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1 Introduction

Mathematics is théingua francaof modern science, not least because of its con-
ciseness and abstractive power. The ability to prove madkieat theorems is a
key prerequisite in many fields of modern science, and thritiga of how to do
proofs therefore plays a major part in the education of sitelm these subjects.
Computer-supported learning is an increasingly imporfart of study since it
allows for independent learning and individualised instian.

Our research aims at partially automating intelligent itimigp of mathematical
proofs. This research direction is interesting not leas@abee of the large num-
ber of potential users of such systems, including studeiis v addition to an
introductory university lecture want to exercise theirdream proving skills, learn-
ers without access to university courses, and engineerswant to freshen their
skills. Furthermore, the research direction is intergsbecause of the non-trivial
challenge it poses to artificial intelligence, computagidimguistics and e-learning:
in order to achieve a powerful and effective intelligentgfrtutoring system many
research problems that are central to these areas haveddtessed and combined.

Inthe SFB 378 project DIALOG [13, 7, 9] (see also the pape}idthis volume)
we have revealed and addressed foundational researcbraijedithat are crucial for
realising intelligent computer-supported proof tutorlmgsed on a flexible, natural
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language-based dialogue between student and computhe proof tutoring sce-
nario as studied in the project the student communicatesf gteps to the tutorial
system by embedding them in natural language utteranceslafiguage used is a
mixture of natural-language and mathematical expresgfomethural” [28]). Proof
construction is performed in a stepwise fashion, and theesysesponds to utter-
ances with appropriate didactically useful feedback av algh hints. The student
is free to build any valid proof of the theorem at hand.

To support the generation of appropriate feedback eachopespproof step
needs to be analysed by the system in the context of the Ipartiaf developed
so far. For this reason, automating proof tutoring requigsamic techniques that
assess the student’s proof steps on a case-by-case basdemto@ generate the
appropriate feedback. The feedback can take the form ofrooinfyj correct steps,
drawing the student’s attention to errors, and offering disnspecific hints when
the student gets stuck. In case the tutor system is askedeaadiint, the hint is
generated in the context of the current proof, and it has texaetly tailored to
the situation in which the hint was requested. The abilitdyaamically construct
proofs, to dynamically analyse new proof steps, and to cetapgdartial proofs to
full proofs is thus an essential prerequisite for inteltigproof tutoring.

The scenario we finally envisage integrates the flexibléodisge-based proof tu-
toring system we are aiming at with an interactive e-leageinvironment for math-
ematics. An example of an interactive e-learning enviromneActiveMath [17].
ActiveMath is a third generation e-learning system for sdlamd university level
learning as well as for self-study that offers new ways torle@aathematics. In Ac-
tiveMath the learner can, for example, choose among seleaaling scenarios,
receive learning material tailored to her/his needs aret@sts, assemble individual
courses her/himself, learn interactively and receivelf@ell in exercises, use inter-
active tools, and inspect the learner model and partiallgiffdhe system’s beliefs
about the student’s capabilities and preferences. Théfeexdialogue-based proof
tutoring system which we aim at shall ideally cooperate withh an e-learning en-
vironment. A learner taking an interactive course in thearhing system shall be
able to call it in order to exercise his/her theorem provikijsswithin the trained
mathematical domain. Ideally, both the e-learning envitent and the proof tutor-
ing system share the formal mathematical content, the titdgamals and the student
model. The exercise within the proof tutoring environmeilttren exploit this in-
formation and confirm, modify or refine the student model.

The combination of expertise from computational lingeistand from deduction
systems made the research in the DIALOG project partiguilaitresting. Expertise
from the former area was needed because of the choice of ilddlenathural lan-
guage as communication means between student and systpartig in the latter
area was needed for the development of techniques for dgranmdf management
and dynamic proof step evaluation.

The remainder of the paper is organised as follows: In Se&jowe illustrate
the initial position of our project, where the relative lasfldata prompted empirical
investigations. Based on the collected data, we formukdearch challenges for
proof tutoring in Section 3. A central role among those aradles is dynamic proof
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step evaluation, which is approached in Section 4. Mathprcadessing is the subject
of the article by Wolskat al.[44] in this book and human-oriented theorem proving
in QMEGA is explained in the article by Autexiet al.[5]. This paper can be seen
as a bridge between these two articles. Section 5 elabaratdi&lactic strategies,
dialogue modelling, feedback generation and hints. Se&iooncludes the article
and relates our work to other approaches in the field.

2 The Need for Experiments and Corpora

In order to make a start in this research direction, expartewere needed to obtain
corpora that could guide our foundational research. Not wals little known about
the type of natural language utterances used in studeat-eialogues on proofs but
also there was little work available about automating ptatdring based on flexi-
ble student—tutor dialogues. To collect a corpus of datachvhow forms the basis
of our investigations into dialogue-based proof tutoriwg, conducted two exper-
iments in the Wizard-of-Oz style, which included the workMdigdalena Wolska
(see the twin paper [44] in this volume).

Experiment 1

A first experiment [8] served to collect a corpus of tutori@ldgues in the domain
of proof tutoring. It investigated the correspondence leefwdomain-specific con-
tent and its linguistic realisation, and the use, distidouind linguistic realisation
of dialogue moves in the mathematics domain. It also ingattd three tutoring
strategies, &ocratictutoring strategy (cf. [33]), @idactic strategy and aninimal
feedbaclstrategy (where the subjects only obtained very brief faellon the cor-
rectness of their attempts).

Setup.A tutorial dialogue system was simulated in the Wizard-afgaradigm [25]
i.e., with the help of a human expert. Twenty-four universtudents were in-
structed to evaluate the dialogue system. Their task waslti@ £xercises from
naive set theory in collaboration with the system. The comication between stu-
dent and tutor, who was hidden in a separate room, was mdadidile a software
tool DiaWoZ [19], which was specifically designed for thatjpaose. A comfortable
and usable interface is important for three reasons; (i) \Wizard-of-Oz setting,
the tutor is more efficient in constructing responses and Haiter able to conceal
his identity, (ii) the system as such appears more matukttars plausible) to the
student, which helps to further disguise the Wizard-of-&pg, (iii) in general, it
allows a more fluent interaction with the system (and thusthdent to concentrate
on the learning activity). We like to thank the departmentomputer linguistics
who provided the tools and facilities for this kind of expeents.

DiaWoZ supports complex dialogue specifications, whichenezeded in order
to specify a particular hinting algorithm used in thecratictutoring condition. Di-
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aWoZ allows keyboard-to-keyboard interaction betweemitizard and the student.
The interfaces consist mainly of a text window with the dgale history and a menu
bar providing mathematical symbols. Furthermore, the wizan assign dialogue
state transitions and speech act categories to studestiurh the underlying dia-
logue model. The DiaWoZ interface allowed a free mix of natlanguage text with
mathematical symbols. However, we still found a number pkats of the system
which we were able to improve. For example, the participanggested the use of
the keyboard instead of the mouse for inserting matheniayeabols. Therefore,
we have gradually improved our experiment software wis.interface components.
Corpus. The corpus of dialogues between students and the tutorinemtata of
22 subject, i.e. 22 experiment sessions. Each sessionds/gldd into three subdi-
alogues w.r.t to three different exercises that the stidente required to work on
in sequence. These 66 subdialogues contain on averagel@gudiaurns. In total,
the corpus consists of 1115 dialogue turns (of which 393 tardest turns), where
an average student turn consists of one sentence, and ageaxvsator turn consists
of two sentences. The example dialogue excerptin Fig. 1 shatering-related an-
notations (discussed further in [43] and [7]). The tutontiare annotated with hint
categories, the student turns are annotated with the stadewer categories.

T1 Please show: IA C K(B), thenB C K(A)!

S1 (wong)ACB

T2: (gi ve- away- r el evant - concept ) That is not correct! First you have to
consider the if-then-relation.

S2: (wrong) AC K(K(A))

T3: (el abor at e- domai n- obj ect) That is correct, but at the moment not
interesting. Do you know how to deal with the if-then-redat?

Fig. 1 Dialogue excerpt from the first experimerit. enotes a set complement.)

Experiment 2

A second experiment investigated mathematical domairoreéiag tasks and lin-
guistic phenomena in tutorial dialogues. In contrast tofitst experiment, it im-
posed less constraints on the wizards’ tutoring and assamegher simple dialogue
model.

Setup.Thirty-seven students from Saarland University interdtéh the mock-
up dialogue system, simulated with our software envirorrbéaWOz-11 and four
expert$, who took the role of the wizard in turn. As a minimal requiksmh students
were required to have completed at least one universitgtl@athematics course.

1 The experts consisted of the lecturer of a coufsendations of Mathematics maths teacher,
and two maths graduates with teaching experience.
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The students were instructed to solve mathematical exraiscollaboration with
the system. The exercises were taken from the domain oifoetatand were centred
around the concepts of relation composition and relatigarige. Because of the ad-
vanced character of the exercises, the participants hadlftbtifie prerequisite of
having taken part in at least one mathematics course atrsitivéevel prior to the
experiment. At first, the subjects were required to fill outiasfionnaire, collecting
data about previous experiences with dialogue systemshairchhathematics back-
ground. Subjects were also given study material with thehamattical definitions
that were required to solve the exercises. The largest panieawo-hour experi-
mental session was allotted to the interaction betweerttiskest and the simulated
system.

Our WOZ environment DiaWOz-1l [11] enables dialogues wheagural lan-
guage text is interleaved with mathematical notation, aypgcal for (informal)
mathematical proofs. The interface components of DiaWCar¢ based on the
what-you-see-is-what-you-gatientific text editor fXyacs? [22]. DiaWOz-11 pro-
vides one interaction window for the user and one for the izéogether with
additional windows displaying instructions and domain enial for the user, and
additional notes and pre-formulated text fragments fomitzard. All of these win-
dows allow for copying freely from one to the other. Furthers our DiaWOz-II
allows the wizard to annotate user dialogue turns with tteiegorisation. DiaWOz-
Il'is also connected to a spell-checker for checking bothuer’s and the wizard’s
utterances.

Corpus. The collected corpus contains the data of 37 subjects. Tittg-geven
experiment sessions include a total of 1917 dialogue 1988 by the wizards and
937 by the students). The students tried maximally foured#iit exercises each.
Unlike in the first experiment, the time spent on an exerciae mot strictly limited.
However, since the duration of the experiment session waiselil to two hours,
some students did not have the opportunity to do all exesciElee fourth exercise
was considered a “challenge exercise”, and therefore weated that only some
students would attempt it. On average, each student attel2pt exercises (i.e., we
have collected a total of 100 exercise-subdialogues).

The dialogues were annotated by the wizard during the exyeriand recorded
by DiawOz-1l. Any student utterance that represents a psteyp was classified
by the wizards w.r.t. three dimensionsyrrectnesgi.e. correct partially correct
or incorrecy), the step size(i.e. appropriate too detailedor too coarse-grainey
andrelevancd(.e.,relevant restricted relevancer irrelevanf). Statements from the
student which did not represent a contribution to the predj.(meta-comments or
questions) were annotated with a placeholdémownA dialogue excerpt from the
experiment together with annotations is shown in Fig. 2. dditon to the log-files
recorded by DiaWOz-Il, screen recordings were made. Furtbee, the partici-
pants were encouraged to “think aloud” and they were augltonded and filmed.
This comprehensive collection of data not only documergdekt of the tutorial di-
alogues, but also allows us to analyse how the participaets the interface and the

2 www.texmacs.org
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T1: LetRandSbe relations in an arbitrary skt. It holds that:(RoS)~1 = S 1o
R~L. Do the proof interactively with the system.

S1: Help me with the proof of the exercise
(unknown; unknown; unknown)

T2: In order to show the equality between two sets, one geneshtiys that the
first set is a subset of the second set and vice versa

S2: R1cR 1 (incorrect; appropriate; irrelevant)

T3: No, you first have to showRoS)"1 C S 1oR 1!

S3: (RoS)1cStoR?
(unknown; appropriate; relevant)

T3: Yes, that is to be shown. Therefore take an element fi@mS)~* and show
thatitis also inS to R 1,

S4: RCS1oR?
(incorrect; appropriate; irrelevant)

T5: No, that is not the right approach. Begin like this: [ety) € (Ro S)~2.

S5: (x,y) € (RoS)*(correct; appropriate; relevant)

T6: Now try to draw conclusions from this!

S6: (x,y) € S1oR?
(correct; too coarse-grained; relevant)

T6: This cannot be concluded so directly. You need some inteiatesteps.

Fig. 2 Dialogue excerpt from the second experiment. Annotatiodgate thecorrectnessgran-
ularity andrelevanceof the student’s proof step as judged by the tutor.

study material. The resulting corpus exhibits variety ie tise of natural language
and mathematical style. This variety enabled us — besiddyisty the task of proof
step evaluation, as presented in the next section — to shadinfluence of the in-
structions presented to the students on the use of naturglidge, as illustrated
in [10].

3 Main Challenges and Resources for Proof Tutoring

An analysis of our corpora revealed various challengeshf@ratitomation of proof
tutoring based on flexible student—tutor dialogues. Wegresome of the main
challenges here and point to the resources required by thestystem to fruitfully
address them. The success of mathural dialogue-basedtptoohg depends on:

A The student’s knowledge and his learning abilities.

B The tutor system’s mathural processing and mathural géioercapabilities.

C The tutor system’s ability to maintain and manage the diadostate and the
proof under construction.

D The tutor system’s capability to dynamically judge abdat proof steps uttered
by the student.
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E The tutor system’s capabilities to perform its proof staplgsis tasks with re-
spect to a dynamically changing tutorial context.

F The tutor system’s capabilities for a fine grained analg$ierroneous proof
steps.

G The didactic strategy for feedback generation employddeartutor system.

H The tutor system’s capability to flexibly interleave thevab tasks.

We now discuss the challenges for the tutor systems, thaspgects B-H, in
more detail. We take an application perspective on studenlting (challenge A)
for addressing some of these aspects, therefore thosetagatudent modelling
relevant for proof tutoring will be discussed within therfra of challenges B-H.

B: Mathural Processing and Mathural Generation

An essential capability of human tutors in mathematics érthbility to success-
fully communicatavith students. This communication process includes tHedés
processing the student’s utterances as well as the gememitifeedback under-
standable by the student. These processing and generafiahitities of the human
tutor thus constitute an essential resource with respebtstsuccess as a maths
tutor. Analogously, powerful analysis and generation béjps are amongst the
most important resources required for any proof tutoringgeasy which is based on
flexible dialogues.

Processing natural language with embedded mathematint#ro however, is
a highly challenging task by itself. Among other thingsnialves the problem of
content underspecification and ambiguous formulatiorréstingly, underspecifi-
cation also occurs in shaped-up textbook proofs [45]. Tsitlte proof-step under-
specification let us consider the dialogue excerpt in Fig. 3:

T1: Please showK((AUB)N(CUD)) = (K(A) K(B))U(K(C)nK(D))
S1: by the deMorgan rul& ((AUB)N(CUD)) = (K(AUB) UK(CuU D)) holds.

Fig. 3 An excerpt from the corpus of the first experiment.

In Figure 3, the proof-step that the utterar®kexpresses is highly underspeci-
fied from a proof construction viewpoint: it is neither memted how the assertion is
related to the target formula, nor how and which deMorga@was usedS1can be
obtained directly from the second deMorgan e Y.K(XNY) = K(X)UK(Y) by
instantiatingX with (AU B) andY with (CUD). Alternatively, it could be inferred
from T1 by applying the first deMorgan rutéX,Y.K(X UY) = K(X) N K(Y) from
right to left to the subtermk(A) NK(B) andK(C) N K (D). Successful proof tutor-
ing requires that the meaning of the student utterance canffieiently determined
to allow further processing. The capability to differetgiand prioritise between
proof construction alternatives as illustrated by our eplenis thus an important
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resource of a tutoring system. And as illustrated, mathpn@tessing may involve
non-trivial domain reasoning tasks (here theorem pro\asgs).

The corpora also illustrate the style and logical grantyarf human-constructed
proofs. The style is mainly declarative, for example, thelehts declaratively de-
scribed the conclusions and some (or none) of the premidasioinferences. This
is in contrast to the procedural style employed in many passfstants where proof
steps are invoked by calling rules, tactics, or methods,same proof refinement
procedures. The hypothesis that assertion level reasf28hglays an essential role
in this context has been confirmed. The fact that assertiai teasoning may by
highly underspecified in human-constructed proofs, howésa novel finding [3].

In this article we will not further discuss the processing generation of math-
ural language and refer to the twin article [44] in this vokirim the following we
assume that the meaning of a student utterance can alwaysbessfully deter-
mined by the mathural processing resources available tutbesysten?.

C: Dialogue State and Proof Management

The successive dialogue moves performed by student andduoa dialogue state
which is the context for the analysis of further moves. Phttiis dialogue state is an
incrementally developing partial proof object which is gledully) shared between
the student and the tutor. It represents the status of thef praler development by
the student at the given point in the dialogue. The maintemand manipulation of
such dynamically changing proof objects thus have to béseshin a proof tutoring
system. Ideally the formalised proof objects in a tutor eysttlosely match the
mental proof objects as shared by students and human tit@esticular, to support
cognitively adequate proof step evaluation they shoulddiftér significantly with
respect to the underlying logical calculus and the graitylaf the proof steps.

D: Proof Step Evaluation

A human tutor who has understood a proof step utterance atinient will subse-
quently analyse it in the given tutorial context. A main talskreby is to evaluate
thecorrectnessgranularity and therelevanceof the student proof step in the given
tutorial context. Let us neglect the tutorial context fog thoment and concentrate,
for better understanding, solely on the pure logical dinrmmef the problem. This
pure logical dimension will be illustrated using the artdity simplified example in
Fig. 4.

Correctnessnalysis requires that the domain reasoner can represeanstruct
and validate the uttered proof step (including all the ficsttions used by the stu-
dent) within the domain reasoner’s representation of tlefstate. Consider, for
instance, utterance (a) in Fig. 4: Verification of the sowasdof this utterance boils

3 Note, that in practice we can support mathural processittig the help of clarification subdia-
logues or by appropriately restricting the flexibility oktmathural language.
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Proof State
Some Student Utterances
(A1) AAB. )
(A2) A= C. (a) From the assertions follovizs
(A3)C = D. (b) B holds.
(A4) F = B. (c) Itis sufficient to shovD.
(d) We showk.
(G) DVE.

Fig. 4 PSE example scenario: (Al)-(A4) are assertions that hame inéroduced in the discourse
and that are available to prove the proof goal (G). (a)-(&) eamples for possible proof step
directives of the student in this proof situation.

down to addingD as a new assertion to the proof state and to proving {R4f)
(AAB),(A=C),(C=D),(F = B) I- D. Solving this proof task confirms the log-
ical soundness of utterance (a). If further explicit juséfions are provided in the
student’s utterance (e.g. a proof rule) then we have to tadsm tinto consideration
and, for example, prov@1) modulo these additional constraints.

Granularity evaluation requires analysing the ‘complexity’ or ‘sizépooofs in-
stead of asking for the mere existence of proofs. For instagaluating utterance
(a) above boils down to judging the complexity of the geretgiroof taskP1). Let
us, for example, use Gentzen’s natural deduction (ND) tadcas the proof system
. As a first and naive logical granularity measure, we mayrdatee the number
of --steps in the smallest-proof of the proof task for the proof step utterance in
question; this number is taken as the argumentative coritypleithe uttered proof
step. For example, the smallest ND proof for utterance (a) 8igoroof steps: we
need one ‘Conjunction-Elimination’ step to extr@ctrom AA B, one ‘Modus Po-
nens’ step to obtaiB from AandA = B, and another ‘Modus Ponens’ step to obtain
C from B andB =- C. On the other hand, the smallest ND proof for utterance (b)
requires only ‘1’ stepB follows from assertio A B by ‘Conjunction-Elimination’.

If we now fix a threshold that tries to capture, in this senise, tnaximally accept-
able size of an argumentation’ then we can distinguish betvpeoof steps whose
granularity is acceptable and those which are not. Thistiolel may be treated as
a parameter determined by the tutorial setting. Howevenewill further discuss
in Section 4, using ND calculus together with an naive proep £ounting is gen-
erally insufficient to solve the granularity challenge. Madvanced approaches are
needed.

Relevanceasks questions about the usefulness and importance of & giego
with respect to the original proof task. For instance, iret#hce (c) the proof goal
D VE is refined to the new proof go&l using backward reasoning, i.e., the previ-
ously open goaD V E is closed and justified by a new goal. Answering the logical
relevance question in this case requires to check whethexad pan still be gener-
ated in the new proof situation. In our case, the task is ttestical to proof task
(P1). A backward proof step that is not relevant according to thirion is (d)
since it reduces to the proof tagl2) (AAB),(A=-C),(C=-D),(F = B) I E for



10 Christoph Benzmdiller, Marvin Schiller, and J6rg Siekman

which no proof can be generated. Thus, (d) is a sound refinestem that is not
relevant.

E: Tutorial Context

Dynamic proof step evaluation enables tutoring in the spirididactic construc-
tivism [26] (i.e., allowing the student to explore ratheamhexpect him to follow a
prescribed solution path). Dynamic proof step evaluatiosgs already a non-trivial
challenge to mathematical domain reasoning if we assumetia gitorial context.
In practice, however, the tutorial context dynamically mppes. This tutorial con-
text comprises the dynamically changing knowledge and rsipee of the student,
the possibly dynamically changing teaching goal and sisatend the dynamically
changing knowledge of the teacher about the student’s diadisnchanging capa-
bilities. Incorporating this dynamically changing cort@éformation poses an ad-
ditional challenge to the tutor system’s proof step evatuamechanism since the
system needs to adapt its analysis to both the tutorial merdkthe student model.

E: Failure Analysis

Context sensitive proof step evaluation supports the séiparof acceptable from
unacceptable student proof steps. In case of acceptalnégisps the student will
be encouraged to continue his proof. More challenging isotofute and present
useful feedback also in the case of unacceptable proof,stegisis, proof steps
which are erroneous. Standard tutoring systems typicallyon information pro-
vided in advance by the author of teaching materials. Sirecar in a setting where
solutions are determined on the fly, we face the issue whetietion proofs can be
dynamically annotated with information on the reason fdufa. Such additional
information provides important input for the generatiommfactic useful feedback.
In order to obtain such additional information of the reasfur failure the tutoring
system needs to dynamically solve further analysis taskseilomain reasoner.

G: Didactic Strategies, Feedback Generation and Hinting

The tutor can decide to offer a hint to the student in a numbesitoations, for
example after repeated student errors, a long period afcgleor a direct request.
Given information about the proof step such as correctrggasularity, and rele-
vance as well as information about the student—encodeeistttdent model—the
tutor should react in a way that optimises the progress détilgent. In general, the
behaviour of the tutor is encoded in a teaching strat8ggratic teachingtrategies
that focus on posing questions to that student, not answavs, shown to be more
effective than simply presenting the student with congpaigs of the solution.
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H: Flexible Dialogue Modelling

Human maths tutors usually show impressive skills with eespo (at least) all
of the aspects above. These tutoring skills—typically they acquired in special
training courses—are important resources limiting thertsitcapabilities for effec-
tive proof tutoring. These skills are consequently alsodrgmt resources for an
automated proof tutor system. It requires modules addrgs$kese skills and these
modules need to interact in a suitable way. Controlling thexall dialogue, invoking
these modules, combining their results and determiningogguiate dialogue moves
is the task of the dialogue manager. Human tutors are géyneegdable of flexibly
applying and interleaving their tutoring skills. This &allor flexible approaches and
flexible architectures for dialogue management to convisyftixibility of human
tutors to the tutor system. An example for an interleavinglalis has been hinted
at before: in order to disambiguate a content-underspdgfigof step utterance of
the user, mathural processing may want to consult the praofiger and proof step
evaluation in order to rule out incorrect readings. Detaiiighe dialog management
architecture are found in the twin article [44] in this volem

4 Dynamic Proof Step Evaluation withQMEGA

A main focus in the DALOG project has been on proof step evaluation. We have
already argued that dynamic, context sensitive proof staejuation requires sup-
port from a sophisticated and ideally cognitively adequatthematical domain
reasonet. The QMEGA system, with its various support tools for human-oriented,
abstract level proof representation and proof constractias therefore been cho-
sen as the domain reasoner of choice in theltDG project (see the paper by [44]

in this volume).

Proof Management, Correctness Analysis and Content Upeéeification

In the DIALOG contextQOMEGA is used to (i) represent the mathematical theory
in which the proof exercise is carried out, that is definiipaxioms, and theo-
rems of a certain mathematical domain, (ii) to represenbtigming proof attempts
of the student, in particular the management of ambiguoasfgstates resulting
from underspecified or ambiguous proof steps the studert<f(iti) to maintain
the mathematical knowledge the student is allowed to usa@nehct to changes
of this knowledge, and (iv) to reconstruct intermediat@steecessary to verify the

4 There is a discrepancy between the level of argumentatiaraihematics and the calculus level
in contemporary automated theorem proving. We argue thtitteely motivated domain reason-
ing, such as reasoning at the assertion level, can overdwantitations of theorem proving with

commonly used calculi such as resolution or natural dedoaalculi (cf. [12]).



12 Christoph Benzmdiller, Marvin Schiller, and J6rg Siekman

correctness of a step entered by the student, thereby astvireg ambiguity and
underspecification.

Proofs are represented@MEGA’s proof data structure (PDS) which allows the
shared representation of several (ongoing) proof vari@t§he PDS is a collec-
tion of proof trees (with nodes as multi-conclusion segsigmthich can be linked to
one another (in order to express the dependency of one pnaariather one whose
proof task is treated as a lemma).

These reconstructed proofs serve as the basis for furthérsas of the students’
proof steps w.r.t. granularity and relevance. Therebyamalysis components take
advantage 0QMEGA's abstract proof representation at the assertion levehdvie
sketch some of the project achievements.

As the basis for proof step evaluation, each proof step megpdy the user is
reconstructed iQMEGA. As explained before for the example student utterance S1
in Fig. 3, even most ordinary human proof steps can genarallyde a number of
tacit intermediate steps, which become apparent when hirggléhese proof steps
in a rigorous formal system. Therefore, the reconstruagemerally requires proof
search in order to determine the different (correct) regslof the student proof step.

The assessment module we have realised as part @#EsA system main-
tains an assertion level proof object that represents themustate of the proof
under construction, which can include several proof adttéves in the case of un-
derspecified, that is, insufficiently precise, proof steépnainces by the student caus-
ing ambiguities (cf. [6, 16]). For each proof step utteredhry student, the module
uses aepth-limited breadth-first seardlwith pruning of superfluous branches) to
expand the given proof state to all possible successoisstigi¢o that depth. From
these, those successor states that match the given utevainto some filter func-
tion (analysing whether a successor state is a possiblingeatithe student proof
step) are selected. Thus, we have combined the resolvingridént underspecifi-
cation and the verification of the correctness of a proof stgm@ joint task in our
solution iInQMEGA. If a student proof step matches with a step in one of the pos-
sible assertion level proofs (expanding the current prtadfgo a certain depth) as
generated bRMEGA, thenitis considered as correct. The matcher and inteatedi
steps in the€QMEGA proof object not addressed by the student are then the fiyrmal
relevant content that was left unspecified in the studestartce.

This way we obtain, modulo our filter function, assertioreleounterparts to all
possible interpretations of correct student proof stefpfarla given utterance, no
matching successor state can be reached, the utterancesided as incorrect.

In [12] we report on a case study in which we applied OWMEGA based assess-
ment module with a depth-limit of four assertion level step7 dialogues from the
second DALOG corpus; these 17 dialogues contain a total of 147 proof st&lps
the steps within a dialogue were passed to the assessmeunteseduentially until
a step that is labelled as correct cannot be verified, in wbad®e we move on to
the next dialogue. This way, we correctly classify 141 outhef 147 steps (95.9%)
as correct or wrong. Among the remaining six steps are threathe verification
fails, and further three remain untouched.
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This experiment confirms our decision in t#EGA project to replace the pre-
vious ND based logical core by assertion level reasoningdJsreadth-first proof
search for automated proof step analysis in proof tutorpygears unreasonable at
first sight (if we employed ND calculus it likely would be, lztse of the challeng-
ing, deep search space; it remains unclear whether stratggguided ND proof
search as employed e.g. in AProS [39] can sufficiently rettuesearch). However,
we employ assertion level breadth-first search which tutigmbe well suited for
the given task. This is because@MEGA we obtain more adequate formal coun-
terparts of the human proofs as was possible before: Lookirige human level
proof steps in our corpus from the perspective of asseréiesl Feasoning our anal-
ysis shows that they seldom exceed size three. Interegtialgbady a depth limit
of just four assertion level steps enables our breadthsiatch based approach to
correctly classify 95.9% of the proof steps in the corpuseféxperiment.

Granularity Analysis

An early study within this project on granularity [37, 36,]3Bvestigated the use
of proof reconstructions in natural deduction calculi fdataining a measure for
granularity. We investigated the viewpoint outlined in @t 3, where the number
of steps in a formal deductive system (here, a natural demusystem) is treated
as an indicator for granularity. Natural deduction is a-geiflent first candidate for
modelling human proof steps. We studied two human-orieosclili, the classic
natural deduction calculus by Gentzen [20] and the morentgagychologically-
motivated calculus PSYCOP [32]. For our investigation, wadmuse of the proofs
in the experiment corpus of the second Wizard-of-Oz expemimwhere each step
from the student is annotated with a granularity judgmenth®yhuman wizard,
which can take one out of three value® detailed, appropriat®r too coarse-
grained

In particular, we related the step size of proofs in the expent corpus (as in-
dicated by the wizards) to the step size of these two caléslireported in [37],
large (i.e.,too coarse-grainedproof steps (as identified by the wizards) corre-
sponded usually to longer sequences of natural deductfereimce applications.
However, there remained a large gap w.r.t. step size remhdieéveen human-
generated proofs and natural deduction proofs. A singlefstep as it typically
occurs in the experiment corpus generally requires nunseeduction steps at the
level of natural deduction, which are often of rather techhnature. It became
apparent that the sheer number of inference steps in theahateduction proof
reconstructions was an insufficient measure for granwylarit

Learning Granularity Evaluation

The previous studies [37, 35] motivated the investigatitessertion-level proof re-
constructions iIMAMEGA as a basis for granularity analysis. Furthermore, the exper
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iments hinted at other criteria as indicators for stepsisesdes counting the num-
ber of calculus-level inference steps required to recans@& human-made proof
step. Based on the experiment corpus, we have identified &ewaf potentially
granularity-relevant criteria.

Homogeneity: A single human-made step that involves théiGgipn of several
different mathematical facts can is distinguished w.rangiarity from a step
where only one fact is applied several times.

Verbal Explanation: A human-made step that is accompanjecttbal justifica-
tion of the argumentation (e.g., the name of a theorem, diefinietc.) is dis-
tinguished w.r.t. granularity from a step where only theute@ossibly only a
formula) is given.

Introduction of Hypotheses or Subgoals: Proof steps whittoduce a new hy-
pothesis or new subgoal are given a special status w.rntutgmaty.

Learning Progress: A proof step that involves (one or séyveomcepts that are
known to the student (as recorded by a student model) carsbegliished w.r.t.
granularity from proof steps involving (one or several) yeknown (i.e., too-be-
learnt) concepts.

For a given proof step, these criteria can easily be det@munfrom the proof
step’s assertion-level reconstruction and with the helpstiident model. Since, for
example, proof reconstruction withMEGA delivers the mathematical assertions
employed in the reconstruction process (i.e. facts suckfastibns, theorems, lem-
mata), the question whether these assertions are alreasdynkio the user can be
answered by a simple lookup in the student model.

However, this leaves the question open in how far each ofriteria contributes
to the overall verdict on granularity for that step.

We have developed an approach to learning the relationgtipeen the crite-
ria and the final granularity judgments from an empiricalpesy, using standard
machine-learning techniques. This allows us to adapt @améwork to a particular
mathematical domain and the style of a particular humanm.tits, we employ two
modules for granularity analysis (see Fig. 5); one servebtain training instances,
from which the associations between granularity critemid@ranularity judgements
can be learned. This results in a classifier, which is useimét second judgement
module to automatically perform granularity judgements.

Training instances can be constructed from annotated cogueh as in the sec-
ond experiment. Consider for example the uttera®s@ Fig. 2, which is the first
step in the dialogue the tutor considers correct. This artteg by the student is sent
to the proof step analysis module (see Fig. 5), and againdthader toQMEGA
for proof reconstruction, where it advances the proof stetained byQMEGA
by two assertion applications: (i) the (backward) appi@abf the definition of=
(such thatRo ) C StoR*andS1oR ! C (RoS)~! remain to be shown),
and (ii) the (backward) application of the definition @f i.e. in order to show
(RoS) 1 C S 1oR1titis assumed thatx,y) € (RoS)~t and(x,y) € S 1oR?!
remains to be shown. Proof step reconstruction thus dslither information that
two different concepts (the definitions efandC) were possibly employed by the
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Proof QMEGA Proof QMEGA
formalised—] Step L query L Proof - formalised—] Step L query Proof
Annotated| Steps Analy- Assis- Proof | steps Analy- Assis-
Corpus sis N tant Steps sis N tant

evalugtion evaluation
resulty w.rt. QuUery resulty w.rt. AUery
granularity criteri \ criteri \
annota- Machine ] Student Classifi- Student
tions Learn- - - cation Model
ing Module
granularity
judgenents

ranularit
Judge-
ments

Fig. 5 Training module (left) and judgment module (right)

student in utterancB5. The proof step is now analysed with respect to the granular-
ity criteria and a student model (which is updated duringciherse of the exercise).
The results of our evaluation of the criteria for a given girstep are only numeric;
they indicate how many assertion-level steps the recoctg&trucontains (in our run-
ning example '2’), how many different concepts the recangton involves (again
'2"), how many inference steps are unexplained ("2, sifmestudent does not men
tion the concepts verbally, this would have been for exaniple the definition of
equality and the subset relation, ..."), how many timesrif)anew subgoals or hy-
potheses are introduced (here '1’" hypothesis, and '3’ ndwgsals), and how many
concepts are new to the learner, according to the studen¢Iin(6d if we assume
the student is familiar with naive set theory, and in patticequality and subset
relation).

For each student step, these results of the analysis aremednbith the judge-
ment from the tutor, which is stored in the corpus, and theltieg instance is added
to the set of training instances for machine learning. Inraoning example, the val-
ues of the analysis are associated to the verdict “appitepriaius they become an
example of arappropriatestep for the machine learning algorithm. However, the
evaluation values for the next st§6become an example fortao coarse-grained
student step. The task performed by machine learning isitd Aunodel of these
examples (on a given training sample) that allows us to iflessther new, yet un-
seen instances according to their granularity. Like thiaitmg module, the judgment
module receives student proof steps, and analyses thernthsittelp ofQMEGA and
the student model. However, the classifier learnt with tHp bfthe training module
now permits automatic granularity judgments.

Currently, we use C5 decision tree learning (see [34] aral[81E]) as the learn-
ing algorithm. We have also compared this to the performarficther machine
learning algorithms on our data, as reported in [38]. Oneltésthat the classifier
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SMO [30], which implements a support vector machine, addex better classifi-
cation on our sample from the experiment corpus than C5 (ge@)F

Naive classificatioh C5 SMO
Mean errof27.5 13.0 6.4
Kappa 0.0 0.65 0.84

Fig. 6 Performance of C5 and SMO on a sample of 47 proof steps frorsapus using 10-fold
cross validation, compared to naively assigning all proeps to the majority classppropriate

However, using decision tree learning (as with C5) has thitiadal value that
the resulting decision trees can easily be interpretedttams reveal which of the
criteria are relevant to the granularity decisions (wthé particular corpus and a
particular tutor). For example, a case study on a small&gireduced the following
decision tree depicted in Fig. 7.

newly introduced

appropriate| | too coarse-grained
hypotheses

Fig. 7 Example decision tree produced during a case study

In this example, the algorithm has learnt that for the paldic“judge” who has
trained the system in the case study, the number of preyiaudnown facts (i.e.,
facts that the student has not used before), and the numbendy introduced hy-
potheses are those criteria that his explain the judge’s\betrr w.r.t. granularity
best. However, the criterion of verbosity has been prunad fhe tree, which indi-
cates that this criterion is not relevant for the partictitaming sample. Note that
the judge only provides examples, and does not need to refextt granularity
criteria or the working of the training module at all.
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Student Modelling

Student modelling is an indispensable ingredient for thedyais of the student’s
proof attempts and a prerequisite for the generation afredl feedback. We draw
on the experience of the ActiveMath project with variousitéques of student mod-
elling, and employ a student model based on [29], which isenily used for the
LeActiveMath system [21]. For each concept, eight compsésnare modelled,
namely tothink, argue, model, solve, represent, language, commtmand use
toolsw.r.t. the concept. The degree of mastery w.r.t each of thesgetencies is
expressed in four levelglementary, simple-conceptual, compbaxd multi-step
Using this well-established approach to student modelitmyvs us to embed the
techniques of the \LOG project into the LeActiveMath (and possible other) teach-
ing environments.

The student model is seen as a dynamic component that furtiméributes to
the adaptivity of the system. Competency levels in the studeodel associated
with mathematical facts are updated whenever the matheah#drt is successfully
applied, i.e. when it is employed in a student proof stepfieelby QMEGA as cor-
rect and categorised as appropriate w.r.t. granularitsthEumore, each confirmed
proof step is turned into a lemma (in case it is not already phthe assertions
for the given mathematical domain) and added to the set dfad@ assertions in
QMEGA, together with a new student model entry. This allows to thadenmon
mathematical practice, where previously solved probleat®me building blocks
for subsequent proof construction.

Further Work

As mentioned, a start has been made to incorporate a studetef into granularity
evaluation. However, more work is needed to incorporatthéurtutorial context
information into proof step evaluation, in particular,drtorrectness and relevance
evaluation. Relevance has generally only been preliminadidressed in this project
so far. This also applies to fine-grained failure analysis.

5 Didactic Strategies and Dialogue Modelling

The socratic teaching challenge has not been a main redearchof the DIALOG
project. However, in close collaboration with our projéctpvaltzi and Fiedler have
studied hint taxonomies [41, 42] and dialogue-adaptivérg{18].
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Didactic Strategies and Hinting

The approach described in [18] is to dynamically produceshihat fit the needs
of the student with regard to the particular proof. Thus,gheof tutor system can-
not restrict itself to a repertoire of static hints, asstegaa student answer with a
particular response by the system. [42] defines a multi-dgiomal hint taxonomy
where each dimension defines a decision point for the agedaiagnitive function.
The domain knowledge can be structured and manipulateduforitg decision
purposes and generation considerations within a tutoréalager. Hint categories
abstract from the strict specific domain information andwhg it is used in the tu-
toring, so that it can be replaced for other domains. Thgstahching strategy and
pedagogical strategy of the proof tutor system can be redidior different domains.
More importantly, the discourse management aspects ofitthegtie manager can
be independently manipulated.

The hint taxonomy [42] was derived with regard to the undagyfunction of
a hint that can be common for different NL realisations. Thisction is mainly
responsible for the educational effect of hints.

Dialog Modelling

Dialogue systems act as conversational agents, that isldbk at an analysis of
an incoming utterance and call on conversational expegiseoded for instance as
a dialogue grammar, to determine an appropriate resportbe icurrent dialogue
state. A model of dialogue state, containing for examplecanegof utterances and
their analyses, is continually updated to reflect the effiébbth system and user ut-
terances. In order to successfully manage and model tuthalague, the dialogue
state must be centrally stored and the results of compuataby system modules,
such as natural language analysis, must be made availabéatisfy these require-
ments, we have been working within a model characterised ¢gnérally-placed
dialogue manager. The dialogue manager maintains the nodaBhlogue state,
facilitates the collaboration of single system submodategcontrols top-level exe-
cution in the system. By using the current dialogue statea@odssing its model of
conversational expertise, the dialogue manager is in teiipo to choose the most
appropriate system response.

In developing a suitable model for managing tutorial dialegve have met a
number of challenges: How should we facilitate interlegwime processing carried
out by system modules in the analysis of students’ uttesthblew can we combine
the results of each module’s analysis into a representtiairforms the context of
the choice of system response? And what information needs tnodelled at the
dialogue level as opposed to the task or tutoring level?

In keeping with our project goal of flexible tutorial dialogsion mathematical
proofs, we have been continually developing a demonstditmgue system which
implements this type of model. It serves as a framework inchvisingle modules
can be tested, and this work is presented in the twin ariglgip this volume.



Resource-bounded Modelling and Analysis of Human-levidrbctive Proofs 19

6 Related Work and Conclusion

All existing systems for proof tutoring employ automateédhem proving tech-
niques for checking, analysing or generating complete figrdéxamples are the
proof tutoring systems EPGY [40], ETPS [2JyTCH[1], INTELLIGENT BOOK [14],
and WINKE [15]. If proof checking fails the only feedback these systewturn is
that the step could not be verified. If the verification sudse¢here is no further
analysis whether that proof step is actually relevant tomlete the proof or whether
it is of appropriate granularity. The ETP S-system is theg sgstem which provides
hints about how to continue the proof in case the studentggatk. An approach
that uses information about completed proofs is realise@/iy 2-ATLAS [27].
This system checks a student’s proof in two stages: Firsisés domain specific
rules to generate different possible proofs for the givemexture using abductive
logic programming [24] and then it compares the found prdofsluding those
using some didactically motivated buggy rules) to the sttidgroof and selects
the most similar to provide feedback to the student. Fintily APROS project [39]
uses automated proof search for natural deduction as tiefbathe dynamiéroof
Tutor system. It has been successfully used as a part of the cdiogie‘& Proofs”
at Carnegie Mellon University, which at current time hasrbattended by more
than 2000 students.

Main contributions of our work include empirical experintgthat served to pin-
point the particular research challenges evoked by ourtiubidialogue scenario
for dynamic proof tutoring. As a result, we determined thatqgb step evaluation
does not only include the aspect of correctness, but alsarthlysis of granularity
and relevance. Besides an elaborate discussion of theugdriactions relevant for
proof tutoring and their overarching architecture, we hexamined the analysis
of granularity in detail, and developed an adaptive archite based on the anal-
ysis of granularity-related features and machine leartesbniques. Our work has
resulted in a demonstrator system and prototype implertiensa which allowed
partial evaluation. Ultimately, such a system should bduatad regarding its ben-
efits for students’ learning performance. However, thidilsfature work, since it
already presupposes a high degree of maturity of the irgagstl system.
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