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Abstract. The Trinity [1] spam classification system is based on a distributed
hash table that is implemented using a structured peer-to-peer overlay. Such an
overlay must be capable of processing hundreds of messages per second, and
must be able to route messages to their destination even in the presence of fail-
ures and malicious peers that misroute packets or inject fraudulent routing infor-
mation into the system. Typically there is tension between the requirements to
route messages securely and efficiently in the overlay.
We describe a secure and efficient routing extension that we developed within the
I3 [2] implementation of the Chord [3] overlay. Secure routing is accomplished
through several complementary approaches: First, peers in close proximity form
overlapping groups that police themselves to identify and mitigate fraudulent
routing information. Second, a form of random routing solves the problem of
entire packet flows passing through a malicious peer. Third, a message authenti-
cation mechanism links each message to it sender, preventing spoofing. Fourth,
each peer’s identifier links the peer to its network address, and at the same time
uniformly distributes the peers in the key-space.
Lastly, we present our initial evaluation of the system, comprising a 255 peer
overlay running on a local cluster. We describe our methodology and show that
the overhead of our secure implementation is quite reasonable.
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1 Introduction

Systems such as Trinity [1], LOCKSS [4], and others are based on distributed hash ta-
bles that are implemented on top of peer-to-peer structured overlays. These overlays
differ from better known peer-to-peer systems such as BitTorrent in three fundamental
ways. First, these overlays are closed, meaning that only authorized hosts may join the
overlay. Second, these overlays must be secure and function even in the presence of fail-
ures, denial of service attacks, and malicious peers. Third, performance is paramount,
meaning that each peer in the these overlays must be able to forward hundreds of mes-
sages per second.

Although securing closed overlays seems more manageable than the task of secur-
ing open overlays, the task presents several challenges. First, identifying, authenticating
? This research was supported by an NSERC Discovery grant.
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and authorizing peers and authenticating the messages that they send is not easy because
the mechanisms must be fault tolerant, allow revocation, and must not significantly im-
pact performance. Second, securely routing messages, dealing with host and network
failures, and most importantly, dealing with malicious peers and the fraudulent routing
information that they inject into the overlay is challenging in itself, let alone without
significantly impacting performance.

As part of the Trinity project [1], we have designed, implemented, and tested a se-
cure closed overlay based on the I3 [2] Chord [3] implementation. Our design comprises
a distributed and fault tolerant identification, authentication, and authorization mecha-
nism; a key assignment scheme that encodes a peer’s network location yet ensures that
the keys are uniformly distributed in the key space; a self-policing scheme based on
groups of local peers; and a form of random routing that ensures that no (malicious)
peer is a choke-point between any two other peers.

In addition to describing our approaches, we present a performance evaluation,
which was performed on a local cluster that hosted overlays consisting of 255 peers.
We compare the performance of our system in “secure” and “insecure” modes, and
show that the performance penalty for secure operation is acceptable.

The rest of the paper is organized as follows: Section 2 describes our assumptions
and the Chord protocol. Section 3 describes the three parts of our approach and Sec-
tion 4 describes our evaluation of the system. Lastly, Section 5 and 6 describe related
work, and discuss future work.

2 Preliminaries

We selected the Chord [3] structured overlay to provide lookup services for the Trin-
ity [1] system because Chord has good performance characteristics and provides control
over the location of peers within the overlay, making it easier to secure [5, 6].

The Chord [3] overlay structure assigns each peer a unique key, k, from a 160-bit
key-space1 and organizes the peers into a single ring in the numerical order of their keys.
The predecessor and successor of key k are the keys kp and ks, respectively, belonging
to peers in the ring, such that k−kp and ks−k, respectively, are minimal (see Figure 1).
Intuitively, the peer to whom key k is assigned is located between its predecessor and
successor, the peers to whom the keys kp and ks are assigned. If a key k is not assigned
to a peer in the ring, then the peer whose key is the successor to k is responsible for the
key. Consequently, each peer is responsible for all the possible key values between it
and its predecessor.

When a peer joins the ring, it locates its position within the ring by sending a “find
successor” request with its own key, k, to a “well known” peer that is already in the
ring. The request is routed to the current predecessor of k, whose successor is therefore
also the successor of k. The predecessor replies to the new peer, informing it of both
the successor and itself. The new peer then informs the successor and predecessor of
its existence and assumes its location in ring. Lastly, the peer builds its routing table,
called a finger table.

1 All operations on the keys are performed mod 2160.
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Fig. 1. The peers labeled fi are in p’s finger table, peer g is in peer f5’s finger table, and peer h
is in peer g’s finger table. Peers r and s are the predecessor and successor of peer p.

The finger table is used by the peer to forward a message toward its eventual desti-
nation. The finger table comprises keys of select peers in the ring. Typically, the table
contains O(log N) keys of peers that are 1

2i of a ring away, i = 1 . . . log(N), where
N is the number of peers in the ring (see Figure 1). To forward a message to the peer
responsible for key k, the peer with the closest preceding key to k is selected from the
finger table, and the message is forwarded directly to that peer. Thus, the distance to the
destination peer is decreased by at least half, and after at most O(log N) such hops, the
message arrives at the destination. If the closest preceding peer is the current peer, then
the message is forwarded directly to the peer’s successor, its destination.

The finger table is populated by performing additional “find successor” queries with
key values of the form k + 2i, for 0 < i < 160. Additional ongoing “find successor”
queries, at regular intervals, are used to update the finger table as well as the peer’s suc-
cessor and predecessor. Also, a simple heart-beat mechanism tracks when peers leave
the ring.
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Unfortunately, the system as described, is susceptible to many attacks. First, the
overlay uses an unreliable message-based transport protocol, User Datagram Protocol
(UDP), that is susceptible to spoofing because the source address of a message can eas-
ily be forged. Thus, the source of the message cannot be (reliably) determined. Second,
the system, as described, allows any host to become a peer, which is problematic for a
closed overlay and can lead to the admittance of malicious peers. Third, as a result of
the first two weaknesses, the overlay is susceptible to denial of service attacks because
large numbers of messages and requests can be injected into the overlay by external
hosts.

Fourth, the overlay relies on the correct behaviour of all of its constituents. For
example, all peers must correctly forward and reply to “find successor” requests. Mali-
cious peers can inject fraudulent routing information into the overlay by replying with
incorrect “find successor” replies, dropping requests, or misdirecting the requests. Con-
sequently, a few collaborating malicious peers could cause segments of the ring to “drop
out”. This is a problem even if peers are initially identified and authenticated prior to
joining because peers may be compromised and an initially nonmalicious peer may
become malicious.

We assume that all malicious hosts are computationally bounded and cannot forge or
decrypt messages that are signed or encrypted using the standard 2048-bit RSA public
key system. We make no assumptions about the number of malicious hosts—machines
that have not joined the ring—or the security of the channel, meaning that malicious
hosts may be able to view the messages as they transit the Internet. This corresponds
to the resources available to spammers today in the form of large bot-nets. Correspond-
ingly, we do assume that such malicious hosts do not have control over the IP address
that they are assigned.

We assume that a small fraction (5%) of peers—hosts that are authorized to join the
ring—are malicious; either from the start or because they were compromised at some
point after joining. We can make this assumption because the peers will be set up and
monitored by qualified system administrators, and because the peers will be checked
by the ring’s administrators before they are authorized to join the ring. The challenge
then, is to limit the ability of the malicious peers to collaborate and disrupt the overlay,
to detect malicious peers, and evict them from the overlay.

3 Design and Implementation

Our implementation is an extension of the I3 [2] code-base. Our implementation com-
prises five parts: (i) a key assignment scheme that links each peer’s key with its network
address2 while at the same time uniformly distributing the peers’ keys in the ring; (ii) a
distributed identification, authentication, and (revocable) authorization mechanism that
allows the overlay to control what peers are admitted into the ring; (iii) a message au-
thentication mechanism that links each message to its sender; (iv) a self-policing mech-
anism based on overlapping groups composed of proximate peers; and (v) a simple
form of random routing that avoids the possibility of any peer becoming a choke point
between two other peers.

2 Both IP address and port number.
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3.1 Key Assignment

As was observed in [5] and [6], it is harder for malicious peers to collaborate when they
are uniformly distributed in the ring than when they are clustered. Consequently, peers
should be assigned keys from a uniform distribution. Thus, prior to joining, each peer is
expected to choose a key from the uniform distribution on the key space. However, there
is nothing that prevents malicious peers from choosing keys that facilitate collaboration.
Furthermore, a randomly selected key, only encodes the peers position within the ring,
not the network, which another peer would need to contact it directly. Lastly, the choice
of the peer’s network address is typically limited and in most cases beyond the control
of the peer, malicious or otherwise.

We leverage this restriction to assign keys to peers so that the peers have no choice
in their key, the key is unique, the key encodes a peer’s network address, and the key
appears to be chosen from the uniform distribution on the key space. To determine its
key a peer concatenates its IP address and port number, both in network byte order, to
create a 6 byte string. This string is passed through the SHA-1 function, generating a
20 byte hash. The hash is the same length as a key, 20 bytes, and appears as if it was
chosen from the uniform distribution on the key space.3 Lastly, the IP address and the
port number replace the 6 least significant bytes of the hash, as suggested in [6].

The resulting 20 byte key, can easily be validated by extracting the 6 least significant
bytes, passing them from the SHA-1 function, and comparing the 14 most significant
bytes of the resulting hash and the key—they should match. The 14 most significant
bytes of the key look as if they were drawn from a uniform distribution, ensuring that the
peers are uniformly distributed throughout the ring. Lastly, the key uniquely identifies
each peer because the IP address of each peer is necessarily unique. Thus, each peer
can be uniquely identified.

3.2 Distributed Identification, Authentication and Authorization

A peer must be identified, authenticated, and authorized before it can join the overlay.
The peer’s key uniquely identifies the peer, but it does not authenticate the peer, which
is a prerequisite for authorization. Since the maliciousness of a peer may be discovered
only after it joins the ring, authorization must be revocable, in order to facilitate the
excommunication of such peers.

Authentication is accomplished by using a public key signature system—each new
peer generates a public-private key-pair. A peer authenticates a message by first em-
bedding its 20-byte key into the message and then signing it. However, two problems
remain: distribution of the public key, and the authorization of the peer. Both problems
are solved simultaneously by leveraging the Domain Name System (DNS) [7, 8].

Each ring is identified by a domain name in the DNS database and each authorized
peer in the ring has corresponding a TXT entry within the domain, identified by the
peer’s key and storing a certificate that contains the peer’s public key. The authority
responsible for authorizing peers is also responsible for signing the certificates and for
adding or removing the TXT entries.

3 In reality the hash is uniformly chosen from key subspace of cardinality 248, the size of the
input string.
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When a peer receives a message from another peer, it checks its cache for the
sender’s public key, if present then the sender is authorized to participate in the ring.
Otherwise, the receiver performs a DNS lookup for the sender’s key in the ring’s do-
main. If found, the sender’s public key is added to the cache and the sender is deemed to
be authorized. If not, a negative entry is added to the cache, causing the peer to ignore
all future messages from the sender until the negative entry expires. Authorizations are
revoked by removing the corresponding TXT entry from the DNS database and inform-
ing all peers of the revocation via a broadcast.

We leverage the DNS system because it has proven to be relatively robust and fault
tolerant. In fact, robustness can be increased by simply adding more name servers.
Furthermore, a DNS query is only needed when a new peer joins. In theory, peers could
broadcast the certificates they receive from their DNS queries, informing the ring of the
joining peer. Thus, an attack on the DNS system would only prevent new peers from
joining the ring. One problem with our approach is that authenticating each message
using a public key signature is prohibitively expensive.

3.3 Message Authentication

A message is linked to its sender because it contains the sender’s key and then signed
by the sender. Since the keys are unique and contain the sender’s network address, each
message can be traced to its origin. Consequently, if fraudulent messages are detected,
the sender can be identified with certainty and excommunicated.

Unfortunately, signing and verifying all messages using a public key signature sys-
tem is expensive. For example, to determine the overhead of using a public key signature
system, we ran a two peer ring on a single 1.60GHz Intel Xeon E5310 (4-core) server
with 2 gigabytes of RAM, and had one peer ping the other. This nullified the any poten-
tial network related slowdown, and allocated one CPU to each peer, thus avoiding any
issues associated with sharing a CPU. Without message authentication, the system per-
formed about 4000 pings per second—approximately 8000 messages per second. With
message authentication, using public key signatures, the number of pings per second
dropped to 15—a slowdown by a factor of 300!

We solve this problem by using message authentication codes (MAC) as the default
authentication mechanism. The Chord overlay structure exhibits good temporal locality
with respect to communication, meaning that if a peer communicates directly with an-
other peer, it will do so repeatedly in the future. The first time two peers communicate
directly, they exchange shared secret keys (using public key encryption), and use shared
keys to authenticate all messages to each other. Using HMAC based authentication, the
performance of our system went back up to about 3500 pings per second.

3.4 Our Brothers’ Keepers

Chord overlay structure relies on peers behaving properly: forwarding requests that
they cannot satisfy and replying truthfully to requests that they can satisfy. However, if
a malicious peer does not forward requests, or even worse, misdirects the requests or
sends fraudulent replies, the overlay structure can be subverted. In particular, maligning
the “find successor” requests, which are used by peers to find their position within
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the ring and construct finger tables, can create loops and partitions within the ring,
rendering the overlay dysfunctional. That is, a few collaborating malicious peers could
cause segments of the ring to “drop out”.

Realistically, we can neither ensure that no malicious peer will ever join, nor can
we ensure that no peer will ever be compromised. Malicious peers are distinguished
by their behaviour that, when detected, can be quashed by excommunicating the peer.
Thus, by increasing the system’s ability to detect malicious behaviour, the amount of
damage caused by a malicious peer can be limited. Since our key assignment scheme
ensures that with high probability two malicious peers will not be near each other in the
ring, we use a peer group approach to improve detection of malicious behaviour, i.e.,
the peer’s proximate peers keep it honest.

Each peer in the ring, is associated with a peer group of size g, where g is a small odd
number, such as 5, 7, 9, 11, etc. The group comprises the peer itself—the group leader—
and g − 1 of its closest peers: g−1

2 closest preceding peers and g−1
2 closest succeeding

peers. Thus, each peer belongs to g overlapping groups of size g. Furthermore, given
our assumption about the uniform distribution of malicious peers, the chance of a group
having multiple malicious peers is small.

When a new peer joins the ring, it queries its predecessor and successor for their
group memberships, constructs its own group membership list from the responses, and
then queries the other peers in its group to confirm their membership. On an ongoing
basis, the peers in a group query each other’s membership lists, updating them as peers
join or leave. In closed overlays, particularly in the case of Trinity, we assume that
the rate at which peers join and leave the ring is relatively low. Hence, a peer’s group
membership list will not change often.

In fact, a peer is only added to a group only after it has been verified by the group’s
leader, ensuring that group lists only contain valid peers. These group lists also provide
a fast mechanism for finding a new successor or predecessors if the current one leaves
(or fails) the ring.

A peer’s group membership list, should be consistent with those of the group’s
members, e.g., if the group of peer p is (n, o, p, q, r), then peer q’s group should be
(o, p, q, r, s). Thus, if a peer sends a group list that is inconsistent with the lists of other
group members, it is considered malicious, or at least untrustworthy. Consequently, ma-
licious peers cannot easily send fraudulent “find successor” responses about their group
members, because similar queries to their neighbours would unmask them. The result
is that peers cannot send out false “find successor” replies to any of its neighbouring
peers without being excommunicated.

However, it is also necessary to ensure that remote peers are also honest, i.e., those
peers that are not within a peer’s group. This is accomplished by leveraging the group
structure. Specifically, a peer’s “find successor” response is be verified by querying a
member of its peer group, and is based on the fact that peers in the same group will
have similar finger tables.

Recall, that a peer’s ith finger table entry contains the successor to key k+2i, where
k is the peer’s key. Assuming that peers are uniformly distributed in the ring, if peers
with keys k and k′ are adjacent, then the successors to k + 2i and k′ + 2i will likely
be close to each other in the ring, if not the same peer. Thus, there will be considerable
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overlap between the groups associated with the ith finger table entries of the two peers.
Consequently, a “find successor” response can be verified by resending the query to a
member of the responder’s group.

To facilitate this approach, and to verify the consistency of the groups associated
with the finger table entries, our implementation uses an expanded finger table that
stores the keys of the peer’s entire group rather than just the peer’s key—the finger
table stores g keys per entry. Furthermore, a peer’s “find successor” response includes
the keys of the peer’s entire group. Since “find successor” queries are sent on an ongoing
basis, the finger table entries are updated and checked on a regular basis. Lastly, storing
entire groups in the finger table, instead of single peers, facilitates the implementation
of a simple randomized routing scheme, mitigating the problem of packet dropping by
malicious peers.

3.5 Randomized Routing

Even if a malicious peer does not send fraudulent routing responses, it can still cause
problem by simply dropping all messages. If a malicious peer is a choke-point between
two other peers—all messages from one peer to the other are routed through it—then
none of the messages may get through. Detecting this behaviour is problematic because
the I3 Chord implementation and many other overlay systems use lightweight connec-
tionless unreliable transport protocols, such as UDP. Consequently, it is impossible to
distinguish between poor network connectivity and a misbehaving peer. Fortunately, our
scheme can mitigate both problems. We note that we cannot ensure that no messages
will be lost; only that with high probability, not all the messages will pass through the
same peer, while in transit.

We use a variant of randomized routing [9]. Traditional randomized routing for-
wards the message to a randomly chosen peer in the system, and then from that peer
to the destination. This can dramatically increase the latency, particularly if the desti-
nation peer is close to the sender but the randomly chosen peer is far away. Instead, in
our scheme, multiple messages between two peers take different but comparable length
paths, ensuring that a choke-point can not form.

When a message arrives at a peer, the peer classifies the message’s destination as
either local, near, or far. If the destination is local, then the message has arrived at its
destination. If the destination is near, then the message is destined to a neighbour of the
peer and is forwarded directly to its destination. Otherwise, a peer is selected and the
message is forwarded to it.

According to the traditional deterministic forwarding protocol, the peer whose key
most closely precedes the message destination is chosen from the finger table, and the
message is forwarded to this peer. In our implementation, a group is chosen from the
finger table such that the group leader’s most closely precedes the message destination.
Then, a peer is randomly chosen from this group and the message is forwarded to it.4

Since the finger tables of the peers in a group are similar, the route taken between two
peers will differ in the peers that the messages transit. However, as discussed in the

4 The selection process also ensures that the peer precedes the message destination.
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preceding section, these peers are near each other within the ring, implying that the
total number of hops will not vary greatly.

The correctness of the protocol does not change as long as the key of the peer
selected from the finger table precedes the message destination, and since all peers in a
group are, by definition, near each other, the size of each hop is will differ by an additive
constant, resulting in a small variance in the number of hops that a message takes.

Lastly, the malicious peer detection and the random routing scheme depend on the
fact that the routing tables of proximate peers are similar. Consequently, the group size,
g, cannot be too large because the farther a peer is from the group leader, the less similar
is its routing table. Furthermore, using a larger group size requires larger messages and
a larger finger table. At the same time, a group size should be large enough to tolerate
peer failures and ensure that messages have a sufficient number of routes that they can
take. Consequently, a group size of 5 to 15 should suffice.

4 Evaluation

To evaluate the performance of our implementation we used a 255 peer ring running on
a 26 machine cluster running OpenBSD 4.3 and 4.2. One of these machines was an Intel
Xeon X3210 2.13GHz Quad-core based server with 4GB of RAM, which ran 5 peers
on it and served as the name server for the cluster. Each of the remaining 25 machines
was an Intel Pentium 4 2.80 GHz based desktop with 1 GB of RAM. Each of these
desktops ran 10 peers each and all the machines were interconnected via a Cisco WS-
C2924–XL-EN and a Cisco WS-C3548-XL-EN managed switches that were locked at
10 Mb/s half-duplex—the mean latency between any two machines in the cluster was
0.5 milliseconds, with a negligible variance. We performed several different tests to
measure the latency, throughput, and capacity of our implementation in both secure and
insecure modes, in order to compare the overhead associated with secure mode.

4.1 Latency and Throughput

We first compared the latency and throughput overhead of secure versus insecure opera-
tion. Since peers regenerate and exchange their shared keys at regular intervals, different
parts of ring had different loads at different times. To compensate for this, a series of
test runs were performed, spanning a sufficiently large time interval, and the minimums
over these test runs were used.

Each test comprises two communicating peers: the initiator, which conducts and
times the test, and the responder, which serves as the other end-point of the commu-
nication. The latency test measures the round trip time of a ping and its echo. The
initiator pings the responder, which echos the ping—both the ping and the echo are
routed through the overlay. The test is repeated sequentially a set number of times and
the count is divided by the total time, yielding the round trip time per ping. The through-
put test measures how fast packets (or messages) can be sent through the overlay. The
initiator sends a throughput request to the responder, indicating the number of packets
the responder should send back. The responder sends the requested number of packets
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(through the overlay) as quickly as possible, and the initiator measures the time differ-
ence between the arrival of the first and last packets—the number of packets divided by
the difference is the throughput.

Our evaluation fixed one of the five peers on the 4-core server to be the initiator,
and used the 250 peers running on the 25 desktops as responders. For both latency and
throughput measurements, the initiator performed 12 test series consisting of 10 test
runs that consisted of 250 tests, once for each peer. Each latency test performed 10 pings
at a time and each throughput test had the responder send back 1000 packets. Each series
takes the minimum measurement for each peer over the 10 runs. The minimums for each
peer from the 12 series are averaged to yield the latency or throughput measurement.

Table 1 displays the mean, median, maximum, minimum, and standard deviation
round trip times and throughput measured for all 250 peers. The table shows the mea-
surements for both insecure mode operation and secure mode operation, and the over-
head of the secure mode.

Latency Throughput
Insecure Op. Secure Op. Relative Insecure Op. Secure Op. Relative
RTT (sec) RTT (sec) Difference Pkts / sec Pkts / sec Difference

Mean 0.002874 0.003457 20.2% 6148 4946 19.4%
Median 0.002897 0.003483 20.2% 6389 5087 20.4%
Maximum 0.003542 0.004282 20.9% 7794 6566 15.8%
Minimum 0.000759 0.000880 15.9% 3107 2643 14.9%
Std. Dev. 0.000335 0.000411 N/A 1164 930 N/A

Table 1. Summary statistics of round trip times to peers and packets per second from peers.

The measured latency in secure mode is 20% greater than in insecure mode. Al-
though, this seems high, it is important to remember that there were 10 peers running
on each host, making the system CPU bound and that the time difference, 0.6 millisec-
onds, is negligible compared to the typical latency between two hosts in the Internet.

The throughput in secure mode is also on average 20% lower. This is due to the cost
of authenticating messages: the sender has to sign each message and the receiver has to
verify the message. Since message authentication is a CPU bounded task, its effect will
be less when only one peer is running on each server.

It is more instructive to view the round trip times for each peer and throughput
from each peer in a sorted order. The graph in Figure 2 shows the round trip times
to all the peers for both insecure and secure operation modes, in ascending order of
times measured in insecure mode. The graph in Figure 3 shows the throughput from all
the peers for both insecure and secure operation modes, in descending order of times
measured in insecure mode.

Several artifacts are immediately visible in Figure 2: First, four peers have much
lower round trip times. These peers are the successors and predecessors of the peer per-
forming the ping, and hence both the ping and the response only take one hop. Second,
there is large jump in round trip times for both insecure and secures modes; approx-
imately, 0.0025 and 0.003 seconds respectively. Since the minimum latency between
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Fig. 2. Round trip times to peers.

Fig. 3. Throughput from peers.

two peers in the cluster is 0.0005 seconds, this means that pings to and from all the
other peers take between 6 and 9 hops, which makes sense for a ring of 255 peers.
Lastly, and most importantly, the relative difference in latency between insecure and
secure operation remains fixed, at 0.06 milliseconds per hop.

Figure 3 also exhibits a couple important features. First, the graph has a step feature,
corresponding to the distances between the initiator and the responders. The closer a re-
sponder is to the initiator, the higher the measured throughput. Second, the relative de-
crease in throughput between insecure and secure operation remains relatively constant.
As before the primary reason for the reduction is the cost of message authentication and
is noticeable because 10 peers were running on each singe-core machine.
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4.2 Capacity

The capacity of an overlay is the measure of the number of messages that the system
can deliver per unit time. To measure the system’s capacity we implemented a game of
hot-potato over the overlay: A set number of messages (potatoes) are injected into the
system. The potatoes are randomly passed from peer to peer, and counter in each potato
tracks the number of times the potato is passed. By varying the number of concurrent
potatoes in the system, we control the system’s load.

When a peer receives a potato, it increments the potato’s counter, generates a ran-
dom key, and sends the potato to the peer responsible for the random key. To ensure
that no potato is dropped, the receiving peer acknowledges the potato, and the sender
acknowledges the acknowledgment. Only after receiving the second acknowledgment
does the receiver commence the next potato pass. If potato’s originator receives it, and
the potato has been in the system for a minimum amount of time, e.g., 60 seconds,
the number of passes per second for the potato is computed, by dividing the value of
the potato’s pass counter by the number of seconds that the potato was in the system.
The potato’s time to live counter is then decremented, and if nonzero, the potato’s pass
counter is reset and the potato is injected into the system again. This ensures a period
of consistent load.

In each of the runs, the first measurement from the first 75 ejected potatoes was
used. Table 2 exhibits the mean, median, standard deviation, maximum, and minimum
number of passes per second that a potato achieved under different system loads: 10,
20, 30, 40, 50, 60, 70, 80, and 160 potatoes in the system. Note: a pass consists of a
3-message exchange between two peers in the system and message delivery may take
multiple hops within the overlay.

# of msgs 10 20 30 40 50 60 70 80 160
Insecure Mode Operation

Mean 163 134 107 86 72 60 51 45 23
Median 163 134 106 86 72 60 51 45 22
Std. Dev. 3.3 2.8 2.1 2.3 2.0 1.6 1.4 1.8 2.4
Maximum 172 141 113 92 77 65 54 50 33
Minimum 156 127 103 81 67 56 48 42 19

Secure Mode Operation
Mean 138 115 93 76 62 53 45 40 20
Median 137 115 94 76 62 53 45 39 19
Std. Dev. 3.4 2.0 2.1 1.6 1.4 1.3 1.6 1.8 2.6
Maximum 147 120 98 79 68 55 49 46 29
Minimum 131 109 89 71 58 47 42 36 15

Table 2. Number of passes per second that a message takes.

As the load increases, the number of passes per second of a potato decreases because
the likelihood that a peer may need to process multiple potatoes at once increases.
However, passes per second of a potato does not yield a measure of the capacity of
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the system as a whole. The capacity of the system is the number of passes per second
that the system performs over all. This is equal to the average number of passes per
second multiplied by the number potatoes in the system.

Figure 4 exhibits the capacity of the system for both insecure and secure operation
modes. The capacity of the system is 3600 and 3150 passes per second in insecure and
secure operation modes, respectively. In both cases the system becomes saturated at 50
potatoes, but capacity does not degrade as the number of potatoes increases. The relative
difference in capacity is 12.5%, and is predominately affected by the CPU bounded task
of message authentication.

Fig. 4. Capacity of overlay.

As the size of the ring increases, the number of hops per pass will increase loga-
rithmically. Consequently, the number of passes per second will increase because the
number of hops per pass grows at a much slower rate than the number of peers in the
ring. Thus, the capacity of the system should increase as the size of the ring grows.

5 Related Work

The challenge of securing peer-to-peer systems has been around since their advent. Sit
and Morris [5] first identified a set of design principles for securing peer-to-peer systems
and described a taxonomy of various attacks against them. This work was extended
by Wallach [10] who investigated the security aspects of systems such as CAN [11],
Chord [3], Pastry [12], and Tapestry [13], and discussed issues such as key assignment,
routing, and excommunication of malicious peers.

Castro et al. [6] proposed several approaches to securing peer-to-peer overlays. They
proposed to delegate assignment of keys to trusted certification authorities, that would
ensure that the keys are chosen at random, and that each peer is bound to a unique key,
with the peer’s IP embedded in the key. To securely route messages, they proposed to
use constrained routing tables, which contain keys from specific locations in the over-
lay. In our case Chord already constrains a key’s location within the overlay, obviating
the need for constrained routing tables. In fact, our self-policing and random routing
mechanisms leverage this constraint.
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Castro et al. [6] also proposed a routing failure test that tries to determine what
nodes are malicious. Their approach also sends multiple copies of the message through
diverse routes to ensure message delivery. Our approach is similar but less resource
intensive. Our system uses the peer groups to detect faulty routing information, and
to ensure that no peer is a choke-point between two other peers. Our system does not
attempt to ensure the delivery of all messages, but instead attempts to ensure that some
messages will be delivered.

There are many different ways to secure peer-to-peer systems. For example systems
such as LOCKSS [4], use majority voting replicas and computationally rate-limiting
cryptographic puzzles [14]. Unfortunately, these approaches severely impact system
performance and are not practical in the context where good performance is a necessity.

Lastly, some of the mechanisms used in our extension are also used in the design
of accountable systems [15]. The goal of accountable systems is to detect and provide
unforgable proof of a peer’s misbehaviour. Such proof is a necessary component of any
system that allows for the excommunication of malicious peers. PeerReview [15] uses
witness peers to validate a peer’s behaviour and to construct a proof of a peer’s misbe-
haviour. However, unlike in our system, the witnesses are not proximate and compare
the log of a peer’s actions to a simulation of the peer. In our system the veracity of a
peer’s response can be checked by comparing it to that of its neighbours and does not
require a simulation of the peer.

6 Conclusion and Future Work

We have designed and implemented a secure and efficient extension to the I3 [2] imple-
mentation of the Chord structured overlay [3]. Our extension is aimed at closed over-
lays in which membership is tightly controlled. This context requires mechanisms for
peer identification, authentication, and authorization, mechanisms for message authen-
tication, and mechanisms to mitigate the behaviour of malicious peers in the overlay,
which are unavoidable.

Our implementation uses a simple hashing scheme to generate keys that are linked
to peer’s network address, and are uniformly distributed in the key space. The keys are
embedded into messages, linking each message to its sender via an efficient two-part
authentication mechanism, combining public key and HMAC message authentication.
Secure routing is implemented via self-policing peer groups that force malicious peers
to either behave properly or face detection. Lastly, these groups are leveraged for a
simple random routing scheme that prevents choke-points within the overlay.

Our evaluation, which was performed on a local cluster, has demonstrated that our
implementation’s overhead, of about 20%, is primarily due to CPU bounded operations.
We believe that this effect will significantly decrease under normal conditions in the
larger Internet context where latency will dominate, and where multiple peers are not
running on the same host.

To validate this hypothesis, we intend to perform a more realistic evaluation using
the Planet-Lab platform, which spans the world and will allow us to test much larger
overlays. We are in the process of implementing the Trinity [1] e-mail classification sys-
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tem on top of our secure overlay. This will provide additional opportunities to identify
and solve performance bottlenecks in our implementation.
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