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1 Introduction

Mathematics is thelingua francaof modern science, not least because of its con-
ciseness and abstractive power. The ability to prove mathematical theorems is a
key prerequisite in many fields of modern science, and the training of how to do
proofs therefore plays a major part in the education of students in these subjects.
Computer-supported learning is an increasingly importantform of study since it
allows for independent learning and individualised instruction.

Our research aims at partially automating intelligent tutoring of mathematical
proofs. This research direction is interesting not least because of the large num-
ber of potential users of such systems, including students who in addition to an
introductory university lecture want to exercise their theorem proving skills, learn-
ers without access to university courses, and engineers whowant to freshen their
skills. Furthermore, the research direction is interesting because of the non-trivial
challenge it poses to artificial intelligence, computational linguistics and e-learning:
in order to achieve a powerful and effective intelligent proof tutoring system many
research problems that are central to these areas have to be addressed and combined.

In the SFB 378 project DIALOG [13, 7, 9] (see also the paper [44] in this volume)
we have revealed and addressed foundational research challenges that are crucial for
realising intelligent computer-supported proof tutoringbased on a flexible, natural
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language-based dialogue between student and computer. In the proof tutoring sce-
nario as studied in the project the student communicates proof steps to the tutorial
system by embedding them in natural language utterances. The language used is a
mixture of natural-language and mathematical expressions(“mathural” [28]). Proof
construction is performed in a stepwise fashion, and the system responds to utter-
ances with appropriate didactically useful feedback or also with hints. The student
is free to build any valid proof of the theorem at hand.

To support the generation of appropriate feedback each proposed proof step
needs to be analysed by the system in the context of the partial proof developed
so far. For this reason, automating proof tutoring requiresdynamic techniques that
assess the student’s proof steps on a case-by-case basis in order to generate the
appropriate feedback. The feedback can take the form of confirming correct steps,
drawing the student’s attention to errors, and offering domain specific hints when
the student gets stuck. In case the tutor system is asked to give a hint, the hint is
generated in the context of the current proof, and it has to beexactly tailored to
the situation in which the hint was requested. The ability todynamically construct
proofs, to dynamically analyse new proof steps, and to complete partial proofs to
full proofs is thus an essential prerequisite for intelligent proof tutoring.

The scenario we finally envisage integrates the flexible, dialogue-based proof tu-
toring system we are aiming at with an interactive e-learning environment for math-
ematics. An example of an interactive e-learning environment is ActiveMath [17].
ActiveMath is a third generation e-learning system for school and university level
learning as well as for self-study that offers new ways to learn mathematics. In Ac-
tiveMath the learner can, for example, choose among severallearning scenarios,
receive learning material tailored to her/his needs and interests, assemble individual
courses her/himself, learn interactively and receive feedback in exercises, use inter-
active tools, and inspect the learner model and partially modify the system’s beliefs
about the student’s capabilities and preferences. The flexible, dialogue-based proof
tutoring system which we aim at shall ideally cooperate withsuch an e-learning en-
vironment. A learner taking an interactive course in the e-learning system shall be
able to call it in order to exercise his/her theorem proving skills within the trained
mathematical domain. Ideally, both the e-learning environment and the proof tutor-
ing system share the formal mathematical content, the didactic goals and the student
model. The exercise within the proof tutoring environment will then exploit this in-
formation and confirm, modify or refine the student model.

The combination of expertise from computational linguistics and from deduction
systems made the research in the DIALOG project particularly interesting. Expertise
from the former area was needed because of the choice of the flexible mathural lan-
guage as communication means between student and system. Expertise in the latter
area was needed for the development of techniques for dynamic proof management
and dynamic proof step evaluation.

The remainder of the paper is organised as follows: In Section 2, we illustrate
the initial position of our project, where the relative lackof data prompted empirical
investigations. Based on the collected data, we formulate research challenges for
proof tutoring in Section 3. A central role among those challenges is dynamic proof
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step evaluation, which is approached in Section 4. Mathuralprocessing is the subject
of the article by Wolskaet al.[44] in this book and human-oriented theorem proving
in ΩMEGA is explained in the article by Autexieret al. [5]. This paper can be seen
as a bridge between these two articles. Section 5 elaborateson didactic strategies,
dialogue modelling, feedback generation and hints. Section 6 concludes the article
and relates our work to other approaches in the field.

2 The Need for Experiments and Corpora

In order to make a start in this research direction, experiments were needed to obtain
corpora that could guide our foundational research. Not only was little known about
the type of natural language utterances used in student–tutor dialogues on proofs but
also there was little work available about automating prooftutoring based on flexi-
ble student–tutor dialogues. To collect a corpus of data, which now forms the basis
of our investigations into dialogue-based proof tutoring,we conducted two exper-
iments in the Wizard-of-Oz style, which included the work ofMagdalena Wolska
(see the twin paper [44] in this volume).

Experiment 1

A first experiment [8] served to collect a corpus of tutorial dialogues in the domain
of proof tutoring. It investigated the correspondence between domain-specific con-
tent and its linguistic realisation, and the use, distribution and linguistic realisation
of dialogue moves in the mathematics domain. It also investigated three tutoring
strategies, aSocratictutoring strategy (cf. [33]), adidacticstrategy and aminimal
feedbackstrategy (where the subjects only obtained very brief feedback on the cor-
rectness of their attempts).

Setup.A tutorial dialogue system was simulated in the Wizard-of-Oz paradigm [25]
i.e., with the help of a human expert. Twenty-four university students were in-
structed to evaluate the dialogue system. Their task was to solve exercises from
naive set theory in collaboration with the system. The communication between stu-
dent and tutor, who was hidden in a separate room, was mediated with a software
tool DiaWoZ [19], which was specifically designed for that purpose. A comfortable
and usable interface is important for three reasons; (i) in aWizard-of-Oz setting,
the tutor is more efficient in constructing responses and thus better able to conceal
his identity, (ii) the system as such appears more mature (and thus plausible) to the
student, which helps to further disguise the Wizard-of-Oz setup, (iii) in general, it
allows a more fluent interaction with the system (and thus thestudent to concentrate
on the learning activity). We like to thank the department ofcomputer linguistics
who provided the tools and facilities for this kind of experiments.

DiaWoZ supports complex dialogue specifications, which were needed in order
to specify a particular hinting algorithm used in theSocratictutoring condition. Di-
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aWoZ allows keyboard-to-keyboard interaction between thewizard and the student.
The interfaces consist mainly of a text window with the dialogue history and a menu
bar providing mathematical symbols. Furthermore, the wizard can assign dialogue
state transitions and speech act categories to student turns w.r.t. the underlying dia-
logue model. The DiaWoZ interface allowed a free mix of natural language text with
mathematical symbols. However, we still found a number of aspects of the system
which we were able to improve. For example, the participantssuggested the use of
the keyboard instead of the mouse for inserting mathematical symbols. Therefore,
we have gradually improved our experiment software w.r.t. its interface components.

Corpus. The corpus of dialogues between students and the tutor contains data of
22 subject, i.e. 22 experiment sessions. Each session is subdivided into three subdi-
alogues w.r.t to three different exercises that the students were required to work on
in sequence. These 66 subdialogues contain on average 12 dialogue turns. In total,
the corpus consists of 1115 dialogue turns (of which 393 are student turns), where
an average student turn consists of one sentence, and an average tutor turn consists
of two sentences. The example dialogue excerpt in Fig. 1 shows tutoring-related an-
notations (discussed further in [43] and [7]). The tutor turns are annotated with hint
categories, the student turns are annotated with the student answer categories.

T1 Please show: IfA⊆ K(B), thenB⊆ K(A)!
S1 (wrong) A⊆ B
T2: (give-away-relevant-concept) That is not correct! First you have to

consider the if-then-relation.
S2: (wrong) A⊆ K(K(A))
T3: (elaborate-domain-object) That is correct, but at the moment not

interesting. Do you know how to deal with the if-then-relation?

Fig. 1 Dialogue excerpt from the first experiment. (K denotes a set complement.)

Experiment 2

A second experiment investigated mathematical domain reasoning tasks and lin-
guistic phenomena in tutorial dialogues. In contrast to thefirst experiment, it im-
posed less constraints on the wizards’ tutoring and assumesa rather simple dialogue
model.

Setup.Thirty-seven students from Saarland University interacted with the mock-
up dialogue system, simulated with our software environment DiaWOz-II and four
experts1, who took the role of the wizard in turn. As a minimal requirement, students
were required to have completed at least one university-level mathematics course.

1 The experts consisted of the lecturer of a courseFoundations of Mathematics, a maths teacher,
and two maths graduates with teaching experience.
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The students were instructed to solve mathematical exercises in collaboration with
the system. The exercises were taken from the domain of relations, and were centred
around the concepts of relation composition and relation inverse. Because of the ad-
vanced character of the exercises, the participants had to fulfil the prerequisite of
having taken part in at least one mathematics course at university level prior to the
experiment. At first, the subjects were required to fill out a questionnaire, collecting
data about previous experiences with dialogue systems and their mathematics back-
ground. Subjects were also given study material with the mathematical definitions
that were required to solve the exercises. The largest part of the two-hour experi-
mental session was allotted to the interaction between the student and the simulated
system.

Our WOZ environment DiaWOz-II [11] enables dialogues wherenatural lan-
guage text is interleaved with mathematical notation, as istypical for (informal)
mathematical proofs. The interface components of DiaWOz-II are based on the
what-you-see-is-what-you-getscientific text editor TEXMACS

2 [22]. DiaWOz-II pro-
vides one interaction window for the user and one for the wizard, together with
additional windows displaying instructions and domain material for the user, and
additional notes and pre-formulated text fragments for thewizard. All of these win-
dows allow for copying freely from one to the other. Furthermore, our DiaWOz-II
allows the wizard to annotate user dialogue turns with theircategorisation. DiaWOz-
II is also connected to a spell-checker for checking both theuser’s and the wizard’s
utterances.

Corpus. The collected corpus contains the data of 37 subjects. The thirty-seven
experiment sessions include a total of 1917 dialogue turns (980 by the wizards and
937 by the students). The students tried maximally four different exercises each.
Unlike in the first experiment, the time spent on an exercise was not strictly limited.
However, since the duration of the experiment session was limited to two hours,
some students did not have the opportunity to do all exercises. The fourth exercise
was considered a “challenge exercise”, and therefore we expected that only some
students would attempt it. On average, each student attempted 2.7 exercises (i.e., we
have collected a total of 100 exercise-subdialogues).

The dialogues were annotated by the wizard during the experiment and recorded
by DiaWOz-II. Any student utterance that represents a proofstep was classified
by the wizards w.r.t. three dimensions;correctness(i.e. correct, partially correct
or incorrect), the step size(i.e. appropriate, too detailedor too coarse-grained),
andrelevance(i.e.,relevant, restricted relevanceor irrelevant). Statements from the
student which did not represent a contribution to the proof (e.g. meta-comments or
questions) were annotated with a placeholderunknown. A dialogue excerpt from the
experiment together with annotations is shown in Fig. 2. In addition to the log-files
recorded by DiaWOz-II, screen recordings were made. Furthermore, the partici-
pants were encouraged to “think aloud” and they were audio-recorded and filmed.
This comprehensive collection of data not only documents the text of the tutorial di-
alogues, but also allows us to analyse how the participants used the interface and the

2 www.texmacs.org
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T1: Let R andSbe relations in an arbitrary setM. It holds that:(R◦S)−1 = S−1◦

R−1. Do the proof interactively with the system.
S1: Help me with the proof of the exercise

(unknown; unknown; unknown)
T2: In order to show the equality between two sets, one generallyshows that the

first set is a subset of the second set and vice versa
S2: R−1 ⊂ R−1 (incorrect; appropriate; irrelevant)
T3: No, you first have to show:(R◦S)−1 ⊆ S−1◦R−1

S3: (R◦S)−1 ⊆ S−1◦R−1

(unknown; appropriate; relevant)
T3: Yes, that is to be shown. Therefore take an element from(R◦S)−1 and show

that it is also inS−1◦R−1.
S4: R⊆ S−1◦R−1

(incorrect; appropriate; irrelevant)
T5: No, that is not the right approach. Begin like this: Let(x,y) ∈ (R◦S)−1.
S5: (x,y) ∈ (R◦S)−1 (correct; appropriate; relevant)
T6: Now try to draw conclusions from this!
S6: (x,y) ∈ S−1◦R−1

(correct; too coarse-grained; relevant)
T6: This cannot be concluded so directly. You need some intermediate steps.

Fig. 2 Dialogue excerpt from the second experiment. Annotations indicate thecorrectness, gran-
ularity andrelevanceof the student’s proof step as judged by the tutor.

study material. The resulting corpus exhibits variety in the use of natural language
and mathematical style. This variety enabled us – besides studying the task of proof
step evaluation, as presented in the next section – to study the influence of the in-
structions presented to the students on the use of natural language, as illustrated
in [10].

3 Main Challenges and Resources for Proof Tutoring

An analysis of our corpora revealed various challenges for the automation of proof
tutoring based on flexible student–tutor dialogues. We present some of the main
challenges here and point to the resources required by the tutor system to fruitfully
address them. The success of mathural dialogue-based prooftutoring depends on:

A The student’s knowledge and his learning abilities.
B The tutor system’s mathural processing and mathural generation capabilities.
C The tutor system’s ability to maintain and manage the dialogue state and the

proof under construction.
D The tutor system’s capability to dynamically judge about the proof steps uttered

by the student.
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E The tutor system’s capabilities to perform its proof step analysis tasks with re-
spect to a dynamically changing tutorial context.

F The tutor system’s capabilities for a fine grained analysisof erroneous proof
steps.

G The didactic strategy for feedback generation employed inthe tutor system.
H The tutor system’s capability to flexibly interleave the above tasks.

We now discuss the challenges for the tutor systems, that is,aspects B-H, in
more detail. We take an application perspective on student modelling (challenge A)
for addressing some of these aspects, therefore those aspects of student modelling
relevant for proof tutoring will be discussed within the frame of challenges B-H.

B: Mathural Processing and Mathural Generation

An essential capability of human tutors in mathematics is their ability to success-
fully communicatewith students. This communication process includes the task of
processing the student’s utterances as well as the generation of feedback under-
standable by the student. These processing and generation capabilities of the human
tutor thus constitute an essential resource with respect tohis success as a maths
tutor. Analogously, powerful analysis and generation capabilities are amongst the
most important resources required for any proof tutoring system which is based on
flexible dialogues.

Processing natural language with embedded mathematical content, however, is
a highly challenging task by itself. Among other things, it involves the problem of
content underspecification and ambiguous formulation. Interestingly, underspecifi-
cation also occurs in shaped-up textbook proofs [45]. To illustrate proof-step under-
specification let us consider the dialogue excerpt in Fig. 3:

T1: Please show :K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪ (K(C)∩K(D))
S1: by the deMorgan ruleK((A∪B)∩ (C∪D)) = (K(A∪B)∪K(C∪D)) holds.

Fig. 3 An excerpt from the corpus of the first experiment.

In Figure 3, the proof-step that the utteranceS1expresses is highly underspeci-
fied from a proof construction viewpoint: it is neither mentioned how the assertion is
related to the target formula, nor how and which deMorgan rule was used.S1can be
obtained directly from the second deMorgan rule∀X,Y.K(X∩Y) = K(X)∪K(Y) by
instantiatingX with (A∪B) andY with (C∪D). Alternatively, it could be inferred
from T1 by applying the first deMorgan rule∀X,Y.K(X∪Y) = K(X)∩K(Y) from
right to left to the subtermsK(A)∩K(B) andK(C)∩K(D). Successful proof tutor-
ing requires that the meaning of the student utterance can besufficiently determined
to allow further processing. The capability to differentiate and prioritise between
proof construction alternatives as illustrated by our example is thus an important
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resource of a tutoring system. And as illustrated, mathuralprocessing may involve
non-trivial domain reasoning tasks (here theorem proving tasks).

The corpora also illustrate the style and logical granularity of human-constructed
proofs. The style is mainly declarative, for example, the students declaratively de-
scribed the conclusions and some (or none) of the premises oftheir inferences. This
is in contrast to the procedural style employed in many proofassistants where proof
steps are invoked by calling rules, tactics, or methods, i.e., some proof refinement
procedures. The hypothesis that assertion level reasoning[23] plays an essential role
in this context has been confirmed. The fact that assertion level reasoning may by
highly underspecified in human-constructed proofs, however, is a novel finding [3].

In this article we will not further discuss the processing and generation of math-
ural language and refer to the twin article [44] in this volume. In the following we
assume that the meaning of a student utterance can always be successfully deter-
mined by the mathural processing resources available to thetutor system.3

C: Dialogue State and Proof Management

The successive dialogue moves performed by student and tutor form a dialogue state
which is the context for the analysis of further moves. Part of this dialogue state is an
incrementally developing partial proof object which is (hopefully) shared between
the student and the tutor. It represents the status of the proof under development by
the student at the given point in the dialogue. The maintenance and manipulation of
such dynamically changing proof objects thus have to be realised in a proof tutoring
system. Ideally the formalised proof objects in a tutor system closely match the
mental proof objects as shared by students and human tutors.In particular, to support
cognitively adequate proof step evaluation they should notdiffer significantly with
respect to the underlying logical calculus and the granularity of the proof steps.

D: Proof Step Evaluation

A human tutor who has understood a proof step utterance of hisstudent will subse-
quently analyse it in the given tutorial context. A main taskthereby is to evaluate
thecorrectness, granularityand therelevanceof the student proof step in the given
tutorial context. Let us neglect the tutorial context for the moment and concentrate,
for better understanding, solely on the pure logical dimension of the problem. This
pure logical dimension will be illustrated using the artificially simplified example in
Fig. 4.

Correctnessanalysis requires that the domain reasoner can represent, reconstruct
and validate the uttered proof step (including all the justifications used by the stu-
dent) within the domain reasoner’s representation of the proof state. Consider, for
instance, utterance (a) in Fig. 4: Verification of the soundness of this utterance boils

3 Note, that in practice we can support mathural processing with the help of clarification subdia-
logues or by appropriately restricting the flexibility of the mathural language.
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Proof State

(A1) A∧B.
(A2) A⇒C.
(A3) C⇒ D.
(A4) F ⇒ B.

(G) D∨E.

Some Student Utterances

(a) From the assertions followsD.
(b) B holds.
(c) It is sufficient to showD.
(d) We showE.

Fig. 4 PSE example scenario: (A1)-(A4) are assertions that have been introduced in the discourse
and that are available to prove the proof goal (G). (a)-(d) are examples for possible proof step
directives of the student in this proof situation.

down to addingD as a new assertion to the proof state and to proving that:(P1)
(A∧B),(A⇒C),(C ⇒ D),(F ⇒ B) ⊢ D. Solving this proof task confirms the log-
ical soundness of utterance (a). If further explicit justifications are provided in the
student’s utterance (e.g. a proof rule) then we have to take them into consideration
and, for example, prove(P1)modulo these additional constraints.

Granularityevaluation requires analysing the ‘complexity’ or ‘size’ of proofs in-
stead of asking for the mere existence of proofs. For instance, evaluating utterance
(a) above boils down to judging the complexity of the generated proof task(P1). Let
us, for example, use Gentzen’s natural deduction (ND) calculus as the proof system
⊢. As a first and naive logical granularity measure, we may determine the number
of ⊢-steps in the smallest⊢-proof of the proof task for the proof step utterance in
question; this number is taken as the argumentative complexity of the uttered proof
step. For example, the smallest ND proof for utterance (a) has ‘3’ proof steps: we
need one ‘Conjunction-Elimination’ step to extractA from A∧B, one ‘Modus Po-
nens’ step to obtainB from A andA⇒B, and another ‘Modus Ponens’ step to obtain
C from B andB ⇒ C. On the other hand, the smallest ND proof for utterance (b)
requires only ‘1’ step:B follows from assertionA∧B by ‘Conjunction-Elimination’.
If we now fix a threshold that tries to capture, in this sense, the ‘maximally accept-
able size of an argumentation’ then we can distinguish between proof steps whose
granularity is acceptable and those which are not. This threshold may be treated as
a parameter determined by the tutorial setting. However, aswe will further discuss
in Section 4, using ND calculus together with an naive proof step counting is gen-
erally insufficient to solve the granularity challenge. More advanced approaches are
needed.

Relevanceasks questions about the usefulness and importance of a proof step
with respect to the original proof task. For instance, in utterance (c) the proof goal
D∨E is refined to the new proof goalD using backward reasoning, i.e., the previ-
ously open goalD∨E is closed and justified by a new goal. Answering the logical
relevance question in this case requires to check whether a proof can still be gener-
ated in the new proof situation. In our case, the task is thus identical to proof task
(P1). A backward proof step that is not relevant according to thiscriterion is (d)
since it reduces to the proof task:(P2) (A∧B),(A⇒C),(C⇒ D),(F ⇒ B) ⊢ E for
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which no proof can be generated. Thus, (d) is a sound refinement step that is not
relevant.

E: Tutorial Context

Dynamic proof step evaluation enables tutoring in the spirit of didactic construc-
tivism [26] (i.e., allowing the student to explore rather than expect him to follow a
prescribed solution path). Dynamic proof step evaluation poses already a non-trivial
challenge to mathematical domain reasoning if we assume a static tutorial context.
In practice, however, the tutorial context dynamically changes. This tutorial con-
text comprises the dynamically changing knowledge and experience of the student,
the possibly dynamically changing teaching goal and strategy, and the dynamically
changing knowledge of the teacher about the student’s dynamically changing capa-
bilities. Incorporating this dynamically changing context information poses an ad-
ditional challenge to the tutor system’s proof step evaluation mechanism since the
system needs to adapt its analysis to both the tutorial modeland the student model.

E: Failure Analysis

Context sensitive proof step evaluation supports the separation of acceptable from
unacceptable student proof steps. In case of acceptable proof steps the student will
be encouraged to continue his proof. More challenging is to compute and present
useful feedback also in the case of unacceptable proof steps, that is, proof steps
which are erroneous. Standard tutoring systems typically rely on information pro-
vided in advance by the author of teaching materials. Since we are in a setting where
solutions are determined on the fly, we face the issue whethersolution proofs can be
dynamically annotated with information on the reason for failure. Such additional
information provides important input for the generation ofdidactic useful feedback.
In order to obtain such additional information of the reasons for failure the tutoring
system needs to dynamically solve further analysis tasks inthe domain reasoner.

G: Didactic Strategies, Feedback Generation and Hinting

The tutor can decide to offer a hint to the student in a number of situations, for
example after repeated student errors, a long period of silence, or a direct request.
Given information about the proof step such as correctness,granularity, and rele-
vance as well as information about the student—encoded in the student model—the
tutor should react in a way that optimises the progress of thestudent. In general, the
behaviour of the tutor is encoded in a teaching strategy.Socratic teachingstrategies
that focus on posing questions to that student, not answers,have shown to be more
effective than simply presenting the student with concreteparts of the solution.
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H: Flexible Dialogue Modelling

Human maths tutors usually show impressive skills with respect to (at least) all
of the aspects above. These tutoring skills—typically theyare acquired in special
training courses—are important resources limiting the tutor’s capabilities for effec-
tive proof tutoring. These skills are consequently also important resources for an
automated proof tutor system. It requires modules addressing these skills and these
modules need to interact in a suitable way. Controlling the overall dialogue, invoking
these modules, combining their results and determining appropriate dialogue moves
is the task of the dialogue manager. Human tutors are generally capable of flexibly
applying and interleaving their tutoring skills. This calls for flexible approaches and
flexible architectures for dialogue management to convey this flexibility of human
tutors to the tutor system. An example for an interleaving ofskills has been hinted
at before: in order to disambiguate a content-underspecified proof step utterance of
the user, mathural processing may want to consult the proof manager and proof step
evaluation in order to rule out incorrect readings. Detailson the dialog management
architecture are found in the twin article [44] in this volume.

4 Dynamic Proof Step Evaluation withΩMEGA

A main focus in the DIALOG project has been on proof step evaluation. We have
already argued that dynamic, context sensitive proof step evaluation requires sup-
port from a sophisticated and ideally cognitively adequatemathematical domain
reasoner4. TheΩMEGA system, with its various support tools for human-oriented,
abstract level proof representation and proof construction, has therefore been cho-
sen as the domain reasoner of choice in the DIALOG project (see the paper by [44]
in this volume).

Proof Management, Correctness Analysis and Content Underspecification

In the DIALOG contextΩMEGA is used to (i) represent the mathematical theory
in which the proof exercise is carried out, that is definitions, axioms, and theo-
rems of a certain mathematical domain, (ii) to represent theongoing proof attempts
of the student, in particular the management of ambiguous proof states resulting
from underspecified or ambiguous proof steps the student enters (iii) to maintain
the mathematical knowledge the student is allowed to use andto react to changes
of this knowledge, and (iv) to reconstruct intermediate steps necessary to verify the

4 There is a discrepancy between the level of argumentation inmathematics and the calculus level
in contemporary automated theorem proving. We argue that cognitively motivated domain reason-
ing, such as reasoning at the assertion level, can overcome the limitations of theorem proving with
commonly used calculi such as resolution or natural deduction calculi (cf. [12]).



12 Christoph Benzmüller, Marvin Schiller, and Jörg Siekmann

correctness of a step entered by the student, thereby also resolving ambiguity and
underspecification.

Proofs are represented inΩMEGA’s proof data structure (PDS) which allows the
shared representation of several (ongoing) proof variants[4]. The PDS is a collec-
tion of proof trees (with nodes as multi-conclusion sequents), which can be linked to
one another (in order to express the dependency of one proof on another one whose
proof task is treated as a lemma).

These reconstructed proofs serve as the basis for further analysis of the students’
proof steps w.r.t. granularity and relevance. Thereby, ouranalysis components take
advantage ofΩMEGA’s abstract proof representation at the assertion level. Wenow
sketch some of the project achievements.

As the basis for proof step evaluation, each proof step proposed by the user is
reconstructed inΩMEGA. As explained before for the example student utterance S1
in Fig. 3, even most ordinary human proof steps can generallyinclude a number of
tacit intermediate steps, which become apparent when modelling these proof steps
in a rigorous formal system. Therefore, the reconstructiongenerally requires proof
search in order to determine the different (correct) readings of the student proof step.

The assessment module we have realised as part of theΩMEGA system main-
tains an assertion level proof object that represents the current state of the proof
under construction, which can include several proof alternatives in the case of un-
derspecified, that is, insufficiently precise, proof step utterances by the student caus-
ing ambiguities (cf. [6, 16]). For each proof step uttered bythe student, the module
uses adepth-limited breadth-first search(with pruning of superfluous branches) to
expand the given proof state to all possible successor states up to that depth. From
these, those successor states that match the given utterance wrt. to some filter func-
tion (analysing whether a successor state is a possible reading of the student proof
step) are selected. Thus, we have combined the resolving ofcontent underspecifi-
cation and the verification of the correctness of a proof stepas a joint task in our
solution inΩMEGA. If a student proof step matches with a step in one of the pos-
sible assertion level proofs (expanding the current proof state to a certain depth) as
generated byΩMEGA, then it is considered as correct. The matcher and intermediate
steps in theΩMEGA proof object not addressed by the student are then the formally
relevant content that was left unspecified in the student utterance.

This way we obtain, modulo our filter function, assertion level counterparts to all
possible interpretations of correct student proof steps. If for a given utterance, no
matching successor state can be reached, the utterance is considered as incorrect.

In [12] we report on a case study in which we applied ourΩMEGA based assess-
ment module with a depth-limit of four assertion level stepsto 17 dialogues from the
second DIALOG corpus; these 17 dialogues contain a total of 147 proof steps. All
the steps within a dialogue were passed to the assessment module sequentially until
a step that is labelled as correct cannot be verified, in whichcase we move on to
the next dialogue. This way, we correctly classify 141 out ofthe 147 steps (95.9%)
as correct or wrong. Among the remaining six steps are three where the verification
fails, and further three remain untouched.
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This experiment confirms our decision in theΩMEGA project to replace the pre-
vious ND based logical core by assertion level reasoning: Using breadth-first proof
search for automated proof step analysis in proof tutoring appears unreasonable at
first sight (if we employed ND calculus it likely would be, because of the challeng-
ing, deep search space; it remains unclear whether strategically guided ND proof
search as employed e.g. in AProS [39] can sufficiently reducethe search). However,
we employ assertion level breadth-first search which turns out to be well suited for
the given task. This is because inΩMEGA we obtain more adequate formal coun-
terparts of the human proofs as was possible before: Lookingat the human level
proof steps in our corpus from the perspective of assertion level reasoning our anal-
ysis shows that they seldom exceed size three. Interestingly, already a depth limit
of just four assertion level steps enables our breadth-firstsearch based approach to
correctly classify 95.9% of the proof steps in the corpus of the experiment.

Granularity Analysis

An early study within this project on granularity [37, 36, 35] investigated the use
of proof reconstructions in natural deduction calculi for obtaining a measure for
granularity. We investigated the viewpoint outlined in Section 3, where the number
of steps in a formal deductive system (here, a natural deduction system) is treated
as an indicator for granularity. Natural deduction is a self-evident first candidate for
modelling human proof steps. We studied two human-orientedcalculi, the classic
natural deduction calculus by Gentzen [20] and the more recent psychologically-
motivated calculus PSYCOP [32]. For our investigation, we made use of the proofs
in the experiment corpus of the second Wizard-of-Oz experiment, where each step
from the student is annotated with a granularity judgment bythe human wizard,
which can take one out of three valuestoo detailed, appropriateor too coarse-
grained.

In particular, we related the step size of proofs in the experiment corpus (as in-
dicated by the wizards) to the step size of these two calculi.As reported in [37],
large (i.e.,too coarse-grained) proof steps (as identified by the wizards) corre-
sponded usually to longer sequences of natural deduction inference applications.
However, there remained a large gap w.r.t. step size remained between human-
generated proofs and natural deduction proofs. A single proof step as it typically
occurs in the experiment corpus generally requires numerous deduction steps at the
level of natural deduction, which are often of rather technical nature. It became
apparent that the sheer number of inference steps in the natural deduction proof
reconstructions was an insufficient measure for granularity.

Learning Granularity Evaluation

The previous studies [37, 35] motivated the investigation of assertion-level proof re-
constructions inΩMEGA as a basis for granularity analysis. Furthermore, the exper-
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iments hinted at other criteria as indicators for steps sizebesides counting the num-
ber of calculus-level inference steps required to reconstruct a human-made proof
step. Based on the experiment corpus, we have identified a number of potentially
granularity-relevant criteria.

Homogeneity: A single human-made step that involves the application of several
different mathematical facts can is distinguished w.r.t granularity from a step
where only one fact is applied several times.

Verbal Explanation: A human-made step that is accompanied by verbal justifica-
tion of the argumentation (e.g., the name of a theorem, definition, etc.) is dis-
tinguished w.r.t. granularity from a step where only the result (possibly only a
formula) is given.

Introduction of Hypotheses or Subgoals: Proof steps which introduce a new hy-
pothesis or new subgoal are given a special status w.r.t. granularity.

Learning Progress: A proof step that involves (one or several) concepts that are
known to the student (as recorded by a student model) can be distinguished w.r.t.
granularity from proof steps involving (one or several) yetunknown (i.e., too-be-
learnt) concepts.

For a given proof step, these criteria can easily be determined from the proof
step’s assertion-level reconstruction and with the help ofa student model. Since, for
example, proof reconstruction withΩMEGA delivers the mathematical assertions
employed in the reconstruction process (i.e. facts such as definitions, theorems, lem-
mata), the question whether these assertions are already known to the user can be
answered by a simple lookup in the student model.

However, this leaves the question open in how far each of the criteria contributes
to the overall verdict on granularity for that step.

We have developed an approach to learning the relationship between the crite-
ria and the final granularity judgments from an empirical corpus, using standard
machine-learning techniques. This allows us to adapt our framework to a particular
mathematical domain and the style of a particular human tutor. Thus, we employ two
modules for granularity analysis (see Fig. 5); one serves toobtain training instances,
from which the associations between granularity criteria and granularity judgements
can be learned. This results in a classifier, which is used within a second judgement
module to automatically perform granularity judgements.

Training instances can be constructed from annotated corpora such as in the sec-
ond experiment. Consider for example the utteranceS5 in Fig. 2, which is the first
step in the dialogue the tutor considers correct. This utterance by the student is sent
to the proof step analysis module (see Fig. 5), and again handed over toΩMEGA

for proof reconstruction, where it advances the proof statemaintained byΩMEGA

by two assertion applications: (i) the (backward) application of the definition of=
(such that(R◦S)−1 ⊆ S−1 ◦R−1 andS−1 ◦R−1 ⊆ (R◦S)−1 remain to be shown),
and (ii) the (backward) application of the definition of⊆, i.e. in order to show
(R◦S)−1 ⊆ S−1 ◦R−1 it is assumed that(x,y) ∈ (R◦S)−1 and (x,y) ∈ S−1 ◦R−1

remains to be shown. Proof step reconstruction thus delivers the information that
two different concepts (the definitions of= and⊆) were possibly employed by the



Resource-bounded Modelling and Analysis of Human-level Interactive Proofs 15

Annotated
Corpus

Proof
Step
Analy-
sis

Machine
Learn-
ing

ΩMEGA

Proof
Assis-
tant

Student
Model

Classifier

evaluation
results w.r.t.
criteria

query

query

formalised
steps

granularity
annota-
tions

Proof
Steps

Classifier

Proof
Step
Analy-
sis

Classifi-
cation
Module

ΩMEGA

Proof
Assis-
tant

Student
Model

Granularity
Judge-
ments

evaluation
results w.r.t.
criteria

query

query

formalised
steps

granularity
judgements

Fig. 5 Training module (left) and judgment module (right)

student in utteranceS5. The proof step is now analysed with respect to the granular-
ity criteria and a student model (which is updated during thecourse of the exercise).
The results of our evaluation of the criteria for a given proof step are only numeric;
they indicate how many assertion-level steps the reconstruction contains (in our run-
ning example ’2’), how many different concepts the reconstruction involves (again
’2’), how many inference steps are unexplained (’2’, since the student does not men-
tion the concepts verbally, this would have been for example: “By the definition of
equality and the subset relation, ...”), how many times (if any) new subgoals or hy-
potheses are introduced (here ’1’ hypothesis, and ’3’ new subgoals), and how many
concepts are new to the learner, according to the student model (’0’, if we assume
the student is familiar with naive set theory, and in particular equality and subset
relation).

For each student step, these results of the analysis are combined with the judge-
ment from the tutor, which is stored in the corpus, and the resulting instance is added
to the set of training instances for machine learning. In ourrunning example, the val-
ues of the analysis are associated to the verdict “appropriate”, thus they become an
example of anappropriatestep for the machine learning algorithm. However, the
evaluation values for the next stepS6become an example for atoo coarse-grained
student step. The task performed by machine learning is to build a model of these
examples (on a given training sample) that allows us to classify further new, yet un-
seen instances according to their granularity. Like the training module, the judgment
module receives student proof steps, and analyses them withthe help ofΩMEGA and
the student model. However, the classifier learnt with the help of the training module
now permits automatic granularity judgments.

Currently, we use C5 decision tree learning (see [34] and also [31]) as the learn-
ing algorithm. We have also compared this to the performanceof other machine
learning algorithms on our data, as reported in [38]. One result is that the classifier
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SMO [30], which implements a support vector machine, achieved a better classifi-
cation on our sample from the experiment corpus than C5 (see Fig.6).

Naive classification C5 SMO
Mean error27.5 13.0 6.4
Kappa 0.0 0.65 0.84

Fig. 6 Performance of C5 and SMO on a sample of 47 proof steps from ourcorpus using 10-fold
cross validation, compared to naively assigning all proof steps to the majority classappropriate.

However, using decision tree learning (as with C5) has the additional value that
the resulting decision trees can easily be interpreted, andthus reveal which of the
criteria are relevant to the granularity decisions (w.r.t.the particular corpus and a
particular tutor). For example, a case study on a small test set produced the following
decision tree depicted in Fig. 7.

appropriate too coarse-grained

too detailed appropriate

number of
unknown facts

number of
newly introduced

hypotheses

0 1 2-4

0 1

Fig. 7 Example decision tree produced during a case study

In this example, the algorithm has learnt that for the particular “judge” who has
trained the system in the case study, the number of previously unknown facts (i.e.,
facts that the student has not used before), and the number ofnewly introduced hy-
potheses are those criteria that his explain the judge’s behaviour w.r.t. granularity
best. However, the criterion of verbosity has been pruned from the tree, which indi-
cates that this criterion is not relevant for the particulartraining sample. Note that
the judge only provides examples, and does not need to reflectabout granularity
criteria or the working of the training module at all.
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Student Modelling

Student modelling is an indispensable ingredient for the analysis of the student’s
proof attempts and a prerequisite for the generation of tailored feedback. We draw
on the experience of the ActiveMath project with various techniques of student mod-
elling, and employ a student model based on [29], which is currently used for the
LeActiveMath system [21]. For each concept, eight competencies are modelled,
namely tothink, argue, model, solve, represent, language, communicate and use
toolsw.r.t. the concept. The degree of mastery w.r.t each of thesecompetencies is
expressed in four levels:elementary, simple-conceptual, complexand multi-step.
Using this well-established approach to student modellingallows us to embed the
techniques of the DIALOG project into the LeActiveMath (and possible other) teach-
ing environments.

The student model is seen as a dynamic component that furthercontributes to
the adaptivity of the system. Competency levels in the student model associated
with mathematical facts are updated whenever the mathematical fact is successfully
applied, i.e. when it is employed in a student proof step verified byΩMEGA as cor-
rect and categorised as appropriate w.r.t. granularity. Furthermore, each confirmed
proof step is turned into a lemma (in case it is not already part of the assertions
for the given mathematical domain) and added to the set of available assertions in
ΩMEGA, together with a new student model entry. This allows to model common
mathematical practice, where previously solved problems become building blocks
for subsequent proof construction.

Further Work

As mentioned, a start has been made to incorporate a student model into granularity
evaluation. However, more work is needed to incorporate further tutorial context
information into proof step evaluation, in particular, into correctness and relevance
evaluation. Relevance has generally only been preliminarily addressed in this project
so far. This also applies to fine-grained failure analysis.

5 Didactic Strategies and Dialogue Modelling

The socratic teaching challenge has not been a main researchfocus of the DIALOG
project. However, in close collaboration with our project,Tsovaltzi and Fiedler have
studied hint taxonomies [41, 42] and dialogue-adaptive hinting [18].
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Didactic Strategies and Hinting

The approach described in [18] is to dynamically produce hints that fit the needs
of the student with regard to the particular proof. Thus, theproof tutor system can-
not restrict itself to a repertoire of static hints, associating a student answer with a
particular response by the system. [42] defines a multi-dimensional hint taxonomy
where each dimension defines a decision point for the associated cognitive function.
The domain knowledge can be structured and manipulated for tutoring decision
purposes and generation considerations within a tutorial manager. Hint categories
abstract from the strict specific domain information and theway it is used in the tu-
toring, so that it can be replaced for other domains. Thus, the teaching strategy and
pedagogical strategy of the proof tutor system can be retained for different domains.
More importantly, the discourse management aspects of the dialogue manager can
be independently manipulated.

The hint taxonomy [42] was derived with regard to the underlying function of
a hint that can be common for different NL realisations. Thisfunction is mainly
responsible for the educational effect of hints.

Dialog Modelling

Dialogue systems act as conversational agents, that is, they look at an analysis of
an incoming utterance and call on conversational expertise, encoded for instance as
a dialogue grammar, to determine an appropriate response inthe current dialogue
state. A model of dialogue state, containing for example a record of utterances and
their analyses, is continually updated to reflect the effectof both system and user ut-
terances. In order to successfully manage and model tutorial dialogue, the dialogue
state must be centrally stored and the results of computations by system modules,
such as natural language analysis, must be made available. To satisfy these require-
ments, we have been working within a model characterised by acentrally-placed
dialogue manager. The dialogue manager maintains the modelof dialogue state,
facilitates the collaboration of single system submodulesand controls top-level exe-
cution in the system. By using the current dialogue state andaccessing its model of
conversational expertise, the dialogue manager is in the position to choose the most
appropriate system response.

In developing a suitable model for managing tutorial dialogue we have met a
number of challenges: How should we facilitate interleaving the processing carried
out by system modules in the analysis of students’ utterances? How can we combine
the results of each module’s analysis into a representationthat forms the context of
the choice of system response? And what information needs tobe modelled at the
dialogue level as opposed to the task or tutoring level?

In keeping with our project goal of flexible tutorial dialogues on mathematical
proofs, we have been continually developing a demonstratordialogue system which
implements this type of model. It serves as a framework in which single modules
can be tested, and this work is presented in the twin article [44] in this volume.
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6 Related Work and Conclusion

All existing systems for proof tutoring employ automated theorem proving tech-
niques for checking, analysing or generating complete proofs. Examples are the
proof tutoring systems EPGY [40], ETPS [2], TUTCH [1], I NTELLIGENT BOOK [14],
and WINKE [15]. If proof checking fails the only feedback these systems return is
that the step could not be verified. If the verification succeeds, there is no further
analysis whether that proof step is actually relevant to complete the proof or whether
it is of appropriate granularity. The ETPS-system is the only system which provides
hints about how to continue the proof in case the student getsstuck. An approach
that uses information about completed proofs is realised inWHY2-ATLAS [27].
This system checks a student’s proof in two stages: First, ituses domain specific
rules to generate different possible proofs for the given conjecture using abductive
logic programming [24] and then it compares the found proofs(including those
using some didactically motivated buggy rules) to the student’s proof and selects
the most similar to provide feedback to the student. Finally, the APROS project [39]
uses automated proof search for natural deduction as the basis for the dynamicProof
Tutorsystem. It has been successfully used as a part of the course “Logic & Proofs”
at Carnegie Mellon University, which at current time has been attended by more
than 2000 students.

Main contributions of our work include empirical experiments that served to pin-
point the particular research challenges evoked by our ambitious dialogue scenario
for dynamic proof tutoring. As a result, we determined that proof step evaluation
does not only include the aspect of correctness, but also theanalysis of granularity
and relevance. Besides an elaborate discussion of the various functions relevant for
proof tutoring and their overarching architecture, we haveexamined the analysis
of granularity in detail, and developed an adaptive architecture based on the anal-
ysis of granularity-related features and machine learningtechniques. Our work has
resulted in a demonstrator system and prototype implementations, which allowed
partial evaluation. Ultimately, such a system should be evaluated regarding its ben-
efits for students’ learning performance. However, this is still future work, since it
already presupposes a high degree of maturity of the investigated system.
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