the state

1

2m

2m−1
∑

x=0

2m−1
∑

y=0

|x〉 |y〉 |xP + yQ〉 ,

then performs a two-dimensional quantum Fourier transform over the first
two registers. It was shown in [9] that this task can be reduced to adding
a classically known point to a superposition of points.



3.1 Linear-Depth Circuit for GF (2m) Multiplication

We now discuss how to implement multiplication over GF (2m) as a quan-
tum circuit. We perform the following steps:

1. Using equations (1-3), derive expressions for d, e and c.
2. Compute e in an ancillary register of m qubits.
3. Transform e into Qe, using a linear reversible implementation.
4. Compute and add d to the register occupied by Qe.

We illustrate the above steps with an example using P (x) = x4 + x+ 1.

1. Expressions for d and e derived from equations (1-2) are shown below.

d =











a0b0
a1b0 + a0b1

a2b0 + a1b1 + a0b2
a3b0 + a2b1 + a1b2 + a0b3











, e =







a3b1 + a2b2 + a1b3
a3b2 + a2b3

a3b3






.

We also construct the matrix Q =











1 0 0
1 1 0
0 1 1
0 0 1











.

From (3), we compute the multiplier output

c = d+Qe =











d0 + e0
d1 + e1 + e0
d2 + e1 + e2

d3 + e2











.

2. We first compute e0, e1, and e2 in the ancilla, as shown in Figure 1
(gates 1-6).

3. We next implement the matrix transformation Qe (gates 7-9).
4. Finally, we compute the coefficients di, 0 ≤ i < m, and add them to

the ancilla to compute c (gates 10-19).

At this point, we have a classical reversible circuit which implements
the transformation |a〉 |b〉 |0〉 7→ |a〉 |b〉 |a · b〉. However, if we input a super-
position of field elements, then the output register will be entangled with
the input. If one of the inputs, such as |b〉 is classically known, then we may
also obtain

∣

∣b−1
〉

classically. Since we may construct a circuit which maps
|a · b〉

∣

∣b−1
〉

|0〉 7→ |a · b〉
∣

∣b−1
〉

|a〉, we may apply the inverse of this circuit
to the output of the first circuit to obtain |a〉 |b〉 |a · b〉 7→ |0〉 |b〉 |a · b〉 us-
ing an ancilla set to

∣

∣b−1
〉

. This gives us a quantum circuit which takes



a quantum input |a〉 and classical input |b〉, and outputs |a · b〉 |b〉. When
|b〉 is not a classical input, the output of the circuit may remain entan-
gled with the input, and other techniques may be required to remove
this entanglement. However, we emphasize that this is not required for a
polynomial-time quantum algorithm for the ECDLP [9].

This technique can be applied for any primitive polynomial P (x). In
some circumstances, we may derive exact expressions for the number of
gates required.

Lemma 1. A binary field multiplier for primitive polynomial P (x) can

be designed using at most 2m2 − 1 gates. If P (x) is a trinomial or an all-

one polynomial, where each coefficient is 1, we require only m2 +m − 1
gates.

Proof. There are three phases to the computation: computing e, comput-
ing Qe, and adding d to the result. For e and d, each pair of coefficients
which are multiplied and then added to another qubit requires one Toffoli
gate. This requires

m−1
∑

i=0

i =
m(m− 1)

2
, and

m
∑

i=0

i =
m(m+ 1)

2

gates respectively, for a total of m2 gates. Now, we consider the imple-
mentation of the transformation Q.

In general, m2 − 1 CNOT gates suffice for any linear reversible com-
putation defined by the matrix Q in equation (3) [18]. This gives a gen-
eral upper bound of 2m2 − 1 gates. In the specific case of the All-One-
Polynomial, the operation Q consists of adding e1 to each of the other
qubits, requiring m−1 CNOT operations. This gives a total of m2+m−1
operations.

For a trinomial, we have a primitive polynomial P (x) = xm + xk + 1
for some constant k such that 1 ≤ k < m. To upper bound the number of
gates required to implement Q, we may consider the inverse operation, in
which we begin with a polynomial of degree at most m−1, and we wish to
find an equivalent polynomial where each term has degree between m− 1
and 2m− 2. Increasing the minimum degree of a polynomial requires one
CNOT operation, and this must be done m − 1 times. Again, this gives
a total of m2 +m− 1 operations.

3.2 Parallelization

We construct a parallelized version of this network by considering the
three parts of the computation: e, Qe and adding d. For e and d, note



that given coefficients ai and bj where the value of i − j is fixed, the
target qubit of each separate term aibj is different. This means that they
may be performed in parallel. In the case of e, we evaluate aibj whenever
i+ j ≥ m. This means that the values of i− j may range from −(m− 2)
to m− 2, giving a depth 2m− 3 circuit for finding e. Similarly, for d, we
evaluate aibj whenever i+j < m. The values of i−j range from −(m−1)
to m− 1, giving a depth 2m− 1 circuit.

To compute Qe, at most m2 − 1 CNOT gates are used. In [18], it is
shown that such a computation can be done in a linear number of stages,
with a depth of 6m+O(1). This gives us a total depth of 10m+O(1) for
the multiplication circuit. An implementation which replaces the Toffoli
gate with 1- and 2-qubit gates requires a circuit depth of 26m+O(1).

3.3 Projective Representation

When points on an elliptic curve are represented as affine coordinates

(x, y), performing group operations on such points requires finding the
multiplicative inverse of elements of GF (2m). This operation takes much
longer to perform than the other field operations required, and it is de-
sirable to minimize the number of division operations. For example, [19]
gives a quantum circuit of depth O(m2) which uses the extended Eu-
clidean algorithm.

By using projective coordinate representation, we can perform group
operations without division. Instead of using two elements of GF (2m) to
represent a point, we use three elements, (X,Y,Z) to represent the point
(XZ , YZ ) in affine coordinates. Dividing X and Y by a certain quantity is
now equivalent to multiplying the third coordinate (Z) by this quantity.
Extensions to this concept have also been explored, where different in-
formation about an elliptic curve point is stored in several coordinates.
Another advantage to projective coordinates is that the point at infinity
O can simply be represented by setting Z to zero. Unfortunately, one
issue with projective coordinates for reversible computing is that there
are more than one representation for any particular point.

To represent the point (x, y), we use the equal superposition of all of
these representations

|P (x, y)〉 = 1√
2m

∑

z∈GF (2m)

|xz〉 |yz〉 |z〉 .

We construct this state by starting with the state 1/
√
2m

∑

z |z〉 |z〉 |z〉,
and multiplying the first and second registers by x and y, respectively.



Exact formulas for point addition in projective coordinates can be
easily derived by taking the formulas for the affine coordinates under a
common denominator and multiplying the Z coordinate by this denom-
inator. These are detailed in [20]. Since the ECDLP can be solved by
implementing elliptic curve point addition where one point is “classically
known” [9], we may implement these formulas using the multiplication
algorithm presented in Section 3.1 and by being careful to uncompute
any temporary registers used. Since the number of multiplication oper-
ations used in these formulas is fixed, we may implement elliptic curve
point addition with a known classical point with a linear depth circuit.
This represents an improvement on the algorithm of [19], which makes
use of an O(m2)-depth circuit for inversion of GF (2m) field elements.

Finally, to construct the state required for solving the ECDLP, we use
the standard “double and add” technique, which requires implementing
the point addition circuit for each value 2iP and 2iQ, where 0 ≤ i < m.
Performing 2m instances of a linear depth circuit, followed by a quantum
Fourier transform gives a final depth complexity of O(m2) for the circuit
which solves the ECDLP over GF (2m). This improves the previously
known upper bound of O(m3) [9].

4 Conclusion

We considered the optimization of the quantum attack on the elliptic
curve discrete logarithm problem, on which elliptic curve cryptography
is based. Our constructions include a linear depth circuit for binary field
multiplication and efficient data representation using projective coordi-
nates. Our main result is the depth O(m2) circuit for computing the dis-
crete logarithm over elliptic curves over GF (2m). Further research may be
devoted toward a better optimization, study of architectural implications,
and the fault tolerance issues.
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