Skip to main content

Experimental Approaches Toward a Functional Understanding of Insect Flight Control

  • Chapter
  • First Online:
Flying Insects and Robots

Abstract

This chapter describes experimental approaches exploring free-flight control in insects at various levels, in view of the biomimetic design principles they may offer for MAVs. Low-level flight control is addressed with recent studies of the aerodynamics of free-flight control in the fruit fly. The ability to measure instantaneous kinematics and aerodynamic forces in free-flying insects provides a basis for the design of flapping airfoil MAVs. Intermediate-level flight control is addressed by presenting a behavioral system identification approach. In this work, the motion processing and speed control pathways of the fruit fly were reverse engineered based on transient visual flight speed responses, providing a quantitative control model suited for biomimetic implementation. Finally, high-level flight control is addressed with the analysis of landmark-based goal navigation, for which bees combine and adapt basic visuomotor reflexes in a context-dependent way. Adaptive control strategies are also likely suited for MAVs that need to perform in complex and unpredictable environments. The integrative analysis of flight control mechanisms in free-flying insects promises to move beyond isolated emulations of biological subsystems toward a generalized and rigorous approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, A.: A model for landmark learning in the honey-bee. Journal of Comparative Physiology A 114, 335–355 (1977)

    Article  Google Scholar 

  2. Baird, E., Srinivasan, M.V., Zhang, S., Cowling, A.: Visual control of flight speed in honeybees. Journal of Experimental Biology 208(20), 3895–3905 (2005)

    Article  Google Scholar 

  3. Boeddeker, N., Kern, R., Egelhaaf, M.: Chasing a dummy target: Smooth pursuit and velocity control in male blowflies. Proceedings of the Royal Society of London Series B Biological Sciences 270(1513), 393–399 (2003)

    Google Scholar 

  4. Borst, A., Egelhaaf, M.: Principles of visual motion detection. Trends in Neurosciences 12(8), 297–306 (1989)

    Article  Google Scholar 

  5. Borst, A., Haag, J.: Neural networks in the cockpit of the fly. Journal of Comparative Physiology A 188(6), 419–37 (2002)

    Article  Google Scholar 

  6. Buchner, E.: Behavioral analysis of spatial vision in insects. In: M.A. Ali (ed.) Photoreception and Vision in Invertebrates, pp. 561–621. Plenum Press, New York (1984)

    Google Scholar 

  7. Cartwright, B.A., Collett, T.S.: How honey bees use landmarks to guide their return to a food source. Nature 295, 560–564 (1982)

    Article  Google Scholar 

  8. Cartwright, B.A., Collett, T.S.: Landmark learning in bees: Experiments and models. Journal of Comparative Physiology A 151, 521–543 (1983)

    Article  Google Scholar 

  9. Chittka, L., Kunze, J., Shipman, C., Buchmann, S.L.: The significance of landmarks for path integration in homing honeybee foragers. Naturwissenschaften 82, 341–343 (1995)

    Article  Google Scholar 

  10. Collett, T.S., Graham, P., Harris, R.A., Hempel de Ibarra, N.: Navigational memories in ants and bees: Memory retrieval when selecting and following routes. Advances in the Study of Behavior 36, 123–172 (2006)

    Article  Google Scholar 

  11. Collett, T.S., Land, M.F.: Visual control of flight behaviour in the hoverfly Syritta pipiens L. Journal of Comparative Physiology 99, 1–66 (1975)

    Article  Google Scholar 

  12. Collett, T.S., Nalbach, H.O., Wagner, H.: Visual stabilization in arthropods. Reviews of Oculomotor Research 5, 239–63 (1993)

    Google Scholar 

  13. Collett, T.S., Zeil, J.: Places and landmarks: An arthropod perspective. In: S. Healy (ed.) Spatial Representation in Animals, pp. 18–53. Oxford University Press, Oxford, New York (1998)

    Google Scholar 

  14. Datteri, E., Tamburrini, G.: Biorobotic experiments for the discovery of biological mechanisms. Philosophy of Science 74(3), 409–430 (2007)

    Article  Google Scholar 

  15. David, C.T.: Compensation for height in the control of groundspeed by Drosophila in a new, ’barber’s pole’ wind tunnel. Journal of Comparative Physiology A 147, 485–493 (1982)

    Article  Google Scholar 

  16. Deng, X.Y., Schenato, L., Sastry, S.S.: Flapping flight for biomimetic robotic insects: Part II - Flight control design. IEEE Transactions on Robotics 22(4), 789–803 (2006)

    Article  Google Scholar 

  17. Deng, X.Y., Schenato, L., Wu, W.C., Sastry, S.S.: Flapping flight for biomimetic robotic insects: Part I - System modeling. IEEE Transactions on Robotics 22(4), 776–788 (2006)

    Article  Google Scholar 

  18. Dickinson, M.H.: Bionics: Biological insight into mechanical design. Proceedings of the National Academy of Sciences of the United Statesof America 96(25), 14, 208–9. (1999)

    Google Scholar 

  19. Dickinson, M.H.: Insect flight. Current Biology 16(9), R309–R314 (2006)

    Article  Google Scholar 

  20. Dickson, W.B., Dickinson, M.H.: The effect of advance ratio on the aerodynamics of revolving wings. Journal of Experimental Biology 207(24), 4269–4281 (2004)

    Article  Google Scholar 

  21. Egelhaaf, M., Kern, R.: Vision in flying insects. Current Opinion in Neurobiology 12(6), 699–706 (2002)

    Article  Google Scholar 

  22. Ellington, C.P.: The aerodynamics of hovering insect flight. Philosophical Transactions of the Royal Society B: Biological Sciences 305, 1–181 (1984)

    Article  Google Scholar 

  23. Fermi, G., Reichardt, W.: Optomotorische Reaktionen der Fliege Musca domestica. Kybernetik 2, 15–28 (1963)

    Article  Google Scholar 

  24. Franceschini, N., Ruffier, F., Serres, J.: A bio-inspired flying robot sheds light on insect piloting abilities. Current Biology 17(4), 329–335 (2007)

    Article  Google Scholar 

  25. Franz, M.O., Schöllkopf, B., Mallot, H.A., Bülthoff, H.H.: Where did i take that snapshot? Scene based homing by image matching. Biological Cybernetics 79, 191–202 (1998)

    Article  MATH  Google Scholar 

  26. Fry, S.N., Bichsel, M., Müller, P., Robert, D.: Tracking of flying insects using pan-tilt cameras. Journal of Neuroscience Methods 101(1), 59–67 (2000)

    Article  Google Scholar 

  27. Fry, S.N., Rohrseitz, N., Straw, A.D., Dickinson, M.H.: TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies. Journal of Neuroscience Methods 171(1), 110–117 (2008)

    Article  Google Scholar 

  28. Fry, S.N., Rohrseitz, N., Straw, A.D., Dickinson, M.H.: Visual control of flight speed in Drosophila melanogaster. Journal of Experimental Biology 212, 1120–1130 (2009)

    Google Scholar 

  29. Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of free-flight maneuvers in Drosophila. Science 300(5618), 495–498 (2003)

    Article  Google Scholar 

  30. Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of hovering flight in Drosophila. Journal of Experimental Biology 208(12), 2303–2318 (2005)

    Article  Google Scholar 

  31. Fry, S.N., Wehner, R.: Honey bees store landmarks in an egocentric frame of reference. Journal of Comparative Physiology A 187(12), 1009–1016 (2002)

    Article  Google Scholar 

  32. Fry, S.N., Wehner, R.: Look and turn: Landmark-based goal navigation in honey bees. Journal of Experimental Biology 208(20), 3945–3955 (2005)

    Article  Google Scholar 

  33. Gibson, J.J.: The visual perception of objective motion and subjective movement. 1954. Psychological Review 101(2), 318–23 (1994)

    Article  MathSciNet  Google Scholar 

  34. Götz, K.G.: Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964)

    Article  Google Scholar 

  35. Graham, P., Fauria, K., Collett, T.S.: The influence of beacon-aiming on the routes of wood ants. Journal of Experimental Biology 206(3), 535–541 (2003)

    Article  Google Scholar 

  36. Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Zeitschrift für Naturforschung 11b, 513–524 (1956)

    Google Scholar 

  37. Hausen, K.: Decoding of retinal image flow in insects. Reviews of Oculomotor Research 5, 203–35 (1993)

    Google Scholar 

  38. Jeong, K.H., Kim, J., Lee, L.P.: Biologically inspired artificial compound eyes. Science 312(5773), 557–561 (2006)

    Article  Google Scholar 

  39. Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems 30, 39–64 (2000)

    Article  Google Scholar 

  40. Land, M.F., Collett, T.S.: Chasing behaviour of houseflies (Fannia canicularis). Journal of Comparative Physiology A 89, 331–357 (1974)

    Article  Google Scholar 

  41. Liu, S.C., Usseglio-Viretta, A.: Fly-like visuo-motor responses on a robot using aVLSI motion chips. Biological Cybernetics 85(6), 449–457 (2001)

    Article  Google Scholar 

  42. Möller, R.: Insect visual homing strategies in a robot with analog processing. Biological Cybernetics 83, 231–243 (2000)

    Article  MATH  Google Scholar 

  43. Möller, R.: Do insects use templates or parameters for landmark navigation? Journal of Theoretical Biology 210, 33–45 (2001)

    Article  Google Scholar 

  44. Sane, S.P., Dickinson, M.H.: The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology 205(8), 1087–1096 (2002)

    Google Scholar 

  45. Schuster, S., Strauss, R., Götz, K.G.: Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances. Current Biology 12(18), 1591–4 (2002)

    Article  Google Scholar 

  46. Srinivasan, M.V., Zhang, S.: Visual motor computations in insects. Annual Review of Neuroscience 27, 679–96 (2004)

    Article  Google Scholar 

  47. Srinivasan, M.V., Zhang, S., Lehrer, M., Collett, T.S.: Honeybee navigation en route to the goal: Visual flight control and odometry. Journal of Experimental Biology 199(1), 237–44 (1996)

    Google Scholar 

  48. Tanaka, K., Kawachi, K.: Response characteristics of visual altitude control system in Bombus terrestris. Journal of Experimental Biology 209(22), 4533–4545 (2006)

    Article  Google Scholar 

  49. Taylor, G.K., Bacic, M., Bomphrey, R.J., Carruthers, A.C., Gillies, J., Walker, S.M., Thomas, A.L.R.: New experimental approaches to the biology of flight control systems. Journal of Experimental Biology 211(2), 258–266 (2008)

    Article  Google Scholar 

  50. Taylor, G.K., Krapp, H.G.: Sensory systems and flight stability: What do insects measure and why? Advances in Insect Physiology 34, 231–316 (2008)

    Article  Google Scholar 

  51. Taylor, G.K., Żbikowski, R.: Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria. Journal of the Royal Society Interface 2(3), 197–221 (2005)

    Article  Google Scholar 

  52. Tinbergen, N.: über die Orientierung des Bienenwolfs (Philantus triangulum Fabr.). Zeitschrift für Vergleichende Physiologie 16, 305–334 (1932)

    Google Scholar 

  53. Vardy, A., Möller, R.: Biologically plausible visual homing methods based on optical flow techniques. Connection Science 17(1), 47 – 89 (2005)

    Article  Google Scholar 

  54. Webb, B.: Validating biorobotic models. Journal of Neural Engineering 3(3), R25–R35 (2006)

    Article  Google Scholar 

  55. Wehner, R.: Spatial vision in arthropods. Handbook of Sensory Physiology, vol. VII/6C, pp. 287–616. Springer, Berlin, Heidelberg, New York, Tokyo (1981)

    Google Scholar 

  56. Wehner, R.: Arthropods. In: F. Papi (ed.) Animal homing, pp. 45–144. Chapman & Hall (1992)

    Google Scholar 

  57. Weis-Fogh, T.: Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology 59, 169–230 (1973)

    Google Scholar 

  58. Wood, R.J.: Design, fabrication, and analysis of a 3DOF, 3 cm flapping-wing MAV. Intelligent Robots and Systems, 2007. IROS 2007, pp. 1576–1581 (2007)

    Google Scholar 

  59. Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. Robotics, IEEE Transactions on 24(2), 341–347 (2008)

    Article  Google Scholar 

  60. Wu, W., Shenato, L., Wood, R.J., Fearing, R.S.: Biomimetic sensor suite for flight control of a micromechanical flying insect: Design and experimental results. Proceedings of the 2003 IEEE International Conference on Robotics and Automation (ICRA 2003), vol. 1, pp. 1146–1151. IEEE Press, Piscataway, NJ (2003)

    Google Scholar 

  61. Wu, W.C., Wood, R.J., Fearing, R.S.: Halteres for the micromechanical flying insect. Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2002 1, 60–65 (2002)

    Google Scholar 

  62. Zufferey, J.C., Floreano, D.: Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Transactions on Robotics 22(1), 137–146 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

I wish to thank to reviewers for useful comments, Chauncey Grätzel for advice on the writing, Jan Bartussek, Vasco Medici and Nicola Rohrseitz for useful comments and discussions. The work described in this chapter was funded by the following institutions: Human Frontiers Science Program (HFSP), Swiss Federal Institute of Technology (ETH) Zurich; Swiss National Science Foundation (SNSF), University of Zurich and Volkswagen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven N. Fry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fry, S.N. (2009). Experimental Approaches Toward a Functional Understanding of Insect Flight Control. In: Floreano, D., Zufferey, JC., Srinivasan, M., Ellington, C. (eds) Flying Insects and Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89393-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89393-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89392-9

  • Online ISBN: 978-3-540-89393-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics