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Abstract. The task of finding the optimum of some function f(x) is
commonly accomplished by generating and testing sample solutions iter-
atively, choosing each new sample x heuristically on the basis of results
to date. We use Gaussian processes to represent predictions and uncer-
tainty about the true function, and describe how to use these predictions
to choose where to take each new sample in an optimal way. By doing this
we were able to solve a difficult optimization problem - finding weights in
a neural network controller to simultaneously balance two vertical poles
- using an order of magnitude fewer samples than reported elsewhere.

1 Introduction

One potentially efficient way to perform optimisation is to use the data collected
so far to build a predictive model, and use that model to select subsequent search
points. In an optimisation context, this model is often referred to as a response

surface. This method is potentially efficient if data collection is expensive relative
to the cost of building and searching a response surface. In many such cases, it
can be beneficial to use relatively cheap computing resources to build and search
a response surface, rather than incur large costs by directly searching in the
problem space. A case in point is the construction of robotic control systems.

In the response surface methodology [1] we construct a response surface and
search that surface for likely candidate points, measured according to some cri-
terion. Jones [2] provides a summary of many such methods and discusses their
relative merits. As a simple example, consider a noiseless optimisation problem
where, given an intial set of samples, we proceed as follows:

1. Fit a basis function model to the data.
2. Find an optimum point of the model and call this point xnew

3. Sample the problem at xnew, and add the result to the current data set.
4. Repeat until satisfied or until is no satisfactory progress is being made.

This is a poor general purpose optimisation algorithm, and for several reasons.
One symptom is that it rapidly becomes stuck in one region of the search space,
wasting further samples there despite already having good information about it
from previous samples.
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A more sophisticated search method might attempt to capture regularities
about the nature of the search space (rather than merely fitting the existing
data), and then use that model more sensibly than simply suggesting the high-
est predicted point for the next sample. The tendency to explore unchartered
territory and collect new information about the problem’s structure once local
territory has been mapped should be an emergent property of a good search algo-
rithm, not a heuristic to be wired in as a quick fix for “premature convergence”.
This naturally leads us to consider statistical models, where we have a full predic-
tive distribution rather than a single prediction at each search point. Gaussian
process models [16] are attractive from this standpoint, for 3 reasons: (i) the
predictive distribution is easily obtained, (ii) a Bayesian treatment of hyperpa-
rameters allows the model to learn general properties of the surface (smoothness
etc.) from previous samples, and (iii) a sensible criterion for drawing the next
sample is easily obtained from them.

2 Gaussian processes

Given training data D consisting of N “input” vectors xi paired with scalar
“outputs” yi for i ∈ {1, 2, ..., N}, Gaussian process regression is a machine learn-
ing technique for infering likely values of y for a novel input x. The study of
Gaussian processes for prediction began in geostatistics with kriging [3], [4] and
O’Hagan’s [5] application to one-dimensional curve fitting. Buntine [6], MacKay
[7], and Neal [8] introduced a Bayesian interpretation that provided a consistent
method for handling network complexity (see [9, 10] for reviews), followed by
regression in a machine learning context [11–13]. See [14–16] for good introduc-
tions. Interesting machine learning applications include reinforcement learning
[17], incorporation of derivative observations [18], speeding up the evaluation of
Bayesian integrals [19, 20], and as models of dynamical systems [21].

The key assumption is that the posterior distribution p(y|x,D) is Gaussian.
To compute its mean and variance, one specifies a valid covariance function
cov(x,x′), and defines vector k where ki = cov(x,xi), and matrix C where Cij =
cov(xi,xj). A common choice of covariance function is the squared exponential,
with a length scale rd associated with each axis:

cov(xi,xj) = α exp
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Here θ = {α, r1, . . . , rD, β} are hyperparameters, for which Maximum a posteri-
ori (MAP) values can be inferred from the data [16] by maximising the posterior
density p(θ|X,y), which is the product of the likelihood function and a prior
density over hyperparameters. In the experiments here we used the following log
normal priors for p(θ): log α ∼ N (− log 0.5, 0.5), log rd ∼ N (− log 0.5, 0.5), and
log β ∼ N (− log 0.05, 0.5).

At any test point x we then have a predictive distribution that can be shown
to be Gaussian with mean y(x) = kTC−1y, and variance s2(x) = κ − kTC−1k

where κ = cov(x,x) (eg. for the above covariance function κ = α + β).
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3 Expected Improvement

If the model we build provides a predictive distribution at any test point, we can
use it to ask what improvement, over our current best sample, do we expect to
get from sampling at any test point. Such a measure is known as the expected
improvement (e.g. see [2]). The expected improvement (“EI”) is particularly
straightforward to calculate in the case of a Gaussian process.

For a maximisation problem, the predicted improvement at x is I(x) = ŷ(x)−
fbest, where fbest is the current best score and ŷ(x) is the model’s prediction at
x. The prediction is Gaussian distributed as ŷ(x) ∼ N (y(x), s2(x)), and so is
the improvement: I ∼ N (y(x) − fbest, s

2(x)). The expected improvement at x

for models with Gaussian predictive distributions is therefore

EI(x) = E[max{0, I(x)}] =

∫ I=∞

I=0

Ip(I)dI = s(x) [u Φ(u) + φ(u)]

where u = y(x)−fbest

s(x) . The functions Φ(·) and φ(·) are the normal cumulative

distribution and normal density function respectively:
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Figure 1 illustrates the concept of expected improvement for a GP model in
a maximisation context.

To find a new search point that maximises the expected improvement, we
can also make use of gradient information. The gradient of EI with respect to
x is:

∂EI(x)

∂x
=

[

uΦ(u) + φ(u)

]

∂s(x)

∂x
+ s(x)Φ(u)

∂u

∂x

(the other two terms cancel) where

∂s(x)
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= −
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The Jacobian ∂kT

∂x is dependent on the form of the covariance function: it is

D × N matrix whose (i, j)th element is
∂cov(x,xj)

∂xi
where x = [x1 . . . xD]T.

4 GPO

In this section, the Gaussian Processes for Optimisation (GPO) algorithm is
described. Our goal is find the position xopt of the optimum of a surface f∗(·),
using as few samples as possible, so we update all parameters in the model as
each new data point arrives. GPO begins by assuming a start point x0, which in
general is sampled from some distribution reflecting our prior beliefs about f∗(·).
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Fig. 1. Expected Improvement for a GP model in a maximisation context. Data points
are shown as black dots. The GP model’s predictive distribution has a mean shown by
the black line that fits the data, and a standard deviation shown by the shaded region
surrounding the mean. The black line at the bottom shows the expected improvement
given this particular GP model. Notice that expected improvement is maximum when
the model’s prediction is better than or close to fbest and the predictive variance is
high. Expected improvement is quite high when when the model prediction is low and
the predictive variance is high. But when the model prediction is low and the predictive
variance is low, the expected improvement is almost zero.

At each iteration, the algorithm builds a GP model of the current data by finding
θMAP . If multimodal posterior distributions are considered a problem, then the
GP model can be built by restarting the log posterior density maximisation
multiple times from samples drawn from p(θ).

The resulting GP model is used to select the next xnew to evaluate by finding
a point that maximises the expected improvement. This can be achieved by using
the gradient of the expected improvement as input to (eg.) the conjugate gradient
algorithm [23]. To overcome the problem of suboptimal local maxima, multiple
restarts are made starting from randomly selected points in the current data set
X. The new observation ynew is found from f∗(xnew) and the results are added
to the current data set. Iterations continue until some stopping criterion is met.

Figure 2 shows the results of running standard GPO on a simple 1D toy
problem. Notice how the search initially focuses on the suboptimal maximum
on the left. However, once the algorithm has sampled here a few times, the
expected improvement of sampling in this suboptimal region diminishes quickly.
At this point, the search expands into new regions. The algorithm will exploit
local knowledge to make improvement, but will also explore when the expected
returns of this exploitation decrease.

Notice that the squared exponential form of the covariance function is “axis-
aligned” in the sense that it assigns a separate length scale to each direction in
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Algorithm 1: GPO

Input: optimisation problem f∗(·), and starting point x0

xbest ← x0, ybest ← f∗(x0);1

y← [ybest], X← xbest;2

repeat3

θMAP ←− arg max
θ

p(θ|X,y);
4

xnew ←− arg max
x

EI(x|X,y, θMAP );
5

ynew ← f∗(xnew);6

if ynew ≥ ybest then7

ybest ← ynew, xbest ← xnew;8

X← [X |xnew], y ←
ˆ

yT | ynew

˜T

;9

Vrot ← arg max
v

p(θV

MAP |VX,y) where θ
V

MAP = arg max
θ

p(θ|VX,y);
10

X← VrotX11

until (stopping criteria satisfied);12

return xbest13

input space. However in optimization problems in more than one dimension this
is a poor assumption, since there will often be interactions between input vari-
ables which induce covariance structure that is “off-axis”. To allow the algorithm
to discover such structure, at each step we test out a number of random rotations
X′ = VrotX of the current input data X using randomly generated orthonormal
matrices Vrot, and choose the rotated data set for which p(θMAP |X′,y) is great-
est. This preprocessing of the data is equivalent to learning a rotated covariance
function and allows GPO deal with off-axis structure in the properties of the
search surface. Further details are given in [20].

Jones [2] first introduced kriging for optimisation using expected improve-
ment to select the next iterate. Büche, Schraudolph and Koumoutsakos [22]
explicitly used Gaussian processes for optimisation, and demonstrated the al-
gorithm’s effectiveness on a number of benchmark problems. This work did not
make use of expected improvement, did not place prior distributions over the
hyperparameters, and did not consider the deficiencies of using an axis-aligned
covariance function to optimise objective functions with correlated output (de-
pendent) variables. The algorithm presented here takes all these factors into ac-
count. Recently [28] have used similar ideas to those presented here to optimize
the gait of a mobile robot, although they use a different criterion (probability of
any improvement) and don’t deal with correlated variables.

5 Double Pole Balancing with GPO

The double pole balancing task consists of two upright poles (or inverted pendu-
lums), attached by hinges to a cart. The goal is to keep the two poles balanced
by applying a [−10, 10]N force to the cart. Balanced poles are defined as within
±36 ◦ from vertical, and the cart is limited to a track which is 4.8m long. The
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Fig. 2. GPO applied to a 1D function for 9 iterations. The dashed line shows the
underlying function to be optimised. The sample points are shown as black dots, along
with the model’s predictive distribution (the line surrounded by the shaded area shows
the mean and standard deviation). The expected improvement is rescaled and shown
by the solid line at the bottom of each window. Note the hill-climbing behaviour (eg.
iterations 4-5) exploiting regularity of the surface, and exploratory behaviour at other
times (eg. iteration 6).

controller is supplied with inputs from sensors measuring the cart’s position and
velocity x, ẋ and the angle and angular velocity of each pole with respect to the
cart θ1, θ̇1, θ2, θ̇2. The poles have different lengths and masses (pole 1 is 0.1m and
0.01kg; pole 2 is 1.0m and 0.1kg) and the system is noiseless with initial state
vector s = [x ẋ θ1 θ̇1 θ2 θ̇2]

T = [0 0 0 0 π
180 0]T, where angles are measured in rad

from vertical, and angular velocities are measured in radians / sec. The centre
of the track is defined as x = 0, and is the position of the cart at the beginning
of the task. Note that this task is Markovian as the full system state vector
s is available to the controller and is the same as the “double pole balancing
with velocity information” problem as presented by Stanley and Miikkulainen
[24–26].

If the goal is to keep the poles balanced for as long as possible, one solution
is to wiggle the poles back and forth about a central position. To prevent this,
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Gruau [27] defined a fitness function that penalises such solutions, fgruau =
0.1f1 + 0.9f2, [24, 26]. The two components are defined over 1000 time steps (10
seconds simulated time):

f1 = t/1000 (2)

f2 =

{

0 if t < 100,
0.75

P

t
i=t−100

(|xi|+|ẋi|+|θ1|+|θ̇1|)
otherwise.

(3)

where t is the number of time steps both poles remained balanced during a trial
lasting 10 seconds. fgruau can be maximised by keeping both poles balanced,
and by maintaining the cart steady at the centre of the track during the final
second of the trial. Effectively, to maximise fgruau the controller must balance
the poles without ‘wiggling’. As the denominator of (3) approaches zero f2 ap-
proaches infinity, so fgruau was non-linearly rescaled into the range [0, 1] giving
fgpo = tanh(fgruau/2). Controllers were considered successful solutions when
fgpo ≥ tanh

(

5
2

)

.

5.1 Feedforward Neural Network Controllers

The double pole balancing task described above is a non-linear, unstable control
problem. However, because the poles have different lengths and masses, the
system is controllable. In addition, the task is Markovian. Overall, full knowledge
of the system state is sufficient to balance the poles, and this can be achieved
with a mapping from s to u, our control force. In other words, there exists at
least one mapping s 7→ u that is capable of balancing the poles. A successful
controller must functionally approximate such a mapping.

The control force is implemented by a feedforward neural network with a
single hidden layer having H units, and output limited to [−10, 10]N :

u = 10 tanh
(

wT
o tanh

(

WT
i s + b

))

where wo is an H × 1 vector of output weights, b is an H × 1 vector of biases,
Wi is a 6 × H matrix of input weights, s is the 6 × 1 state vector.

5.2 Optimisation and Incremental Network Growth

We optimized f⋆ = fgruau(wo,W,b). The optimisation started with a single
unit in the network, H = 1. Initially, therefore, there were 8 parameters that
need optimising. GPO, with the axis-aligned covariance function (Eq. 1) and
data rotation prior to training, was used optimise these weights until either
there had been no improvement in the best fitness for 64 consecutive samples,
or 250 samples had been taken. When either of these conditions were met, the
current optimised parameters were frozen, and a new unit with zeroed weights
was added to the network. The cycle repeated until a solution was found, or 5
units and their weights had been optimised. Note that the initial weights for the
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first iteration were zero (the algorithm started from the same place every time
it was run), and 8 parameters were being optimised at every stage.

Figure 3 shows 100 runs of GPO on this task. 96 of these runs found a success-
ful controller solution with fgruau ≥ tanh

(

5
2

)

in < 1000 evaluations (samples).
The median number of evaluations required to find a successful controller was
151, and the mean was 194. The majority (78%) of successful controllers used
only 1 unit in their solution (i.e. 6 input weights, 1 bias and 1 output weight).
12 runs used 2 units, while 9 needed from 3 to 5 units.

Fig. 3. Double Pole Balancing with Gruau fitness, optimised using GPO. The figure
shows 100 separate optimisations (grey) and the average (black).

Stanley and Miikkulainen [24–26] introduced “Neuroevolution of Augmenting
Topologies” (NEAT), and applied it to a number of pole balancing tasks, includ-
ing the double pole balancing problem presented above. The NEAT method is
a genetic algorithm with mutation and crossover operations specially crafted to
enhance the evolution of neural network controllers. The details of NEAT are
not important here, other than that it produced impressive results in solving
the double pole balancing task with velocity information. NEAT required an
average 3578 network evaluations to find a controller solution, which compared
favourably with other results from literature.

GPO produced successful controllers in 96 out of 100 trials, and did so with
a mean of 194 evaluations. This is a significant improvement over NEAT.
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6 Summary

We have presented an optimization algorithm that uses Gaussian process regres-
sion to suggest where to take samples, with the goal of finding a good solution
in a small number of function evaluations. GPO uses data rotation to allow for
interactions between input variables, and learns about the search space as it
proceeds, by finding maximum a posteriori values for hyperparameters at every
step. In this way search is carried out as much as possible on the model instead
of the real world, using the conjugate gradient method to find points having the
highest expected improvement. Sequences of samples taken in this way exhibit
a variety of intuitively sensible yet emergent properties, such as hill-climbing
behaviour, and avoidance of regions the model considers to be well characterised
already. Despite being a deterministic procedure, GPO also shows non-trivial
exploratory behaviour, in testing out regions that seem promising under the
current model.

As a demonstration of this algorithm we applied it to the task of finding
optimal parameters for the double pole-balancing problem, with that result that
it learns successful controllers using about 200 evaluations of possible controllers,
compared to over 3500 reported for other algorithms.
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