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Abstract

We propose a new quantifier elimination algorithm for the theory of
linear real arithmetic. This algorithm uses as subroutines satisfiability
modulo this theory and polyhedral projection; there are good algorithms
and implementations for both of these. The quantifier elimination al-
gorithm presented in the paper is compared, on examples arising from
program analysis problems and on random examples, to several other im-
plementations, all of which cannot solve some of the examples that our
algorithm solves easily.

1 Introduction

Consider a logic formula F , possibly with quantifiers, whose variables lay within
a certain set S and whose atomic predicates are relations over S. The models of
this formula are assignments of values in S for the free variables of F such that
F evaluates to “true”. Quantifier elimination is the act of providing another
formula F ′, without quantifiers, such that F and F ′ are equivalent, that is, have
exactly the same models. For instance, ∀x (x ≥ y ⇒ x ≥ 3) is equivalent to
quantifier-free y ≥ 3.

If F has no free variables, then F ′ is a ground (quantifier-free, variable-free)
formula. In most practical cases such formulas can be easily decided to be true
or false; quantifier elimination thus provides a decision procedure for quantified
formulas.

In this paper, we only consider relations of the form L(x, y, z, . . . ) ≥ 0 where
L is a linear affine expression (an arithmetic expression where multiplication
is allowed only by a constant factor), interpreted over the real numbers (or,
equivalently, over the rationals). We can thus deal with any formula over linear
equalities or inequalities. Our algorithm transforms any formula of the form
∃x1, . . . , xn F , where F has no quantifiers, into a quantifier-free formula F ′ in
disjunctive normal form. Nested quantifiers are dealt with by syntactic induc-
tion: in order to eliminate quantifiers from ∃x F or ∀x F , where F may contain
quantifiers, one first eliminates quantifiers from F . Universal quantifiers are
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converted to existential ones (∀x1, . . . , xn F ≡ ¬∃x1, . . . , xn ¬F ), yet our algo-
rithm generally avoids the combinatorial explosion over negations that hinders
some other methods.

Our method can be understood as an improvement over the approach of
converting to DNF through ALL-SAT and performing projection; we compared
both approaches experimentally (see § 5.2). We compared our implementa-
tion with commercial and noncommercial quantifier elimination procedures over
some examples arising from practical program analysis cases, as well as ran-
dom problems, and ours was the only one capable of processing them without
exhausting memory or time, or failing altogether due to the impossibility of
handling large coefficients.

2 The Algorithm

We first describe the datatypes on which our algorithm operates, then the off-
the-shelf subroutines that it uses, then the algorithm and its correctness proof,
then possible alterations.

2.1 Generalities

We operate on unquantified formulas built using ∧, ∨, ⇒, ¬ or other logical
connectives such as exclusive-or (the exact set of connectives allowed depends
on the satisfiability tester being used, see below; in this paper we shall only use
∧, ∨ and ¬), and on quantified formulas built with the same connectives and the
existential (∃) and universal (∀) quantifiers. It is possible to quantify not only
on a single variable but also on a set of variables, represented as a vector ~v. The
atoms are linear inequalities, that is, formulas of the form c+cxx+cyy+czz · · · ≥
0 where c ∈ Q is the constant coefficient and cv ∈ Q is the coefficient associated
with variable v. It is trivially possible to represent equalities or strict inequalities
using this formula language. The models of a formula F are assignments a of
rational numbers to the free variables of F such that a satisfies F (written
a |= F ). F is said to be satisfiable if a model exists for it. If F has no free
variables, then F is said to be true if F is satisfiable, false otherwise. Two
formulas A and B are said to be equivalent, noted A ≡ B, if they have the same
models. Formula A is said to imply formula B, noted A ⇛ B, if any model of
A is a model of B.

Consider a quantifier-free formula F , whose atomic predicates are linear
inequalities, and variables x1, . . . , xn. We wish to obtain a quantifier-free for-
mula F ′ equivalent to ∃x1, . . . , xn F . Let us temporarily forget about effi-
ciency in order to convince ourselves quickly that quantifier elimination is pos-
sible. F can be put into disjunctive normal form (DNF) C1 ∨ · · · ∨ Cm (by
recursive application of distributivity), and ∃x1, . . . , xn F is thus equivalent to
(∃x1, . . . , xn C1) ∨ · · · ∨ (∃x1, . . . , xn Cm). Various methods exist for finding a
conjunction C′

i equivalent to ∃x1, . . . , xn Ci, among which we can cite Fourier-
Motzkin elimination (see § 5.1). We therefore obtain F ′ in DNF. For a universal
quantifier, through De Morgan’s laws, we obtain a formula in conjunctive normal
form (CNF).

Such a naive algorithm suffers from an obvious inefficiency, particularly if
applied recursively to formulas with alternating quantifiers. A first and obvious
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step is to replace DNF conversion through distributivity by modern techniques
(model enumeration using satisfiability modulo theory). We show in this paper
than one can do better by interleaving the projection and the model numeration
processes.

2.2 Building blocks

If one has propositional formulas with a large number of variables, one never
converts formulas naively from CNF to DNF, but one uses techniques such as
propositional satisfiability (SAT) solving. Even though SAT is NP-complete,
there now exist algorithms and implementations that can deal efficiently with
many large problems arising from program verification. In our case, we apply
SAT modulo the theory of linear real inequalities (SMT), a problem for which
there also exist algorithms, implementations, standard benchmarks and even a
competition. Like SAT, SAT modulo linear inequalities is NP-complete. A SMT
solver takes as an input a formula F where the literals are linear equalities or
inequalities, and answers either “not satisfiable”, or a model of F , assigning a
rational number to each variable in F . We assume we have such an algorithm
Smt at our disposal as a building block

Another needed building block is quantifier elimination over conjunctions,
named Project(C,~v): given a conjunction C of linear inequalities over vari-
ables ~v = v1, . . . , vN , obtain a conjunction C′ equivalent to ∃v1, . . . , vn C. For
efficiency reasons, it is better if C′ is minimal (no conjunct can be removed
without adding more models), or at least “small”. Fourier-Motzkin elimina-
tion is a simple algorithm, yet, when it eliminates a single variable, the output
conjunction can have a quadratic number of conjuncts compared to the in-
put conjunction, thus a pass of simplification is needed for practical efficiency;
various algorithms have been proposed in that respect [9]. For our implementa-
tions, we used “black box” libraries implementing geometrical transformations,
in particular polyhedron projection: C defines a convex polyhedron1 in QN , and
finding C′ amounts to computing the inequalities defining the projection of this
polyhedron into QN−n.

3 Quantifier Elimination Algorithm

We shall first describe subroutines Generalize1 and Generalize2, then the
main algorithm ExistElim.

3.1 Generalized Models

Consider a satisfiable quantifier-free formula F . We suppose we have at our
disposal a SMT-solving algorithm that will output a model m |= F . We wish
to obtain instead a generalized model: a conjunction C such that C =⇒ F .

1A good bibliography on convex polyhedra and the associated algorithms can be found
in the documentation of the Parma Polyhedra Library. [1] By convex polyhedron, we mean,
in a finite-dimension affine linear real space, an intersection of a finite number of half-spaces
each delimited by a linear inequality, that is, the set of solutions of a finite system of linear
inequalities. In particular, such a polyhedron can be unbounded. In the rest of the paper, the
words “polyhedron” must be understood to mean “convex polyhedron” with that definition.

3



Algorithm 1 Generalize1(a, F ): Generalize a model a of a formula F to a
conjunction

Require: a |= F
M ← true

for all P ∈ AtomicPredicates(F ) do
if a |= P then
M ←M ∧ P

else
M ←M ∧ ¬P

end if
end for

Ensure: M ⇛ F

Algorithm 2 Generalize2(G, M): Remove useless constraints from conjunc-
tion M so that G ∧M ≡ false

Require: G ∧M is not satisfiable
for all c conjunct in M do
if (G \ {c}) ∧M is not satisfiable (call Smt) then
remove c from M

end if
end for

Ensure: G ∧M is not satisfiable

Ideally, we would like C to have as few conjuncts as possible. We shall now see
algorithms in order to obtain such generalized models.

The truth value of F on an assignment a of its variables only depends
on the truth value of the atomic predicates of F over a. Let us note NF =
|AtomicPredicates(F )|, where |X | denotes the cardinality of the setX . These
truth assignments therefore define at most 2NF equivalence classes over the val-
uations of the variables appearing in F . There can be fewer than 2NF equiva-
lence classes, because some truth assignments can be contradictory (for instance,
x ≥ 1 assigned to true and x ≥ 0 assigned to false). One can immediately gener-
alize a model of a formula to its equivalence class, which motivates our algorithm
Generalize1. Its output is a conjunction of literals from F .

This conjunction may itself be insufficiently general. Consider the formula
F = (x ≥ 0 ∧ y ≥ 0) ∨ (¬x ≥ 0 ∧ y ≥ 0). x 7→ 0, y 7→ 0 is a model of F .
Generalize1 will output the conjunction x ≥ 0∧y ≥ 0. Yet, the first conjunct
could be safely removed. Generalize2(¬(F ∨O),M) will remove unnecessary
conjuncts from M while preserving the property that M ⇛ F ∨ O. Figure 3
illustrates why it is better to generalize the conjunctions.

The problem of obtaining a minimal (or at least, “reasonably small”) in-
consistent subset out of an inconsistent conjunction has already been studied.
In DPLL(T) algorithms [8] for SMT-solving, the problem is to find out, given
a consistent conjunction of literals L1 ∧ · · · ∧ Ln and a new literal L′, whether
L1∧· · ·∧Ln ⇒ L′, L1∧· · ·∧Ln ⇒ ¬L

′, or neither; and if one of the implications
holds, produce a minimal explanation why it holds, that is, a subset Li1 , . . . , Lim

of the Li such that Li1 ∧ · · · ∧ Lim ⇒ L′ (respectively, ⇒ ¬L′). Since this de-
cision and explanation procedure is called often, it should be fast and much
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Figure 1: Subsumption of one generalized model by another

effort has been devoted in that respect by implementors of SMT-solvers (e.g.
[13] for congruence theories). It is however not straightforward to use such ex-
planation procedures for our purposes, since we do not consider conjunctions of
literals only: when algorithm ExistElim invokes Generalize2(¬F,M1), ¬F
is in general a complex formula, not a literal.

We therefore present here a straightforward inconsistent set minimization
algorithm similar to the one found in [6, §6]. Generalize2(G,M), where M is
a conjunction such that G ∧M is unsatisfiable, works as follows:

• It attempts removing the first conjunct from M (thus relaxing the M
constraint). If G ∧M stays unsatisfiable, the conjunct is removed. If it
becomes satisfiable, then the conjunct is necessary and is kept.

• The process is continued with the following conjuncts.

Unsurprisingly, the results of this process depend on the order of the con-
juncts inside the conjunction M . Some orders may perform better than others;
the resulting set of conjuncts is minimal with respect to inclusion, but not nec-
essarily with respect to cardinality. 2

3.2 Main Algorithm

2This is the case even if we consider a purely propositional case. As an example, consider
F = A ∨ (B ∧ C). M = A ∧ B ∧ C ⇛ F , otherwise said M ∧ ¬F is not satisfiable. If one
first relaxes the constraint A, one gets the conjunction B ∧ C, which still implies F ; this
conjunction has two propositional models (A ∧B ∧C and ¬A ∧ B ∧ C). Yet, one could have
chosen to relax B and obtain A ∧ C, and then to relax C and obtain A (which still implies
F ); this formula has four propositional models.
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Figure 2: The gray area is the set of points matched by formula F = y ≥
−1 ∨ (y ≥ −2 ∧ x ≥ −1 ∧ x ≤ 1). Point O = (0, 0) is found as a model. This
model is first generalized to y ≥ −1 ∧ y ≥ −2 ∧ x ≥ −1 ∧ x ≤ 1 according to
its valuations on the atomic boolean formulas. Depending on whether one first
tries to relax x ≥ −1 or y ≥ −1, one gets either a half plane (one conjunct) or
a vertical band (three conjuncts); the former is “simpler” than the second. The
simplicity of the formula output by Generalize2 thus depends on the ordering
of the input conjuncts.

Algorithm 3 ExistElim: Existential quantifier elimination

H ← F
O ← false

while H is satisfiable (call Smt) do {(∃~v F ) ≡ (O∨∃~v H) and H ∧O ≡ false

and O does not mention variables from ~v}
a← a model of H {a |= H}
M1 ← Generalize1(F, a) {M1 ⇛ F}
M2 ← Generalize2(¬F,M1) {¬(M2 ∧G)}
π ← Project(M2, ~v) {π ≡ ∃~v M2}
O ← O ∨ π
H ← H ∧ ¬π

end while
Ensure: O ≡ ∃~v F

The main algorithm is ExistElim(F,~v) which computes a DNF formula
equivalent to ∃~v F . ~v is a vector of variables. ~v can be empty, and then the al-
gorithm simply computes a “simple”DNF form for F . The algorithm computes
generalized models of F and projects them one by one, until exhaustion. It
maintains three formulas H and O. O is a DNF formula containing the projec-
tions of the models processed so far. H contains the models yet to be processed;
it is initially equal to F . For each generalized model M , its projection π is
added to O and removed from H . ExistElim can thus be understood as an
ALL-SAT implementation coupled with a projection, where the projection is
performed inside the loop so as to simplify the problem (as opposed to waiting
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A

B

C

Figure 3: A is the first generalized model selected. If G0
def
= ¬F , the initial

value of G, is replaced at the next iteration by G1
def
= ¬F ∧ ¬π0 where π0 is

the projection of A, then it is possible to generate a single generalized model
encompassing both B and C (for instance x ≥ −1 ∧ y ≥ 0 ∧ y ≤ 2. If G stays
constant, then the x ≥ 1 constraint defining the left edge of C cannot be relaxed.

for all models to be output and projecting them).
The partial correctness of the algorithm ensues from the loop condition and

the following loop invariants: (∃~v F ) ≡ O ∨ (∃~v H), H ⇛ F and O does not
mention variables from ~v.

Given a formula φ, we denote by W (φ) the number of equivalence classes
induced by the atomic predicates of F with nonempty intersection with the
models of φ. Termination is ensured because W (H) decreases by at least one
at each iteration: M1 defines exactly one equivalence class, M2 defines a union
of equivalence classes which includes the one defined by M1, and the models of
π include those of M2 thus also at least one equivalence class. The number of
iterations is thus at most 2NF . Note that Generalize2 is needed neither for
correctness nor for termination, but only for efficiency: otherwise, the number
of iterations would always be the number of equivalence classes, which can be
huge.

4 Possible Changes and Extensions

We investigated two variations of the same algorithm, both of which perform
significantly worse. In addition, we extended the algorithm to quantifier elimi-
nation modulo a user-specified theory.
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4.1 ALL-SAT then project (Mod1)

The algorithm would still be correct if M was removed from H instead of π.
It then becomes equivalent to performing ALL-SAT (obtaining all satisfying
assignments) then projection. On the one hand, with this modified algorithm,
the set of atomic formulas of H would stay included in that of F throughout the
iterations, while this set can grow larger with the original algorithm since the
set of atomic formulas of the projection of F can be much larger than the set
of atomic formulas in F (see §5.1). On the other hand, the original algorithm
may need fewer iterations because π may subsume several generalized models,
as shown by Fig. 1 : A is the first generalized model being generated, and its
projection subsumes B; thus, the original algorithm will not have to generate B,
while the modified algorithm will generate B. Our experiments (§5.2) showed
that the unmodified algorithm often performs much better in practice than this
approach.

4.2 Removals from Negated Set (Mod2)

Algorithm 4 ExistElim(Mod2): Existential quantifier elimination

H ← F

G← ¬F
O ← false

while H is satisfiable (call Smt) do {(∃~v F ) ≡ (O ∨ ∃~v H) and G ≡ ¬(F ∨O) and
H ∧ O ≡ false and O does not mention variables from ~v}

a← a model of H {a |= H}
M1 ← Generalize1(F, a) {M1 ⇛ F}
M2 ← Generalize2(G,M1) {¬(M2 ∧G)}
π ← Project(M2, ~v) {π ≡ ∃~v M2}
O ← O ∨ π

H ← H ∧ ¬π
G← G ∧ ¬π

end while

Ensure: O ≡ ∃~v F

The algorithm given previously was not the first we experimented; we had
originally a slightly more complicated one, given as ExistElim(Mod2), which
we wrongly thought would be more efficient. Instead of using ¬F to check
for inappropriate generalizations, we used a formula G initially equal to ¬F ,
and then progressively altered. The termination proof stays the same, while
correctness relies on the additional invariant G ≡ ¬(F ∨O). ExistElim can be
thought of as identical to ExistElim(Mod2) except that G stays constant.

We thought this scheme allowed more generalization of models than the
algorithm we gave earlier in the article, as shown by Fig. 3. ExistElim tries
to generalize M to a conjunction that implies F , but in fact this is too strict a
condition to succeed, whereas ExistElim(Mod2) succeeds in generalizing F to
a conjunction that implies F ∨O. If at least one variable is projected out, and
F actually depends on that variable, then the models of F are strictly included
in those of the final value of O, which is equivalent to ∃~v F .

Experiments (§5.2) however showed that this “more clever” algorithm is
slower by approximately a factor of two, because adding extra assertions to
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G is costly for the SMT-solver.

4.3 Extra Modulo Theory

The algorithm can be easily extended to quantifier elimination modulo an as-
sumption T on the free variables of F . All definitions stay the same except

that ⇛ is replaced by ⇛T , defined as P ⇛T Q
def
= (P ∧ T ) ⇛ (Q ∧ T ) and

≡ is replaced by ≡T , defined as (P ≡T Q)
def
= (P ∧ T ≡ Q ∧ T ). ExistElim

is modified by replacing the initialization of G and H by ¬F ∧ T and F ∧ T
respectively. Intuitively, T defines a universe of validity such that values outside
of the models T are irrelevant to the problem being studied.

5 Comparison with Other Algorithms

The “classical” algorithm for quantifier elimination over linear inequalities is
Ferrante and Rackoff’s [7]. Another algorithm based on similar ideas, but with
better performance, was proposed by Loos and Weispfenning [10]. We shall
therefore compare our method to these algorithms, both theoretically and ex-
perimentally. We also compared our algorithm with other available packages
using other quantifier elimination techniques.

5.1 Complexity bounds

Benchmark r. lim. R r. lim. float prsb23 blowup5

Mjollnir 1.4 17 0.06 negligible
Mjollnir (mod1) 1.6 77a 0.06 negligible
Mjollnir (mod2) 1.5 34 0.07 negligible
Mjollnir Loos-Weispfenning o-o-m o-o-m o-o-m negligible
Proof-of-concept n/a 823 n/a n/a
Mjollnir Ferrante-Rackoff o-o-m o-o-m o-o-m negligible
Proof-of-concept n/a 823 n/a n/a
Lira o-o-m o-o-m 8.1 0.6
Redlog rlqe 182 o-o-m 1.4 negligible
Redlog rlqe+rldnf o-o-m o-o-m n/a n/a
Mathematica Reduce (> 12000) o-o-m (> 780) 7.36

aMemory consumption grows to 1.1 GiB.

Table 1: Timings (in seconds, on an AMD Turion TL-58 64-bit Linux system)
for eliminating quantifiers from our benchmarks. The first line is the algorithm
described in this paper, the two following linear variants from §4, then other
packages. Reduce has rlqe (quantifier elimination) and rlqe+rldnf (same,
followed by conversion to DNF). (> t) means that the computation was killed
after t seconds because it was running too long. The prsb23 and following are
decision problems, the output is true or false, thus DNF form does not matter.
Out-of-memory is noted “o-o-m”.

We consider in this section that inequalities are written using integer coeffi-

cients in binary notation. We shall prove that a complexity bound 2n
2
q

where
n is the number of atomic formulas and q is the number of quantifiers to be
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eliminated. This yields an overall complexity of 22
2
|F |

where |F | is the size of
the formula.

Let us consider a conjunction of inequalities taken from a set of n inequalities.
The Fourier-Motzkin algorithm [4, 9] eliminates variable x from this conjunction
as follows. It first partitions these inequalities into those where x does not
appear, which are retained verbatim, and those where x appears positively (E+)
and negatively (E−). From each couple of inequalities (e+, e−) in E+ ×E−, an
inequality where x does not appear is obtained by cancellation between e+ and
e−. The size in bits of the coefficients in the output inequalities can be at most
2s+ 1 where s is the maximal size of the input coefficients.

The inequalities output therefore belong to a set of size asymptotically at
most n2/4 (the worst-case occurs when the inequalities split evenly between
those in which x appears positively and those where it appears negatively).
The output conjunction is in general too large: many inequalities in it are
superfluous; yet it is guaranteed to include all inequalities defining the facets of
the projection of the polyhedron.

Consider a formula F written with inequalities A1, . . . , An as atomic for-
mulas, with maximal coefficient size s. Our algorithm eliminates the quantifier
from ∃x F and outputs a DNF formula F ′ built with inequalities found in the
output of the Fourier-Motzkin algorithm operating on the set A1, . . . , An and
variable x. It follows that F ′ is built from at most, asymptotically, n2/4 in-
equalities as atomic formulas. The running time for this quantifier elimination
comes from:

• The SMT solving passes. There are at most 2n branches to explore in total.
For each branch, SMT has to test whether the solution set of a conjunction
of polynomial inequalities is empty or not, which is a particular case of
linear programming, with polynomial complexity. The overall SMT cost
is therefore bounded by O(2n.P (n)) for some polynomial P ;

• The projections, with complexity O(n2.s), applied to each of at most 2n

polyhedra.

This gives an overall complexity of O(2cn) where c is a constant.
Consider now a succession of quantifier eliminations (with or without alter-

nations). We now have F consisting of a sequence of quantifiers followed by a
quantifier-free formula built out of atomic formulas A1, . . . , An. Our algorithm
performs eliminations in sequence, starting from the rightmost quantifier.

Let us note A(k) the set of atomic formulas that can be obtained after k
eliminations; A(0) = {A1, . . . , An}. Clearly, |A(k)| ≤ |A(0)|2

k

asymptotically,
since at each iteration the size of the set of atomic formulas can at most get
squared by Fourier-Motzkin elimination. The size of the coefficients grows at
most as s.2k. This yields the promised bound.

It is possible that the bound |A(k)| ≤ |A(0)|2
k

, obtained by observation
of the Fourier-Motzkin algorithm, is too pessimistic. The literature does not
show examples of such doubly exponential blowups, while polyhedra with single
exponential blowups can be constructed.

The“classical”algorithm for quantifier elimination over real or rational arith-
metic is Ferrante and Rackoff’s method [7][4, §7.3][14, §4.2]. A related algorithm
was proposed by Loos and Weispfenning [10][14, §4.4]. Both these algorithms
are based on the idea that an existentially quantified formula ∃x F (x) with free
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variables y, z, . . . can be replaced by F (x1) ∨ · · · ∨ F (xm) where x1, . . . , xm are
expressed as functions of y, z, . . . . In the case of Ferrante and Rackoff, m is
quadratic in the worst case in the length of the formula, while for Loos and
Weispfenning it is linear. In both cases, the overall complexity bound is 22

cn

.
The weakness of both algorithms is that they never simplify formulas. This

may explain that while their theoretical bounds are better than ours, our algo-
rithm is in practice more efficient, as shown in the next subsection.

One could at first assume that the complexity bounds for our algorithm are
asymptotically worse than Ferrante and Rackoff’s. Our algorithm, however,
outputs results in CNF or DNF form, while Ferrante and Rackoff’s algorithm
does not. If we add a step of transformation to CNF or DNF to their algorithm,
then we also obtain a triple exponential bound.

5.2 Practical results

depth 14 depth 15 depth 16
Solved Avg O-o-m Solved Avg O-o-m Solved Avg O-o-m

Mjollnir 100 1.6 0 94 9.8 0 73 35.3 0
Mjollnir (mod1) 94 8.2 3 80 27.3 7 39 67.1 25
Mjollnir (mod2) 100 3.8 0 91 13.9 0 65 39.2 0
Mjollnir Loos-W. 93 1.77 4 90 6.42 5 62 17.65 27
Proof-of-concept 94 1.4 0 86 2.2 0 55 17.7 0
Mjollnir Ferrante-R. 51 18.2 41 23 23.2 65 3 7.3 85
Proof-of-concept 94 1.4 0 86 2.2 0 55 17.7 0
Lira 14 102.4 83 3 77.8 94 1 8 95
Redlog (rlqe) 92 13.7 0 53 27.4 0 27 33.5 0
Mathematica 6 30.2 0 1 255.7 0 1 19.1 0

Table 2: Benchmarks on 3 × 100 random instances generated using randprsb,
with formula depths n respectively 14, 15 and 16 (obtained byrandprsb 0 7 -

10 10 n i) where i ranges in [0, 99]). The table shows the number of instances
solved within the timeout period out of the proposed 100, the average time spent
per solved instance, and the number of instances resulting in out-of-memory.

We benchmarked several variants of our method against other algorithms:

Mjollnir is the algorithm described in §3, implemented on top of SMT solver
Yices3 and the NewPolka polyhedron package from Apron4, or option-
ally the Parma Polyhedra Library (PPL5). Profiling showed that most of
the time is spent in the SMT solver, so performance differences between
NewPolka and PPL are negligible.

Proof-of-concept is an early version of the same algorithm, implemented on
top of a rudimentary SMT solver and the PPL. The SMT algorithm used
is simple and lazy: the SMT problem is turned into SAT by replacing
each atomic inequality by a propositional variable, and the SAT problem
is input into Minisat. A full SAT solution is obtained, then tested for
emptiness by solving a linear programming problem: finding a vector of

3http://yices.csl.sri.com/
4http://apron.cri.ensmp.fr/library/
5http://www.cs.unipr.it/ppl/
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coefficients suitable as a contradiction witness for Farkas’ lemma. If a
witness is found, it yields a contradictory conjunction, whose negation is
added to the SAT problem and SAT is restarted.

Mjollnir (mod1) is the ALL-SAT then projection algorithm from §4.1. It is
invoked by option -no-block-projected-model.

Mjollnir (mod2) is the algorithm from §4.2; it is invoked by option -add-

blocking-to-g.

Mjollnir Ferrante-Rackoff implements [7][4, §7.3].

Mjollnir Loos-Weispfenning implements [10].

Lira6 is based on Büchi automata and handles both Presburger arithmetic (in-
teger linear inequalities) and rational linear inequalities.

Mathematica7 is a general-purpose symbolic algebra package. Its Reduce

fonction appears to implement CAD [5], an algorithm suitable for non-
linear inequalities interpreted in the theory of real closed fields, though it
is difficult to know what exactly is implemented because this program is
closed source.

Redlog8 is a symbolic formula package implemented on top of the computer
algebra systemReduce 3.8.9 Redlog implements various algorithms due
to Volker Weispfenning and his group [11].

Table 1 compares these various implementations on a few benchmark exam-
ples 10 coming from two sources:

1. Examples produced from problems of program analysis following our
method for the parametric computation of least invariants. [12] To summa-
rize, each formula expresses the fact that a set of program states (such as a
product of intervals for the numerical variables) is the least invariant of a
program, or the strongest postcondition if there is no fixed point involved.
Most of the examples, being extracted by hand from simple subprograms,
were easily solved and thus did not constitute good benchmarks, but one
of them, defining the least invariant of a rate limiter, proved to be tougher
to solve, and we selected it as a benchmark. We have two versions of this
example: the first for a rate limiter operating over real numbers (“r. lim
R”) the second over floating-point numbers, abstracted using real numbers
(“r. lim float”), and considerably tougher to process than the real example.

2. Examples procured from the Lira designers (prsb23 and blowup5).

Memory consumption stayed modest for all examples (< 15 MiB), except for
r. lim float. Profiling showed that most of the time is spent in the SMT-solver
and only a few percents in the projection algorithm. The fact that the proof-of-
concept implementation, with a very naive SMT-solver, performs decently on an

6http://lira.gforge.avacs.org/
7http://www.wolfram.com/
8http://www.algebra.fim.uni-passau.de/~redlog/
9http://www.uni-koeln.de/REDUCE/

10Available from http://www-verimag.imag.fr/~monniaux/download/linear_qe_benchmarks.zip.
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example where other algorithms exhaust memory shows that the performance
of our algorithm cannot be solely explained by the good quality of Yices.

Table 2 compares the various algorithms on random examples. We then
used the LIRA team’s randprsb tool11 to generate 100 random instances, by
changing the seed of the random number generator from 0 to 99, for each of
three values (14, 15, 16) of the depth parameter, which measures complexity.12

The programs were then tested with both a 1.8 GiB memory limit and a timeout
of five minutes. It is clear from Tab. 2 that Mjollnir -no-add-blocking-to-g

is the most efficient of the tested tools.

6 Conclusion and Future Work

We have proposed a new quantifier elimination algorithm for the theory of linear
inequalities over the real or rational numbers, and investigated possible variants.
Our motivation was the practical application of a recent result of ours on pro-
gram analysis, stating that formulas for computing the least invariants of certain
kinds of systems can be obtained through quantifier elimination [12].

This algorithm is efficient on examples obtained from this program analy-
sis technique, as well as other examples, whereas earlier published algorithms,
as well as several commercial packages, all exhaust time or memory resources.
Our algorithm leverages the recent progresses on satisfiability modulo theory
solvers (SMT) and, contrary to older algorithms, performs on-the-fly simplifi-
cations of formulas that keep formula sizes manageable. Our algorithm also
performs better than a straight application of SMT solvers (ALL-SAT followed
by projection).

Our algorithm is described for rational or real linear arithmetic, but it can
be extended to any theory for which there is an efficient satisfiability testing
algorithm for unquantified formulas and a reasonably efficient projection al-
gorithm for conjunctions. Among extensions that could be interesting from a
practical point of view would be on the one hand the nonlinear case for real
arithmetic (polynomials), and on the other hand the mixed integer / real prob-
lems. Of course, nonlinear integer arithmetic cannot be considered, since Peano
arithmetic is undecidable.

Tarski showed that the theory of the real closed fields (inequalities of polyno-
mial expressions) admits quantifier elimination, [16] however his algorithm had
impractical (non-elementary) complexity. Later, the cylindrical algebraic de-
composition (CAD) [2, Ch. 11] method was introduced, with doubly exponential
complexity, which is unavoidable in the worst case [2, §11.4]. Our experiments
with both Mathematica and Qepcad, both of which implement CAD, as well
as with Reduce/Redlog, which implement various algorithms for quantifier
elimination, showed us that combinatorial blowup occurs very quickly. For such
techniques to be interesting in practice, practical complexity should be lowered.
Perhaps our technique could help. There are, however, significant difficulties in
that respect. Our technique starts with some single model of the target formula
over the rational numbers; but a system of nonlinear inequalities needs not have
rational models when it is not full-dimensional (for instance, X2 = 2). Our tech-

11http://lira.gforge.avacs.org/toolpaper/randPrsb.hs
12We used the command line randprsb 0 7 -10 10 n i where n is the depth parameter

(here, 14, 15 or 16) and i ranges in [0, 99].
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nique reduces the geometrical computations to computations on conjunctions;
but in the nonlinear case, single inequalities can be reduced to disjunctions. As
an example, X2 ≥ 4 is reduced to X ≤ −2 ∨ X ≥ 2. Most importantly, our
technique relies at several steps on the availability of a decision procedure that
stays efficient even when the answer is negative.

Regarding the mixed integer / real problems, the Lira tool implements
quantifier elimination using a weak form of Büchi automata matching the b-ary
expression of the integers or reals, where b is an arbitrary base. [3] The output of
the process is an automaton and not a readable formula. While it is possible to
decide a closed formula, and to obtain one model from a satisfiable non-closed
formula, it is an open problem how to efficiently reconstruct a quantifier-free
formula from the resulting automaton. The automaton construct is unsuitable
for large coefficients (as our examples obtained from the analysis of floating-
point programs). Even on examples with small coefficients, the tool was unable
to complete quantifier elimination without blowing up. We think therefore that
it would be interesting to be able to apply our technique to the mixed integer
/ real problems, but there are difficulties: the algorithms on integer polyhedra
are considerably more complex than on rational polyhedra.

A classical objection to automatic program analysis tools meant to prove
the absence of bugs is that these tools could themselves contain bugs. Our
method uses complex algorithms (SMT-solving, polyhedron projection) as sub-
procedures. We consider developing techniques so that the algorithm outputs
easily-checkable proofs or“proof witnesses”of the correctness of its computation.
Furthermore, we showed in earlier publications [12] that certain program analy-
sis tasks were equivalent to quantifier elimination problems; that is, an effective
static analyzer can be extracted from the quantifier-free form of an analyzer
specification. This therefore suggests a new way for writing safe static analyz-
ers: instead of painstakingly writing an analyzer, then proofs of correctness in a
proof assistant [15], one could formulate the analysis problem as an equivalent
quantifier elimination problem, with a relatively simple proof of equivalence,
then apply a “certified” quantifier elimination procedure in order to extract the
effective analyzer.
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